M2 AMI2B - Lecture 1 Algorithmic foundations

Yann Ponty

CNRS / AMIB Team École Polytechnique/CNRS/Inria Saclay – France

November 25st, 2016

Yann Ponty M2 AMI2B - Lecture 1 - RNA MFE folding

Introduction

- Dynamic programming 101
- Dynamic programming: Reminder

2 Minimal free-energy folding prediction

- Nussinov-style RNA folding
- Turner energy model
- MFold/Unafold

Problem: You have access to unlimited amount of 1, 20 and 50 cents coins. A client prefers to travel light, i.e. to **minimize the #coins**. How to give **N** cents back in change without losing a customer?

Strategy #1: Start with *heaviest* coins, and then complete/fill-up with coins of *decreasing* value.

21 = ?? 55 60

Problem: You have access to unlimited amount of 1, 20 and 50 cents coins. A client prefers to travel light, i.e. to **minimize the #coins**. How to give **N** cents back in change without losing a customer?

Strategy #1: Start with *heaviest* coins, and then complete/fill-up with coins of *decreasing* value.

60

Problem: You have access to unlimited amount of 1, 20 and 50 cents coins. A client prefers to travel light, i.e. to **minimize the #coins**. How to give **N** cents back in change without losing a customer?

Strategy #1: Start with *heaviest* coins, and then complete/fill-up with coins of *decreasing* value.

Problem: You have access to unlimited amount of 1, 20 and 50 cents coins. A client prefers to travel light, i.e. to **minimize the #coins**. How to give **N** cents back in change without losing a customer?

Strategy #1: Start with *heaviest* coins, and then complete/fill-up with coins of *decreasing* value.

Problem: You have access to unlimited amount of 1, 20 and 50 cents coins. A client prefers to travel light, i.e. to **minimize the #coins**. How to give **N** cents back in change without losing a customer?

Strategy #1: Start with *heaviest* coins, and then complete/fill-up with coins of *decreasing* value.

Problem a priori (?!) non-solvable using such a greedy approach, as a (simpler) problem is already NP-complete (thus Efficient solution \Rightarrow 1M\$).

Foreword

Strategy #2: Brute force enumeration \rightarrow #Coins^N (Ouch!)

$$Min \# Coins(N) = Min \begin{cases} \bigcirc & \rightarrow & 1 + Min \# Coins(N-1) \\ \bigcirc & \rightarrow & 1 + Min \# Coins(N-20) \\ \bigcirc & \rightarrow & 1 + Min \# Coins(N-50) \end{cases}$$

$$\rightarrow$$
 1 + Min#Coins(N - 20)

Foreword

Strategy #2: Brute force enumeration \rightarrow #Coins^N (Ouch!)

Strategy #3: The following recurrence gives the minimal number of coins:

$$Min\#Coins(N) = Min \begin{cases} \bigcirc & \rightarrow & 1 + Min\#Coins(N-1) \\ \bigcirc & \rightarrow & 1 + Min\#Coins(N-20) \\ \bigcirc & \rightarrow & 1 + Min\#Coins(N-50) \end{cases}$$

With some memory (*N* intermediate computations), the minimum number of coins can be obtained after $N \times \#$ Coins operations. An optimal set of coins can be obtained by **tracing back** the choices performed at each stage, leading to the minimum.

Remark: We still haven't won the million, as *N* has **exponential value compared to the length of its encoding**, so the algorithm does not qualify as *efficient* (i.e. polynomial).

Still, this approach is much more efficient than a brute-force enumeration: \Rightarrow Dynamic programming.

Dynamic programming: General principle

Dynamic programming = General optimization technique. **Prerequisite:** Optimal solution for problem *P* can be derived from solutions to strict sub-problems of *P*.

Bioinformatics :

Discete solution space (alignments, structures...)

- + Additively-inherited objective function (cost, log-odd score, energy...)
- ⇒ Efficient dynamic programming scheme

Example: Local Alignment (Smith/Waterman)

Dynamic programming scheme defines a space of (sub)problems and a recurrence that relates the score of a problem to that of smaller problems.

Given a scheme, two steps :

- Matrix filling: Computation and tabulation of best scores (Computed from smaller problems to larger ones).
- ► Traceback: Reconstruct best solution from contributing subproblems.

