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Abstract. A removahedron is a polytope obtained by deleting inequalities from the facet de-

scription of the classical permutahedron. Relevant examples range from the associahedra to

the permutahedron itself, which raises the natural question to characterize which nestohedra
can be realized as removahedra. In this note, we show that the nested complex of any con-

nected building set closed under intersection can be realized as a removahedron. We present

two different complementary proofs: one based on the building trees and the nested fan, and
the other based on Minkowski sums of dilated faces of the standard simplex. In general, this

closure condition is sufficient but not necessary to obtain removahedra. However, we show that

it is also necessary to obtain removahedra from graphical building sets, and that it is equivalent
to the corresponding graph being chordful (i.e. any cycle induces a clique).

keywords. Building set, nested complex, nestohedron, graph associahedron, generalized per-
mutahedron, removahedron.

1. Introduction

The permutahedron is a classical polytope, obtained as the convex hull of all permutations of [n],
which is closely related to various properties of the symmetric group. Relevant polytopes can be
obtained from the permutahedron by:

(i) gliding its facets orthogonally to its normal vectors without passing any vertex; the result-
ing polytopes are called deformed permutahedra and were studied by A. Postnikov in [Pos09];

(ii) deleting inequalities from its facet description; we call the resulting polytopes removahedra.

Our interest in deformed permutahedra and removahedra is motivated by certain realizations of the
associahedron and their generalizations to graph associahedra and nestohedra. An associahedron is
a polytope whose 1-skeleton realizes the rotation graph on binary trees with n vertices. In [Lod04],
J.-L. Loday constructed a remarkable realization of the associahedron which happened to be a
removahedron. Following the same line, C. Hohlweg and C. Lange [HL07] later constructed 2n

removahedra realizing the associahedron. In a different direction, M. Carr and S. Devadoss [CD06]
defined graph associahedra, which realize the clique complex of a compatibility relation on tubes
(connected induced subgraphs) of a fixed graph. Extending these polytopes, A. Postnikov [Pos09]
and independently by E.-M. Feichtner and B. Sturmfels [FS05] constructed nestohedra, which
realize the nested complex on a building set, see Section 2.2 for definitions. The resulting polytopes
are all deformed permutahedra, but not always removahedra.

In this note, we investigate which nestohedra can be realized as removahedra. We show that the
nested complex of a connected building set closed under intersection can always be realized as a
removahedron. For graph associahedra, this closure condition is equivalent to the underlying graph
being chordful (i.e. any cycle induces a clique). Conversely, we show that graph associahedra real-
izable as removahedra are precisely chordful graph associahedra. We develop two complementary
approaches to these questions. The first one, based on building trees and the nested fan, describes
the vertices of the resulting removahedra. The other one, based on Minkowski sums of dilated
faces of the standard simplex, describes the dilation factors in the Minkowski decomposition of
the resulting removahedra.
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2. Preliminaries

2.1. Permutahedra, deformed permutahedra, and removahedra. All polytopes considered
in this note are closely related to the braid arrangement and to the classical permutahedron. There-
fore, we first recall the definition and basic properties of the permutahedron (see [Zie95, Lect. 0])
and certain relevant deformations of it. We fix a finite ground set S and denote by {es | s ∈ S}
the canonical basis of RS.

Definition 1. The permutahedron Perm(S) is the convex polytope obtained equivalently as

(i) either the convex hull of the vectors
∑
s∈S σ(s)es ∈ RS for all bijections σ : S→ [|S|],

(ii) or the intersection of the hyperplane H := H=(S) with the half-spaces H≥(R) for ∅ 6= R ⊂ S,
where

H=(R) :=

{
x ∈ RS

∣∣∣∣ ∑
r∈R

xr =

(
|R|+ 1

2

)}
and H≥(R) :=

{
x ∈ RS

∣∣∣∣ ∑
r∈R

xr ≥
(
|R|+ 1

2

)}
,

(iii) or the Minkowski sum of all segments [er, es] for r 6= s ∈ S.

The normal fan of the permutahedron is the fan defined by the braid arrangement in H, i.e. the
arrangement of the hyperplanes {x ∈ H | xr = xs} for r 6= s ∈ S. Its k-dimensional cones corre-
spond to the surjections from S to [k+ 1], or equivalently to the ordered partitions of S into k+ 1
parts. In this note, we are interested in the following deformations of the permutahedron Perm(S).
These polytopes were called generalized permutahedra by A. Postnikov [Pos09, PRW08], but we
prefer the term deformed to distinguish from the other natural generalization of the permutahedron
to finite Coxeter groups.

