
EXERCICES, MPRI 2-38-1

return by Tuesday October 2nd, 2018

1. Interval graphs

We consider a finite set V and define
(
V
2

)
:= {{u, v} | u 6= v ∈ V }. Consider a set I := {Iv | v ∈ V }

where Iv := [xv, yv] is an interval of R. The interval graph of I is the graph GI with vertex set V

and edge set
{
{u, v} ∈

(
V
2

)
| Iu ∩ Iv 6= ∅

}
.

Q1. What is the interval graph of {[1, 4], [2, 6], [3, 8], [5, 9], [7, 10]}? Give a set of intervals with
interval graph G = (V,E) where V = {a, b, c, d, e} and E = {ab, ac, bc, cd, ce, de}.

Q2. Consider an interval graph GI = (V,E). Show that:

• all induced cycles in GI are triangles,
• there is a partial order ≺ on V whose comparability graph is the complement of GI ,
i.e. such that {u, v} is an edge in GI if and only if u and v are incomparable in ≺.

In fact, this is a characterization of interval graphs, but we skip the proof here.

2. Boxicity

Consider a set B := {Bv | v ∈ V } where Bv := [x1
v, y

1
v ]×· · ·×[xd

v, y
d
v ] is a box in Rd for some d ≥ 1.

The box graph of B is the graph GB with vertex set V and edge set
{
{u, v} ∈

(
V
2

)
| Bu ∩Bv 6= ∅

}
.

See Figure 1 for an example. Given a graph on V , the boxicity of G is the smallest possible
dimension d such that there exists a set B = {Bv | v ∈ V } of boxes whose box graph GB is G.

Figure 1. A set B of rectangles (2-dimensional boxes) and the corresponding box graph GB.

Q3. What is the boxicity of a complete graph?

Q4. Show that a cycle of length at least 4 has boxicity 2.

Q5. Consider the intersection G ∩ H = (V,E ∩ F ) of two graphs G = (V,E) and H = (V, F ).
Show that the boxicity of G ∩H is at most the sum of the boxicities of G and H.

Q6. What is the boxicity of an interval graph? Show that the boxicity of G = (V,E) is the minimal
number d of interval graphs GI1 = (V,E1), . . . , GId = (V,Ed) such that E = E1 ∩ · · · ∩ Ed.

Q7. Consider a graph G = (V,E) and an induced subgraph H = (U,E ∩
(
U
2

)
) for some U ⊆ V .

Show that the boxicity of H is at most the boxicity of G.

3. General upper bound

We now show an upper bound on the boxicity of any graph G.

Q8. According to Q 3, we can consider a graph G = (V,E) that is not complete. Let u, v be
two non-adjacent vertices of G and let H = G r {u, v} be the graph G where u and v where
deleted. Assume that H is the intersection of d interval graphs GJ 1 , . . . , GJ d . Define d + 1 sets
of intervals I1, . . . , Id+1 as follows:
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• For all i ∈ [d], let Ii :=J i ∪ {Ju, Jv} where Ju and Jv are intervals that are large enough
to intersect all intervals in J 1 ∪ · · · ∪ J d.
• Let Id+1 := {Iw | w ∈ V } where

Iw :=



{−1} if w = u

{1} if w = v

{0} if (u,w) /∈ E and (v, w) /∈ E

[−1, 0] if (u,w) ∈ E but (v, w) /∈ E

[0, 1] if (u,w) /∈ E but (v, w) ∈ E

[−1, 1] if (u,w) ∈ E and (v, w) ∈ E.

Show that G is the intersection of the interval graphs GI1 , . . . , GId+1 .

Q9. Deduce from the previous question that a graph on n vertices has boxicity at most n/2.

Q10. Consider the graph Up on p = 2q vertices obtained by deleting a perfect matching M from
the complete graph K2q. Show that the boxicity of Up is at least q = p/2. (Hint: Assume that Up

is the intersection of d interval graphs GI1 , . . . , GId . Show that each edge of the matching M is
missing in at least one of the interval graphs GIk and that two edges of the matching M cannot
be missing in the same interval graph GIk .)

4. Schnyder woods and boxicity

Thomassen proved that planar graphs have boxicity at most 3. The goal of this section is to
prove this result using Schnyder woods.

Q11. Show that any planar graph is an induced subgraph of a triangulation. Deduce from Q 7
that the special case of triangulations suffices to prove Thomassen’s result.

Consider now a triangulation T = (V,E) endowed with a Schnyder wood (T 1, T 2, T 3). In other
words, T 1, T 2, T 3 are three spanning trees of T , which partition the edges of T (except the edges
of the outer face which are all contained in two of these trees), and which fulfill Schnyder’s local
conditions around each vertex. Note that in contrast to the general case seen in the course, only
the edges of the external face are bioriented since T is a triangulation. Consider a vertex v ∈ V .
We denote by Ri(v) the region of T bounded by the paths from v to the root of the trees T i−1

and T i+1, and we let ri(v) = |Ri(v)|. We define xi
v := ri(v) and yiv := ri(vi), where vi is the

parent of v in the tree T i. Note that when v is the root of T i, the vertex vi is not defined, but we
let yiv := ri(v)+1. Consider the box Bv := [x1

v, y
1
v ]×[x2

v, y
2
v ]×[x3

v, y
3
v ]. Finally, let B := {Bv | v ∈ V }.

We have represented an example in Figure 2.
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Figure 2. A triangulation with a Schnyder wood (left), the corresponding or-
thogonal surface (middle), and the corresponding box representation (right). The
three external boxes have been reduced to let the other ones apparent.
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Figure 3. The octahedral triangulation (left), and some framework to draw box
representations corresponding to two Schnyder woods on O (middle and right).

Q12. Consider the triangulation O of Figure 3 (left) (note that it is the graph of an octahedron).
Compute all possible Schnyder woods on O (Hint: starting from one Schnyder wood, all the other
are obtained by returning oriented cycles surrounding a face of O.) For each Schnyder wood of O,
compute the boxes Bv for all vertices v of O. Finally, draw these boxes as in Figure 2. You can
use the framework of Figure 3 (middle and right) to help your drawing (don’t forget to insert this
in your exam).

Q13. Consider two adjacent vertices u, v ∈ V , and assume that u is a child of v in T i. Show that

xi−1
v ≤ xi−1

u ≤ yi−1v yiu = xi
v xi+1

v ≤ xi+1
u ≤ yi+1

v

and conclude that {u, v} ∈ GB.

Q14. Consider now two non-adjacent vertices u, v ∈ V , let i be such that u ∈ Ri(v) and let ui

be the parent of u in T i. Show that yiu < xi
v when

• v lies on the path from u to the root of T i, or
• u does not lie on the paths from v to the root of the trees T i−1 and T i+1.

Deduce that if u and v are non-adjacent vertices in T , then Bu ∩Bv = ∅ so that {u, v} /∈ GB.

Q15. Conclude from the two previous questions that T = (V,E) is the box graph GB for the set
of boxes B := {Bv | v ∈ V }.

Q16. We now consider the planar graph of Figure 4 (left) with two marked vertices u, v. Com-
puting x3(u) and y3(v), show that the recipe given for triangulations does not directly work for
arbitrary 3-connected planar graphs. This issue is illustrated in Figure 4 where you can see that
the boxes corresponding to u and v are disjoint, while u and v should be adjacent.
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Figure 4. A planar graph with a Schnyder wood (left), the corresponding orthog-
onal surface (middle), and the corresponding incorrect box representation (right).
The three external boxes have been reduced to let the other ones apparent.
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