Complexity of algorithm depends on:

- Cardinality of sub-problem space
- ▶ Number of alternatives considers at each step (#Terms in recurrence)

Smith&Waterman example:

- *i*: $1 \rightarrow n + 1 \Rightarrow \Theta(n)$
- ► $j: 1 \rightarrow m + 1 \Rightarrow \Theta(m)$
- 3 operations at each step
- $\Rightarrow \Theta(m.n)$ time/memory

$$W(i, 0) = 0$$

$$W(0, j) = 0$$

$$W(i, j) = \max \begin{cases} W(i - 1, j - 1) + m_{i,j} \\ W(i - 1, j) + p_i \\ W(i, j - 1) + p_d \end{cases}$$

			А	С	А	С	А	С	Т	А
W(0,j) = 0 W(0,j) = 0		0	0	0	0	0	0	0	0	0
$W(i,j) = \max \begin{cases} W(i-1,j-1) + m_{i,j} \\ W(i-1,j) + p_i \\ W(i,j-1) + p_d \end{cases}$	А	0								
	G	0								
	С	0								
	А	0								
	С	0								
	А	0								
	С	0								
	А	0								

Introduction

- Dynamic programming 101
- Dynamic programming: Reminder

2 Minimal free-energy folding prediction

- Nussinov-style RNA folding
- Turner energy model
- MFold/Unafold

Nussinov/Jacobson energy model (NJ)

Base-pair maximization (with a twist):

- Additive model on independently contributing base-pairs;
- Canonical base-pairs only: Watson/Crick (A/U,C/G) and Wobble (G/U)

$$\Rightarrow E_{\omega,S} = -\#Paires(S)$$

Folding in NJ model \Leftrightarrow Base-pair (weight) maximization

Example:

Nussinov/Jacobson energy model (NJ)

Base-pair maximization (with a twist):

- Additive model on independently contributing base-pairs;
- Canonical base-pairs only: Watson/Crick (A/U,C/G) and Wobble (G/U)

$$\Rightarrow E_{\omega,S} = -\#Paires(S)$$

Folding in NJ model \Leftrightarrow Base-pair (weight) maximization

Example:

Correctness. Goal = Show that MFE over interval [i, j] is indeed found in $N_{i,j}$ after completing the computation. Proceed by induction:

- ► Assume that property holds for any [i', j'] such that j' i' < n.
- Consider [i, j], j i = n. Let MFE_{i,j} := Base-pairs of best struct. on [i, j]. Then first position i in MFE_{i,j} = is either:
 - ▶ Unpaired: MFE_{*i*,*j*} = MFE_{*i*+1,*j*} → free-energy = $N_{i+1,j}$ ▶ Paired to k: MFE_{*i*,*j*} = {(*i*, *k*)} ∪ MFE_{*i*+1,*k*-1} ∪ MFE_{*k*+1,*j*}.
 - (Indeed, any BP between [i + 1, k 1] and [k + 1, j] would cross (i, k))

 \rightarrow free-energy = $\Delta G_{i,k} + N_{i+1,k-1} + N_{k+1,j}$

$$\begin{array}{rcl} & & & \\ \mathbf{i} & & \mathbf{j} \end{array} \overset{}{=} & \underbrace{\mathbf{i} & \mathbf{i+1} & \mathbf{j}}_{\mathbf{i}} + \underbrace{\mathbf{i} & \overset{\geq}{=} \theta}_{\mathbf{i}} \overset{}{=} & \underbrace{\mathbf{i} & \mathbf{i+1}}_{\mathbf{i}} & \mathbf{j} \end{array} \\ & & & \\ & & & \\ N_{i,j} \end{array} \overset{}{=} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & &$$

Correctness. Goal = Show that MFE over interval [i, j] is indeed found in $N_{i,j}$ after completing the computation. Proceed by induction:

- ► Assume that property holds for any [i', j'] such that j' i' < n.
- ► Consider [i, j], j − i = n. Let MFE_{i,j} := Base-pairs of best struct. on [i, j]. Then first position i in MFE_{i,j} = is either:
 - ► Unpaired: MFE_{*i*,*j*} = MFE_{*i*+1,*j*} \rightarrow free-energy = N_{*i*+1,*j*}
 - ▶ Paired to k: $MFE_{i,j} = \{(i,k)\} \cup MFE_{i+1,k-1} \cup MFE_{k+1,j}$. (Indeed, any BP between [i+1, k-1] and [k+1, j] would cross (i, k)) \rightarrow free-energy = $\Delta G_{i,k} + N_{i+1,k-1} + N_{k+1,j}$.