Definition 2 ([Pos09, PRW08]). A deformed permutahedron is a polytope whose normal fan
coarsens that of the permutahedron. Equivalently [PRW08], it is a polytope defined as

Defo(z) :=

{
x ∈ RS

∣∣∣∣ ∑
s∈S

xs = zS and
∑
r∈R

xr ≥ zR for all ∅ 6= R ⊂ S

}
,

for some z := (zR)R⊆S ∈ (R>0)2S

, such that zR + zR′ ≤ zR∪R′ + zR∩R′ for any R,R′ ⊆ S.

As the permutahedron itself, all deformed permutahedra can be decomposed as Minkowski sums
and differences of dilates of faces of the standard simplex [ABD10]. For our purposes, we only
need here the following simpler fact, already observed in [Pos09].

Remark 3 ([Pos09]). For any S ⊆ S, we consider the face 4S := conv {es | s ∈ S} of the standard
simplex 4S. For any y := (yS)S⊆S where all yS are non-negative real numbers, the Minkowski sum

Mink(y) :=
∑
S⊆S

yS4S

of dilated faces of the standard simplex is a deformed permutahedron Defo(z), and the values
z = (zR)R⊆S of the right hand sides of the inequality description of Mink(y) = Defo(z) are given by

zR =
∑
S⊆R

yS .

Remark 4. As the normal fan of a Minkowski sum is just the common refinement of the normal
fans of its summands, and the normal fan is invariant by dilation, the combinatorics of the face
lattice of the Minkowski sum Mink(y) only depends on the set {S ⊆ S | yS > 0} of non-vanishing
dilation factors. When we want to deal with combinatorics only, we denote generically by Mink[C]
any Minkowski sum Mink(y) with dilation factors y = (yS)S⊆S such that C = {S ⊆ S | yS > 0}.

Among these deformed permutahedra, some are simpler than the others as all their facet defining
inequalities are also facet defining inequalities of the classical permutahedron. In other words, they
are obtained from the permutahedron by removing facets, which motivates the following name.
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Definition 5. A removahedron is a polytope obtained by removing inequalities from the facet
description of the permutahedron, i.e. a polytope defined for some B ⊆ 2S by

Remo(B) :=H ∩
⋂
B∈B

H≥(B) =

{
x ∈ H

∣∣∣∣ ∑
s∈B

xs ≥
(
|B|+ 1

2

)
for all B ∈ B

}
.

2.2. Building set, nested complex, and nested fan. We now switch to building sets and
their nested complexes. We only select from [CD06, Pos09, FS05, Zel06] the definitions needed in
this note. More details and motivation can be found therein.

Definition 6. A building set B on a ground set S is a collection of non-empty subsets of S such that

(B1) if B,B′ ∈ B and B ∩B′ 6= ∅, then B ∪B′ ∈ B, and
(B2) B contains all singletons {s} for s ∈ S.

A building set is connected if S is the unique maximal element. Moreover, we say that a building
set B is closed under intersection if B,B′ ∈ B implies B ∩B′ ∈ B ∪ {∅}.

All building sets in this manuscript are assumed to be connected and we will study the relation
between removahedra and building sets closed under intersection. We first recall a general example
of building sets, arising from connected subgraphs of a graph.

Example 7. Given a graph G with vertex set S, we denote by BG the graphical building set
on G, i.e. the collection of all non-empty subsets of S which induce connected subgraphs of G.
The maximal elements of BG are the vertex sets of the connected components of G, and we will
therefore always assume that the graph G is connected. We call a graph G chordful if any cycle
of G induces a clique. Observe in particular that every tree is chordful. The following statement
describes the graphical building sets of chordful graphs.

Lemma 8. A (finite connected) graph G is chordful if and only if its graphical building set is
closed under intersection.

Proof. Assume that G is chordful, and consider B,B′ ∈ BG and s, t ∈ B ∩ B′. As B and B′

induce connected subgraphs of G, there exists paths P and P ′ between s and t in G whose vertex
sets are contained in B and B′, respectively. The symmetric difference P4P ′ of these paths is a
collection of cycles. Since G is chordful, we can replace in each of these cycles the subpath of P
(resp. of P ′) by a chord. We thus obtain a path from s to t which belongs to B ∩ B′. It follows
that B ∩B′ induces a connected subgraph of G and thus that B ∩B′ ∈ BG.

