Combinatoire des polytopes
DM 2 — Almost simplicial polytopes

Recall that a polytope is simplicial when all its facets are simplices. In this problem, we are interested
in polytopes that are not simplicial, but almost. A d-dimensional polytope P is called

o k-simplicial if all its faces of dimension k£ are simplices,

e s-almost simplicial if all its facets are simplices, except one which has d 4 s vertices.

Question 1. What is a d-simplicial polytope? Explain the equivalences:
P is simplicial <= P is (d — 1)-simplicial <= P is 0-almost simplicial.

The goal of the problem is to construct k-simplicial and s-almost simplicial polytopes with many
faces, using constructions similar to that of the cyclic polytope seen in the course.

1 (d — k)-simplicial polytope

In this section, we construct a (d—k)-simplicial polytope with many faces (generalizing the cyclic polytope
seen in the course).

Let p = (p1,...,pr) be a k-tuple of continuous functions p; : R — R. Define a curve x, : R — R?
by xp(t):= (t,tz,tB, .. .,td_k,pl(t),...,pk(t)). We fix some numbers t; < --- < #, and consider the
polytope Q= conv({Xp(t1), -, Xp(tn)})-

Question 2. Show that any d — k41 points on the curve Xp are affinely independent, and deduce that @
is (d — k — 1)-simplicial.
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Hint: te th k of the (d + 1) x (d — k + 1)-matri
[Hint: compute the rank of the ( ) x ( )-matriz olt) o xplta_rsr)

and conclude.]

Question 3. Show that any subset of at most |(d — k)/2]| vertices of @) form a face of Q.

[Hint: use a well choosen polynomial to define a supporting hyperplane of this face.]

2 Almost simplicial polytope

In this section, we construct an s-almost simplicial polytope with many faces, using some results of the
previous questions (which can now be admitted if needed).

We consider the real function p(t) = (n — 1) D@Dt 4-1) ... (t + d + s — 1), we define the curve
E(t) == (t,12,...,t71 p(t)), and we consider the polytope @Q:= conv({£(t1),...,&(ts)}), where we have
chosen this time t;:= — s —d + i for all ¢ € [n].

To analyse this polytope, for any d-tuple of indices ¢ = (i1,...,iq) € [n] and for any d-tuple of

variables z = (z1,..., z4), we define the determinant
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and the half-space
Hi:= {g e R’ ’ D(i,z) > 0}.



We denote by V(i) the Vandermonde determinant
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Question 4. Observe that p(t1) = p(t2) = -+ = p(ta+s) = 0 and p(t;) > 0for d+s+1 < i < n.

Deduce that the hyperplane H(; g4y defines a facet of the polytope () containing precisely the ver-
tices £(t1), ..., &(ta+s)-

Question 5. Consider now i; < iy < -+ < ig < ig4+1 with ig41 > d+s. For any j € [d 4 1], we consider

the Vandermonde determinant W;:=V (i1,...,4j-1,%j41,...,%4+1). Show that
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To evaluate this sum, we group terms two by two (leaving the first alone when d + 1 is odd) and thus
consider the term p(ti,,, o, )War1—26 — P(tiy_o, )Wa—ok for any 0 < k < [(d 4+ 1)/2]. Observe that the
definition of ¢;:= — s — d + 4 implies that 1 < ¢;, —t;, <n —1forany 1 < p < ¢q < d+ 1. Use these
inequalities to show that for any 1 < j < d + 1, we have

e p(ti;)/p(ti;_,) > (n — 1)4~! with a strict inequality when j = d + 1,
o Wj—t/W; < (n—1)%1,
and conclude that D(i,&(t;,,,)) > 0 for any choice of iy < iy < -+ <ig < igyy With ig1 >d+s.

Question 6. Deduce from Question 5 that except the facet of Question 4, all other facets of the poly-
tope  are simplices, and conclude that the polytope @) is a s-almost simplicial polytope.

Question 7. Using the computation of determinant of Question 5, show that a subset I:={i; < --- < ig}
with ig > d 4 s defines a facet of ) if and only if the number of elements of I between any two elements
of [n] \ I is even.