$$\begin{array}{rcl} & & & \\ \mathbf{i} & & \mathbf{j} \end{array} \begin{array}{c} \mathbf{i} & & \mathbf{i} + \mathbf{1} & & \mathbf{j} \end{array} \begin{array}{c} & & & \\ \mathbf{i} & & \mathbf{i} \end{array} \begin{array}{c} & & & \\ \mathbf{i} & & \mathbf{k} \end{array} \begin{array}{c} & & \\ \mathbf{i} \end{array} \end{array} \begin{array}{c} & & \\ \mathbf{i} \end{array} \begin{array}{c} & & \\ \mathbf{i} \end{array} \end{array} \begin{array}{c} & & \\ \mathbf{i} \end{array} \begin{array}{c} & & \\ \mathbf{i} \end{array} \end{array}$$

Correctness. Goal = Show that MFE over interval [i, j] is indeed found in $N_{i,i}$ after completing the computation. Proceed by induction:

- Assume that property holds for any [i', j'] such that j' i' < n.
- Consider [i, j], j i = n. Let MFE_{*i*,*j*} := Base-pairs of best struct. on [i, j]. Then first position *i* in $MFE_{i,i}$ = is either:
 - ▶ Unpaired: MFE_{*i*,*j*} = MFE_{*i*+1,*j*} \rightarrow fre ▶ Paired to k: MFE_{*i*,*j*} = {(*i*, k)} \cup MFE_{*i*+1,k-1} \cup MFE_{k+1,*j*}. \rightarrow free-energy = N_{i+1}
 - (Indeed, any BP between [i + 1, k 1] and [k + 1, j] would cross (i, k)) \rightarrow free-energy = $\Delta G_{i,k} + N_{i+1,k-1} + N_{k+1,i}$
- \Rightarrow N_{i,i} indeed contains MFE over [i, j].

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С					=					4	<u> </u>	θ				0	0	0
G	i			j		i i+1			j	' i			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С			_		_					4		e^{θ}	7			0	0	0
G	i			j	-	i i+1			j	Ťi			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
			•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С			_		_						< ≥	θ	7			0	0	0
G	i			j	-	i i+1			j	Τi			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С			_		_						< ≥	θ	7			0	0	0
G	i			j	-	i i+1			j	Τi			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•)	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											_	_			0	0	0	0
С					=					4		$\theta $				0	0	0
G	i			j		i i+1			j	' i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•)	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											_	_			0	0	0	0
С					=					4	<u> </u>	θ				0	0	0
G	i			j		i i+1			j	' i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•)	
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С	-				_		~~~~			4	<u> </u>	θ				0	0	0
G	i			j		i i+1	1		j	' i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(•	•	•	•	•	•	•	•	•	•	•	•	•	•)	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С	-				=		~~~~			4	<u> </u>	θ				0	0	0
G	i			j	_	i i+1	1		j	i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•)	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С			~~	~	=		~~~~	~	~	+ 4	\geq	θ		_		0	0	0
G	i			j	_	i i+1			j	i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•)	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С			~~	~	=		~~~~	~	~	+ 4	\geq	θ		_		0	0	0
G	i			j	_	i i+1			j	i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(•	•	•	•	•	•	•		•	•	•	•	•	•)	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С	-				=					4	<u> </u>	θ				0	0	0
G	i			j		i i+1			j	' ī			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(•	•	•	•	•	•	•	•	•	•	•	•	•	•)	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С	-				=					4	<u> </u>	θ				0	0	0
G	i			j		i i+1			j	' i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(•	•	•	•	•	•	•	•	•	•	•	•	•	•	•)	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С					=					4		$\theta $				0	0	0
G	i			j		i i+1			j	' i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	((•	•	•	•	•	•	•	•	•	•	•	•	•))	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
А						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С			~~	~	=		~~~~	~~	~	+ 4	< ≥	θ		_		0	0	0
G	i			j		i i+1			j	i			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	((•	•	•	•	•	•	•	•	•	•	•	•	•))	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С	-				_					4	< ≥	θ				0	0	0
G	i			j	-	i i+1			j	' i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	((•	•	•	•	•	•	•	•	•	•	•	•))	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С		~	~~	~	=		~~~~	~~	~	+ 4	\geq	θ		_		0	0	0
G	i	-		j	_	i i+1			j	i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•	•)	•	•	•	•	•	•	•	•))	
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С					_					4	<u> </u>	θ				0	0	0
G	i			j		i i+1			Ī	' i			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•	•)	•	•	•	•	•	•	•	•))	
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С					_					4	<u> </u>	θ				0	0	0
G	i			j		i i+1			j	' ī			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•	•)	•	•	•	•	•	•	•	•))	
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С					_					4	<u> </u>	θ				0	0	0
G	i			j		i i+1			I	' i			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•	•)	•	•	•	•	•	•	•	•))	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С					_				~	4	2	θ				0	0	0
G	i			j		i i+1			j	' i			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•	•)	•	•	•	•	•	•	•))	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С					_				~	4	<u> </u>	θ				0	0	0
G	i			j		i i+1			j	' ī			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•	•	•)	•	•	•	•	•	•	•	•))	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С		~	~~	~	=		~~~~	~~	~	+ 4	< ≥	θ		_		0	0	0
G	i			j	_	i i+1			j	i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•	•)	•	•	•	•	•	•	•	•))	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С		~	~~	~	=		~~~~	~~	~	+ 4	< ≥	θ		_		0	0	0
G	i			j	_	i i+1			j	i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•	•	•)	•	(•	•	•	•	•)))	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С			~~	~	=		~~~~	~~	~	+ 4	< ≥	θ		_		0	0	0
G	i			j	_	i i+1			j	i			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•)	•	(•	•	•	•	•)))	
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С		~	~~	~	=		~~~~	~~	~	+ 6	< ≥	θ		_		0	0	0
G	i			j	_	i i+1			j	i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•	•	•)		(•	•	•)))	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С					_					т 4	<u> </u>	θ				0	0	0
G	i			j		i i+1			Ī	i			k	j			0	0
A																		0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•		•)	•	((•	•	•))))	•
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С					_					4	<u> </u>	θ				0	0	0
G	i			j	-	i i+1			j	' i			k	j			0	0
A	L																	0