Assume reciprocally that G has a cycle (si)i∈Z`
, with a missing chord sxsy. Consider the

subsetsB := {si | x ≤ i ≤ y} andB′ := {si | y ≤ i ≤ x}, where the inequalities between labels in Z`
have to be understood cyclically. Clearly, B,B′ ∈ BG while B ∩B′ = {sx, sy} /∈ BG. �

Example 9. The following sets are building sets:

• Bex0 := 2[4] r {∅} is the graphical building set over the complete graph K4,
• Bex1 := 2[4] r

{
∅, {1, 3}

}
is the graphical building set over the graph K4 r

{
{1, 3}

}
,

• Bex2 := 2[4]r
{
∅, {1, 3}, {1, 4}, {1, 3, 4}

}
is the graphical building set overK4r

{
{1, 3}, {1, 4}

}
,

• Bex3 :=
{
{1}, {2}, {3}, {4}, {5}, {1, 2, 3}, {1, 3, 4, 5}, {1, 2, 3, 4, 5}

}
is not graphical,

• Bex4 :=
{
{1}, {2}, {3}, {4}, {5}, {1, 2, 3, 4}, {3, 4, 5}, {1, 2, 3, 4, 5}

}
is not graphical.

The two building sets Bex0 and Bex2 are closed under intersection, while the other three are not.

In this note, we focus on polytopal realizations of the nested complex of a building set, a
simplicial complex defined below. Following [Zel06], we do not include S in the definition of
B-nested sets in order for the B-nested complex to be a simplicial complex.

Definition 10. A B-nested set N is a subset of Br {S} such that

(N1) for any N,N ′ ∈ N, either N ⊆ N ′ or N ′ ⊆ N or N ∩N ′ = ∅, and
(N2) for any k ≥ 2 pairwise disjoint sets N1, . . . , Nk ∈ N, the union N1 ∪ · · · ∪Nk is not in B.

The B-nested complex is the simplicial complex N (B) of all B-nested sets.
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Example 11. For a graphical building set BG, Conditions (N1) and (N2) in Definition 10 can
be replaced by the following: for any N,N ′ ∈ N, either N ⊆ N ′ or N ′ ⊆ N or N ∪N ′ /∈ BG. In
particular, the BG-nested complex is a clique complex: a simplex belongs to BG if and only if all
its edges belong to BG.

The B-nested sets can be represented by the inclusion poset of their elements. Since we only
consider connected building sets, the Hasse diagrams of these posets are always trees. In the next
definition, we consider rooted trees whose vertices are labeled by subsets of S. For any vertex v
in a rooted tree T, we call descendant set of v in T the union desc(v,T) of the label sets of all
descendants of v in T, including the label set of the vertex v itself. The B-nested sets are then in
bijection with the following B-trees.

Definition 12. A B-tree is a rooted tree whose label sets partition S and such that

(1) for any vertex v of T, the descendant set desc(v,T) belongs to B,
(2) for any k ≥ 2 incomparable vertices v1, . . . , vk ∈ T, the union

⋃
i∈[k] desc(vi,T) is not in B.

We denote by N(T) := {desc(v,T) | v vertex of T distinct from its root} the B-nested set corre-
sponding to a B-tree T. Note that N(T) is a maximal B-nested set if and only if all the vertices
of T are labeled by singletons of S. We then identify a vertex of T with the element of S labeling it.

The B-nested sets and the B-trees naturally encode a geometric representation of the B-nested
complex as a complete simplicial fan. In the next definition, we define 11R :=

∑
r∈R er, for R ⊆ S,

and we denote by 1̄1R the projection of 11R to H orthogonal to 11S. Moreover, we consider H as a
linear space.

Definition 13. The B-nested fan F(B) is the complete simplicial fan of H := H=(S) with a cone

C(N) := cone {1̄1N | N ∈ N} = {x ∈ H | xr ≤ xs for each path r → s in T} =: C(T)

for each B-nested set N and B-tree T with N = N(T).

The B-nested fan is the normal fan of various deformed permutahedra (see Definition 2). We
want to underline two relevant examples:

(i) the deformed permutahedron Defo(z) with right hand side z := (zR)R⊆S defined by zR = 3|R|−2

if R ∈ B and zR =∞ otherwise, see [Dev09];
(ii) the Minkowski sum Mink(11B) of the faces of the standard simplex corresponding to all the

elements of the building set B, see [Pos09, Section 7].

However, these two realizations are not always removahedra. In general, the support functions
realizing the normal fan F(B) can be characterized by local conditions [Zel06, Proposition 6.3],
but it is difficult to use these conditions to characterize which nested complexes can be realized
as removahedra. In this note, we adopt a different approach.

2.3. Results. The objective of this note is to discuss necessary and sufficient conditions for the
B-nested fan to be the normal fan of a removahedron (see Definition 5). We thus consider the
removahedron Remo(B) described by the facet defining inequalities of the permutahedron Perm(S)
whose normal vectors are rays of the B-nested fan, i.e.

Remo(B) :=H ∩
⋂
B∈B

H≥(B) =

{
x ∈ H

∣∣∣∣ ∑
s∈B

xs ≥
(
|B|+ 1

2

)
for all B ∈ B

}
.

Example 14. Figure 1 represents the removahedra Remo(Bex0), Remo(Bex1) and Remo(Bex2) cor-
responding to the graphical building sets Bex0, Bex1 and Bex2 of Example 9. Observe that Remo(Bex0)
and Remo(Bex2) realize the corresponding nested complexes, whereas Remo(Bex1) is not even a
simple polytope.

We want to understand when does Remo(B) realize the nested complex N (B). The following
statement provides a general sufficient condition.

Theorem 15. If B is a connected building set closed under intersection, then the normal fan of
the removahedron Remo(B) is the B-nested fan F(B). In particular, Remo(B) is a simple polytope.
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Figure 1. The 3-dimensional permutahedron Perm([4]) = Remo(Bex0) and the
removahedra Remo(Bex1) and Remo(Bex2).

We provide two different complementary proofs of this result:

(i) In Section 3, we apply a result from [HLT11] which characterizes the valid right hand sides
to realize a complete simplicial fan as the normal fan of a convex polytope. For this, we
first compute for each maximal B-tree T the intersection point a(T) of all facet defining
hyperplanes of Remo(B) normal to the rays of the cone C(T). We then show that the vector
joining the points a(T) and a(T′) corresponding to two adjacent cones C(T) and C(T′) points
in the right direction for Remo(B) to realize the nested fan F(B).

(ii) In Section 4, we show that certain Minkowski sums of dilated faces of the standard simplex
realize the B-nested fan as soon as all B-paths appear as summands. We then find the
appropriate dilation factors for the resulting polytope to be a removahedron.

Relevant examples of application of Theorem 15 arise from graphical building sets of chordful
graphs. If we restrict to graphical building sets, Lemma 24 shows that chordfulness of G is also a
necessary condition for the BG-nested fan F(BG) to be the normal fan of Remo(BG). We therefore
obtain the following characterization of the graphical building sets whose nested fan is the normal
fan of a removahedron. This characterization is illustrated by Example 14.

Theorem 16. The BG-nested fan F(BG) is the normal fan of the removahedron Remo(BG) if
and only if the graph G is chordful.

Example 17. Specific families of chordful graphs provide relevant examples of graph associahedra
realized by removahedra, e.g. :

• the path associahedra, aka. classical associahedra [Lod04],
• the star associahedra, aka. stellohedra [PRW08],
• the tree associahedra [Pil13],
• the complete graph associahedra, aka. classical permutahedra.

We note however that the cycle associahedra, aka. cyclohedra, cannot be realized by removahedra.

To conclude, we observe that a general building set B does not need to be closed under inter-
section for the removahedron Remo(B) to realize the B-nested fan F(B). In fact, our first proof
of Theorem 15 shows the following refinement. We say that two building blocks B,B′ ∈ B are
exchangeable if there exists two maximal B-nested sets N,N′ such that Nr {B} = N′ r {B′}.
Theorem 18. If the intersection of any two exchangeable building blocks of B also belongs to B,
then the normal fan of the removahedron Remo(B) is the B-nested fan F(B).

This result is illustrated by the building set Bex3 of Example 9 and its removahedron Remo(Bex3)
represented in Figure 2. However, the condition of Theorem 18 is still not necessary for the re-
movahedron Remo(B) to realize the nested complex N (B). For example, we invite the reader to
check that the removahedron Remo(Bex4) of the building set Bex4 of Example 9 realizes the corre-
sponding nested complex, even if {1, 2, 3, 4}∩{3, 4, 5} = {3, 4} /∈ Bex4 while {1, 2, 3, 4} and {3, 4, 5}
are exchangeable. Corollary 22 gives a necessary and sufficient, thought unpractical, condition for
the removahedron Remo(B) of an arbitrary building set B to realize the nested fan F(B).
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Figure 2. The 4-dimensional removahedron Remo(Bex3) realizes the Bex3-nested
fan, although Bex3 is not closed under intersection.

3. Counting paths in maximal B-trees

Our first approach to Theorem 15 is the following characterization of the valid right hand
sides to realize a complete simplicial fan as the normal fan of a convex polytope. A proof of this
statement can be found e.g. in [HLT11, Theorem 4.1].