	С	G	G	A	U	A	С	U	U	С	U	U	A	G	A	С	G	A
	(((•)	•	((•	•	•))))	
С	0	0	0	0	0	0	3	4	4	6	6	6	6	9	9	11	14	14
G		0	0	0	0	0	3	4	4	6	6	6	6	7	9	11	11	11
G			0	0	0	0	3	3	3	5	5	5	5	6	8	10	10	10
A				0	0	0	0	2	2	2	2	4	4	5	7	7	8	10
U					0	0	0	0	0	0	2	2	4	5	7	7	8	10
A						0	0	0	0	0	2	2	2	5	5	5	8	8
С							0	0	0	0	0	0	2	5	5	5	8	8
U								0	0	0	0	0	2	3	5	5	6	7
U									0	0	0	0	2	3	5	5	5	7
С										0	0	0	0	3	3	3	5	5
U											0	0	0	0	2	2	2	3
U												0	0	0	0	0	1	2
A													0	0	0	0	0	0
G														0	0	0	0	0
A											-	_			0	0	0	0
С		~	~~	~	=		~~~	~	~	+ 4	<u> </u>	θ		_		0	0	0
G	i			j		i i+1			j	i			k	j			0	0
A																		0

Turner energy model

Based on unambiguous decomposition of 2^{ary} structure into loops:

- Internal loops
- Bulges
- Terminal loops
- Multi loops
- Stackings

Free-energy Δ G of a loop depend on bases, assymmetry, dangles . . .

Experimentally determined + Interpolated for larger loops.

Turner energy model

Based on unambiguous decomposition of 2^{ary} structure into loops:

Internal loops

- Bulges
- Terminal loops
- Multi loops
- Stackings

Free-energy Δ G of a loop depend on bases, assymmetry, dangles . . .

Experimentally determined + Interpolated for larger loops.

Based on unambiguous decomposition of 2^{ary} structure into loops:

- Internal loops
- Bulges
- Terminal loops
- Multi loops
- Stackings

Free-energy Δ G of a loop depend on bases, assymmetry, dangles . . .

Experimentally determined + Interpolated for larger loops.

Based on unambiguous decomposition of 2^{ary} structure into loops:

- Internal loops
- Bulges
- Terminal loops
- Multi loops
- Stackings

Free-energy Δ G of a loop depend on bases, assymmetry, dangles . . .

Experimentally determined + Interpolated for larger loops.

Based on unambiguous decomposition of 2^{ary} structure into loops:

- Internal loops
- Bulges
- Terminal loops
- Multi loops
- Stackings

Free-energy Δ G of a loop depend on bases, assymmetry, dangles . . .

Experimentally determined + Interpolated for larger loops.