Theorem 19 ([HLT11, Theorem 4.1]). Given a complete simplicial fan F in Rd, consider for each
ray ρ of F a half-space H≥ρ of Rd containing the origin and defined by a hyperplane H=

ρ orthogonal

to ρ. For each maximal cone C of F , let a(C) ∈ Rd be the intersection of the hyperplanes H=
ρ

for ρ ∈ C. Then the following assertions are equivalent:

(i) The vector a(C ′) − a(C) points from C to C ′ for any two adjacent maximal cones C, C ′

of F .
(ii) The polytopes

conv {a(C) | C maximal cone of F} and
⋂

ρ ray of F

H≥ρ

coincide and their normal fan is F .

Since we are given a complete simplicial fan F(B) and we want to prescribe the right hand
sides of the inequalities to describe a polytope realizing it, we are precisely in the situation of
Theorem 19. Our first step is to compute the intersection points of the hyperplanes normal to the
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rays of a maximal cone of F(B). We associate to any maximal B-tree T a point a(T) ∈ RS whose
coordinate a(T)s is defined as the number of paths π in T such that s is the topmost vertex ∧(π)
of π in T. Note that all coordinates of a(T) are strictly positive integers since we always count
the trivial path reduced to the vertex s of T. The following lemma ensures that the point a(T)
lies on all hyperplanes of Remo(B) normal to the rays of the cone C(T).

Lemma 20. For any maximal B-tree T and any element s ∈ S, the point a(T) lies on the
hyperplane H=(desc(s,T)).

The proof of this lemma is inspired from similar statements in [LP13, Proposition 6] and [Pil13,
Proposition 60]. Although the latter covers the present result, we provide a simpler and self-
contained proof for the convenience of the reader.

Proof of Lemma 20. Consider a B-tree T, and let Π be the set of all paths in T. For any π ∈ Π,
the topmost vertex ∧(π) of π in T is a descendant of s in T if and only if both endpoints of π are
descendants of s in T. It follows that∑

r∈desc(s,T)

a(T)r =
∑

r∈desc(s,T)

∑
π∈Π

11∧(π) = r =
∑
π∈Π

11∧(π)∈ desc(s,T) =

(
|desc(s,T)|+ 1

2

)
since the number of paths π ∈ Π such that ∧(π) ∈ desc(s,T) is just the number of pairs of
endpoints in desc(s,T), with possible repetition. We therefore have a(T) ∈ H=(desc(s,T)). �

Guided by Theorem 19, we now compute the difference a(T′)− a(T) for two adjacent maximal
B-trees T and T′. Let s, s′ ∈ S be such that the cones C(T) and C(T′) are separated by the
hyperplane of equation xs = xs′ , and moreover xs ≤ xs′ in C(T) while xs ≥ xs′ in C(T′). Let T̄
denote the tree obtained by contracting the arc s→ s′ in T or, equivalently, the arc s′ → s in T′.
Since both T and T′ contract to T̄, the children of the node of T̄ labeled by {s, s′} are all children
of s or s′ in both T and T′. We denote by S (resp. by S′) the elements of S which are children
of s (resp. of s′) in both T and T′. In contrast, we let R denote the elements of S which are
children of s in T and of s′ in T′, and R′ those which are children of s′ in T and of s in T′. These
notations are summarized on Figure 3. For r ∈ S ∪ S′ ∪R ∪R′, we denote the set of descendants
of r by desc(r) := desc(r,T) = desc(r,T′) = desc(r, T̄).

S' RS R'S' R'

O

s

S R

s' s s'

O

Figure 3. Two adjacent maximal B-trees T (left) and T′ (right).

Lemma 21. Let B be a building set and T, T′ be two adjacent maximal B-trees. Using the notation
just introduced, we set

δX :=
∑
x∈X
|desc(x)| and πX :=

∑
x 6=x′∈X

|desc(x)| · |desc(x′)|

for X ∈ {S, S′, R,R′}. Then the difference a(T′)− a(T) is given by

a(T′)− a(T) = ∆(T,T′) · (es − es′),

where the coefficient ∆(T,T′) is defined by

∆(T,T′) := (δS + 1)(δS′ + 1) + δR′(δS + δS′ + δR + 2) + πR′ − πR.
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Proof. By definition of the coordinates of a(T), we compute

a(T)s = (δS + 1)(δR + 1) + πS + πR,

a(T)s′ = (δS′ + 1)(δR′ + 1) + (δS′ + δR′)(δR + δS + 1) + 1 + δS + δR + πS′ + πR′ ,

and

a(T′)s = (δS + 1)(δR′ + 1) + (δS + δR′)(δR + δS′ + 1) + 1 + δS′ + δR + πS + πR′ ,

a(T′)s′ = (δS′ + 1)(δR + 1) + πS′ + πR.

Moreover, the coordinates a(T)r and a(T′)r coincide if r ∈ Sr {s, s′} since the flip from T to T′

did not affect the children of the node r. The result immediately follows. �

Combining Theorem 19 and Lemmas 20 and 21, we thus obtain the following characterization.

Corollary 22. The B-nested fan F(B) is the normal fan of the removahedron Remo(B) if and
only if ∆(T,T′) > 0 for any pair of adjacent maximal B-trees T,T′.

The following lemma gives a sufficient condition for this property to hold.

Lemma 23. For any two adjacent maximal B-trees T,T′ as in Lemma 21, if desc(s,T)∩desc(s′,T′)
belongs to B ∪ {∅}, then ∆(T,T′) > 0.

Proof. By assumption, the set⋃
r∈R

desc(r) = desc(s,T) ∩ desc(s′,T′)

either belongs to the building set B or is empty. Since desc(r) ∩ desc(r′) = ∅ for r 6= r′ ∈ R and
desc(r) ∈ B for r ∈ R, we conclude that |R| ≤ 1 by Condition (N2) in Definition 10. Thus πR = 0,
δS ≥ 0 and δS′ ≥ 0. The statement follows. �

It follows that if B is closed under intersection of exchangeable elements, then the B-nested
fan F(B) is the normal fan of the removahedron Remo(B). This concludes our first proof of
Theorems 15 and 18. For graphical building sets, we conclude from Lemma 8 that Remo(BG)
realizes F(B) as soon as G is chordful. Conversely, the following lemma shows that the condition
of Corollary 22 is never satisfied for building sets of non chordful graphs, thus concluding the proof
of the characterization of Theorem 16.

Lemma 24. Let G be a connected graph that is not chordful. Then there exist two adjacent
maximal BG-trees T,T′ such that ∆(T,T′) ≤ 0

Proof. Consider a cycle O in G not inducing a clique and choose two vertices a, b ∈ O not connected
by a chord. As a and b are not connected, {{a}, {b}} is a B-nested set. We complete it to a B-
nested set N̄ formed by subsets of O all containing either a or b, such that N̄ be maximal for
this property. Let Ba and Bb denote the maximal elements of N̄ containing a and b, respectively.
By maximality of N̄, all remaining vertices in O r (Ba ∪ Bb) are connected to both Ba and Bb.
Moreover, there are at least two such vertices s, s′. Consider two maximal B-nested sets N and N′

both containing N̄ and Ba ∪Bb ∪ {s, s′}, and such that N contains Ba ∪Bb ∪ {s} and N′ contains
Ba ∪ Bb ∪ {s′}. The corresponding B-trees T and T′ are such that node s′ covers s in T and s
covers s′ in T′. Moreover, using the notations introduced earlier in this section, R′ = S = S′ = ∅
while |R| ≥ 2 as R contains one vertex of Ba and one of Bb. Thus δS = δS′ = δR′ = πR′ = 0
and πR ≥ 1, which implies ∆(T,T′) ≤ 0. �

As already observed earlier, for general building sets, the condition of Lemma 23 is not necessary
for Remo(BG) to realize F(B). For example, in the building set Bex4 of Example 9, the building
blocks {1, 2, 3, 4} and {3, 4, 5} are exchangeable but {1, 2, 3, 4}∩{3, 4, 5} = {3, 4} /∈ Bex4. However,
{1, 2, 3, 4} and {3, 4, 5} are the only two intersecting exchangeable building blocks of Bex4, and
for any two maximal Bex4-trees T,T such that N(T) r

{
{1, 2, 3, 4}} = N(T′) r

{
{3, 4, 5}}, we

have ∆(T,T′) = 1. Therefore, Corollary 22 ensures that Remo(Bex4) realizes F(Bex4).
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Remark 25. The arguments of this first proof of Theorems 15 and 18 can be used to show that
any nestohedron can be realized as a skew removahedra. A skew permutohedron is the convex
hull Permp(S) := conv

{∑
s∈S pσ(s)es

∣∣ σ ∈ SS

}
of the orbit of a generic point p ∈ RS (i.e. ps 6= p′s

for s 6= s′ ∈ S) under the action of the symmetric group SS on RS by permutation of coordinates.

Equivalently, a skew permutahedron is the deformed permutahedron Permφ(S) :=Defo(zφ) for a

right hand side zφ := (zφR)R⊆S ∈ R2S

defined by zφR :=φ(|R|) for some function φ : N → R>0. For

example, the classical permutahedron Perm(S) is the permutahedron Permφ(S) for φ(n) =
(
n+1

2

)
.