Based on unambiguous decomposition of 2^{ary} structure into loops:

- Internal loops
- Bulges
- Terminal loops
- Multi loops
- Stackings

Free-energy Δ G of a loop depend on bases, assymmetry, dangles . . .

Experimentally determined + Interpolated for larger loops.

Improved results by taking stacking into account.

MFold Unafold

- E_H(i, j): Energy of terminal loop enclosed by (i, j) pair
- $E_{BI}(i, j)$: Energy of bulge or internal loop *enclosed by* (i, j) pair
- $E_S(i,j)$: Energy of stacking (i,j)/(i+1,j-1)
- Penalty for multi loop (a), and occurrences of unpaired base (b) and helix (c) in multi loops.

DP recurrence

$$\begin{aligned} \mathcal{M}'_{i,j} &= \min \begin{cases} E_{\mathcal{H}}(i,j) \\ E_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \min_{i',j'} (E_{Bl}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ a + c + \min_{k} (\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \end{cases} \\ \mathcal{M}_{i,j} &= \min_{k} \left\{ \min(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\} \\ \mathcal{M}^{1}_{i,j} &= \min_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1}, c + \mathcal{M}'_{i,j} \right\} \end{aligned}$$

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} \mathcal{E}_{H}(i,j) \\ \mathcal{E}_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \mathcal{M}_{i,j'}(\mathcal{E}_{Bl}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ \mathbf{a} + \mathbf{c} + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \\ \mathcal{M}_{i,j} = \operatorname{Min}_{k} \left\{ \min(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\} \\ \mathcal{M}^{1}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1}, \mathbf{c} + \mathcal{M}'_{i,j} \right\} \end{cases}$$

Complexity:

For each min, $\mathcal{O}(n)$ potential contributors \Rightarrow **Worst-case** complexity in $\mathcal{O}(n^2)$ for **naive backtrack**. Keep best contributor for each Min \Rightarrow **Backtracking in** $\mathcal{O}(n)$

 \Rightarrow UnaFold [MZ08]/RNAFold [HFS⁺94] compute the MFE for the Turner model in **overall**¹ time/space complexities in $\mathcal{O}(n^3)/\mathcal{O}(n^2)$

¹Using a trick/restriction for internal loops...

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} \overline{E_{\mathcal{H}}(i,j)} \\ \overline{E_{S}(i,j) + \mathcal{M}'_{i+1,j-1}} \\ \operatorname{Min}_{i',j'}(\overline{E_{Bl}(i,i',j',j) + \mathcal{M}'_{i',j'})} \\ \overline{A + c + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1})} \\ \mathcal{M}_{i,j} = \operatorname{Min}_{k} \left\{ \min(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\} \\ \mathcal{M}^{1}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1,k}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1,k}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contributor_{i,j}c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{M}^{0}_{i,j} = \operatorname{Min}_{k} \left\{ contr_{i,j}c +$$

 \Rightarrow UnaFold [MZ08]/RNAFold [HFS⁺94] compute the MFE for the Turner model in **overall**¹ time/space complexities in $O(n^3)/O(n^2)$

¹Using a trick/restriction for internal loops...

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} \overline{E_{\mathcal{H}}(i,j)} \\ \overline{E_{S}(i,j) + \mathcal{M}'_{i+1,j-1}} \\ \operatorname{Min}_{i',j'}(\overline{E_{Bl}(i,i',j',j) + \mathcal{M}'_{i',j'}}) \\ \overline{a + c + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1})} \\ \mathcal{M}_{i,j} = \operatorname{Min}_{k} \left\{ \min(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\} \\ \mathcal{M}^{1}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1}, c + \mathcal{M}'_{i,j} \right\} \\ \mathcal{C} \text{complexity:} \\ \overline{\gamma} \text{For each min, } \mathcal{O}(n) \text{ potential contributors} \\ \Rightarrow \text{ Worst-case complexity in } \mathcal{O}(n^{2}) \text{ for naive backtrack.} \end{cases}$$

Keep best contributor for each Min \Rightarrow **Backtracking in** $\mathcal{O}(n)$

 \Rightarrow UnaFold [MZ08]/RNAFold [HFS⁺94] compute the MFE for the Turner model in **overall**¹ time/space complexities in $O(n^3)/O(n^2)$

¹Using a trick/restriction for internal loops...