A skew removahedron is a polytope

Remop(B) = Remoφ(B) :=

{
x ∈ H

∣∣∣∣ ∑
s∈B

xs ≥ φ(|B|) for all B ∈ B

}
,

obtained by removing inequalities from the facet description of a skew permutahedron Permp(S) =

Permφ(S). Note that even if skew removahedra have much more freedom than classical removahe-
dra, they do not contain all not all deformed permutahedra.

A consequence of the realization of [Dev09] is that all graph associahedra can be realized as

skew removahedra, namely by removing facets of the skew permutahedron Permφ(S) for φ(n) = γn

with γ > 2. The arguments presented in this Section provide an alternative proof of this result
and extend it to all nestohedra. Let us quickly give the proof here.

For a B-tree T, consider the point aγ(T) ∈ RS defined by∑
r∈desc(s,T)

aγ(T)r = γ|desc(s,T)| for all s ∈ S.

We do not need to compute explicitly the coordinates of aγ(T). We will only use that for any s ∈ S,

aγ(T)s = γ|desc(s,T)| −
∑

r∈desc(s,T)

γ|desc(r,T)|.

Consider now two adjacent maximal B-trees T,T′ with the same notations as in Figure 3. For a
subset X ∈ {S, S′, R,R′}, define

δX :=
∑
x∈X
|desc(x)| and ΓX :=

∑
x∈X

γ|desc(x)|.

Using these notations, we compute:

aγ(T)s = γ1+δS+δR − ΓS − ΓR,

aγ(T)s′ = γ2+δS+δR′+δS′+δR − γ1+δS+δR − ΓS′ − ΓR′ ,

and

aγ(T′)s = γ2+δS+δR′+δS′+δR − ΓS − ΓR′ − γ1+δS′+δR ,

aγ(T′)s′ = γ1+δS′+δR − ΓS′ − ΓR.

Moreover, the coordinates a(T)r and a(T′)r coincide if r ∈ Sr{s, s′} since the flip from T to T′ did
not affect the children of the node r. We therefore obtain that aγ(T′)−aγ(T) = ∆(T,T′)·(es−es′),
where

∆(T,T′) = γ2+δS+δR′+δS′+δR − γ1+δS′+δR − γ1+δS+δR + ΓR − ΓR′

≥ γδR
((
γ1+δS − 1

)(
γ1+δS′ − 1

)
− 1
)

+ γ2+δS+δS′+δR(γδR′ − 1)− ΓR′ .

Since γ > 2, we have
(
γ1+δS − 1

)(
γ1+δS′ − 1

)
− 1 > 0 and γ2+δS+δS′+δR(γδR′ − 1) − ΓR′ ≥

γδR′+1 − γ − ΓR′ ≥ 0 since γn+m ≥ γn + γm for 1 ≤ n,m. We therefore obtain that ∆(T,T′) > 0
and we conclude by Theorem 19.
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4. Minkowski sums

In this section, we provide an alternative proof that any building set closed under intersection
can be realized as a removahedron. The approach of this section is complementary to the previous
one since it focusses on Minkowski sums. As illustrated by the following statement observed
independently by A. Postnikov [Pos09, Section 7] and E.-M. Feichtner and B. Sturmfels [FS05],
Minkowski sums provide a powerful tool to realize nested complexes.

Theorem 26 ([Pos09, Section 7], [FS05]). For any building set B, the B-nested fan F(B) is the
normal fan of the Minkowski sum

Mink[B] =
∑
B∈B

yB4B ,

where (yB)B∈B are arbitrary strictly positive real numbers, and 4B denotes the face of the standard
simplex corresponding to B.

Remember from Remark 4 that the normal fan, and thus the combinatorics, of the Minkowski
sum Mink[B] only depends on B, not on the values of the dilation factors (yB)B∈B (as soon as all
these values are strictly positive). These Minkowski sums Mink[B] are deformed permutahedra, but
not necessarily removahedra. In this section, we relax Theorem 26 to give a sufficient condition for
a subsum of Mink[B] to keep the same normal fan, and prove that a well-chosen subsum of Mink[B]
is indeed a removahedron.

4.1. Generating sets and building paths. We say that a subset C of B is generating if for
each B ∈ B and for each b ∈ B, the set B is the union of the sets C ∈ C such that b ∈ C ⊆ B.
The following statement can be seen as a relaxation of Theorem 26: it shows that the Minkowski
sum Mink[C] of the faces of the standard simplex over a generating subset C of B still has the same
normal fan as the Minkowski sum Mink[B] itself. Note that we do not make here any particular
assumption on the building set B. The proof, adapted from that of [Pos09, Theorem 7.4], is
delayed to the next section.