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} \overline{E_{H}(i,j)} \\ \overline{E_{S}(i,j) + \mathcal{M}'_{i+1,j-1}} \\ \operatorname{Min}_{i',j'}(\overline{E_{Bl}(i,i',j',j) + \mathcal{M}'_{i',j'}}) \\ a + c + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \\ \overline{\mathcal{M}}_{i,j} = \operatorname{Min}_{k} \left\{ \min(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\} \\ \mathcal{M}^{1}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1}, c + \mathcal{M}'_{i,j} \right\} \\ \end{cases}$$
Complexity:
For each min, $\mathcal{O}(n)$ potential contributors
$$\Rightarrow \operatorname{Worst-case} \operatorname{complexity} in \mathcal{O}(n^{2}) \text{ for naive backtrack.}$$

 \Rightarrow UnaFold [MZ08]/RNAFold [HFS⁺94] compute the MFE for the Turner model in **overall**¹ time/space complexities in $O(n^3)/O(n^2)$

¹Using a trick/restriction for internal loops...

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} \mathbb{E}_{\mathcal{H}}(i,j) \\ \mathbb{E}_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \mathbb{M}_{i',j'}(\mathbb{E}_{Bl}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ \mathbb{E}_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \mathbb{E}_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \mathbb{E}_{S}(i,j) + \mathcal{M}'_{i',j'} \\ \mathbb{E}_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \mathbb{E}_{S}(i,j) + \mathcal{M}'_{i,j} \\ \mathbb{E}_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \mathbb{E}_{S}(i,j) + \mathcal$$

Complexity:

For each min, $\mathcal{O}(n)$ potential contributors \Rightarrow Worst-case complexity in $\mathcal{O}(n^2)$ for naive backtrack. Keep best contributor for each Min \Rightarrow Backtracking in $\mathcal{O}(n)$

 \Rightarrow UnaFold [MZ08]/RNAFold [HFS⁺94] compute the MFE for the Turner model in **overall**¹ time/space complexities in $\mathcal{O}(n^3)/\mathcal{O}(n^2)$

Using a trick/restriction for internal loops...

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} E_{H}(i,j) \\ E_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ Min_{i',j'}(E_{BI}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ a + c + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \\ \mathcal{M}_{i,j} = \operatorname{Min}_{k} \left\{ \min(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\} \\ \mathcal{M}^{1}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1}, c + \mathcal{M}'_{i,j} \right\}$$

Complexity:

For each min, $\mathcal{O}(n)$ potential contributors \Rightarrow Worst-case complexity in $\mathcal{O}(n^2)$ for naive backtrack. Keep best contributor for each Min \Rightarrow Backtracking in $\mathcal{O}(n)$

⇒ UnaFold [MZ08]/RNAFold [HFS⁺94] compute the MFE for the Turner model in **overall**¹ time/space complexities in $O(n^3)/O(n^2)$

¹Using a trick/restriction for internal loops...

$$\mathcal{M}'_{i,j} = \operatorname{Min} \begin{cases} E_{\mathcal{H}}(i,j) \\ E_{S}(i,j) + \mathcal{M}'_{i+1,j-1} \\ \operatorname{Min}_{i',j'}(E_{Bl}(i,i',j',j) + \mathcal{M}'_{i',j'}) \\ a + c + \operatorname{Min}_{k}(\mathcal{M}_{i+1,k-1} + \mathcal{M}^{1}_{k,j-1}) \\ \end{array}$$
$$\mathcal{M}_{i,j} = \operatorname{Min}_{k} \left\{ \min(\mathcal{M}_{i,k-1}, b(k-1)) + \mathcal{M}^{1}_{k,j} \right\}$$
$$\mathcal{M}^{1}_{i,j} = \operatorname{Min}_{k} \left\{ b + \mathcal{M}^{1}_{i,j-1}, c + \mathcal{M}'_{i,j} \right\}$$

Complexity:

For each min, $\mathcal{O}(n)$ potential contributors \Rightarrow Worst-case complexity in $\mathcal{O}(n^2)$ for naive backtrack. Keep best contributor for each Min \Rightarrow Backtracking in $\mathcal{O}(n)$

 \Rightarrow UnaFold [MZ08]/RNAFold [HFS⁺94] compute the MFE for the Turner model in **overall**¹ time/space complexities in $O(n^3)/O(n^2)$

¹Using a trick/restriction for internal loops...

I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and P. Schuster.

Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie / Chemical Monthly, 125(2):167–188, 1994.

N. R. Markham and M. Zuker.

Bioinformatics, chapter UNAFold, pages 3–31. Springer, 2008.