Theorem 27. If C is a generating subset of a connected building set B, then the B-nested fan F(B)
is the normal fan of the Minkowski sum

Mink[C] =
∑
C∈C

yC4C ,

where (yC)C∈C are arbitrary strictly positive real numbers.

Example 28. Given a connected graph G, the set CG of all vertex sets of induced subpaths of G
is a generating subset of the graphical building set BG. Set here yC = 1 for all C ∈ CG. Then

(1) if G = P is a path, then BP and CP coincide and Mink[BP] = Mink[CP] is precisely Loday’s
associahedron [Lod04];

(2) if G = T is a tree, then Mink[CT] is the (unsigned) tree associahedron of [Pil13];
(3) if G = KS is the complete graph, then BKS = 2Sr{∅} while CKS = {R ⊆ S | 1 ≤ |R| ≤ 2}.

Thus, Mink[CKS] is the classical permutahedron, while Mink[BKS] is a dilated copy of it.

In fact, the notion of paths can be extended from these graphical examples to the more general
setting of connected building sets closed under intersection. Consider a building set B on the
ground set S, closed under intersection. For any R ⊆ S, we define the B-hull of R to be the
smallest element of B containing R (it exists since B is closed under intersection). In particular,
for any s, t ∈ S, we defined the B-path π(s, t) to be the B-hull of {s, t}. We denote by Π(B) the
set of all B-paths.

Example 29. For a graphical building set BG, the BG-paths are precisely the induced subpaths
of G, i.e. with our notations Π(BG) = CG.

Lemma 30. The set Π(B) of all B-paths is a generating subset of B.
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Proof. Let B ∈ B and b ∈ B. For any b′ ∈ B, the path π(b, b′) contains b and is contained in B
(indeed, B contains both b and b′ and thus π(b, b′) by minimality of the latter). Therefore, b′

belongs to the union of the sets C ∈ Π(B) such that b ∈ C ⊆ B. The lemma follows by definition
of generating subsets. �

In fact, the set of paths Π(B) is the minimal generating subset of B, in the following sense.

Lemma 31. Any generating subset of B contains Π(B).

Proof. Consider a generating subset C of B, and s, t ∈ S. The B-path π(s, t) is the smallest building
block containing {s, t}. Therefore, π(s, t) has to be in C, since otherwise t would not belong to
the union of the sets C such that s ∈ C ⊆ π(s, t). �

From Theorem 27 and Lemma 30, we obtain that any Minkowski sum Mink[Π(B)] is a realization
of the B-nested complex. We now have to choose properly the dilation coefficients to obtain a
removahedron. For S ⊆ S, define the coefficient

ȳS :=
∣∣{s, t ∈ S2 | π(s, t) = S

}∣∣.
Lemma 32. The dilation coefficients (ȳB)B∈B satisfy the following properties:

(i) ȳS > 0 for all S ∈ Π(B), and ȳS = 0 otherwise.
(ii) For all B ∈ B, ∑

S⊆B

ȳS =

(
|B|+ 1

2

)
.

Proof. Point (i) is clear by definition of the coefficients ȳS . We prove Point (ii) by double counting:
for any B ∈ B and any b, b′ ∈ B (distinct or not), the path π(b, b′) is included in B. We can
therefore group pairs of elements of B according to their B-paths:(

|B|+ 1

2

)
= |{b, b′ ∈ B}| =

∑
S⊆B

|
{
b, b′ ∈ B | π(b, b′) = S

}
| =

∑
S⊆B

ȳS . �

Combining Theorem 27 with Lemmas 30 and 32, we obtain an alternative proof of Theorem 15.

Corollary 33. For a building set B closed under intersection, the removahedron Remo(B) coin-
cides with the Minkowski sum

∑
B∈B ȳB4B, and its normal fan is the B-nested fan.

Remark 34. For a graphical building set BG of a chordful graph G, the coefficients ȳC are all
equal to 1 for all subpaths C ∈ CG. It is not anymore true for arbitrary building sets closed under
intersection. For example, consider the building set Bex5 :=

{
{1}, {2}, {3}, {4}, {1, 2}, {1, 2, 3}

}
, for

which we obtain

Remo(Bex5) = 24{1,2,3} +4{1,2} +4{1} +4{2} +4{3}.
This Minkowski decomposition is illustrated in Figure 4.

(
4
1
1

) (
1
4
1

)

(
2
1
3

) (
1
2
3

)

(
2
0
0

) (
0
2
0

)

(
0
0
2

)
(

1
0
0

) (
0
1
0

) (
1
1
1

)

Remo(Bex5) = 24{1,2,3} + 4{1,2} +

(
4{1}+

4{2} +4{3}

)
Figure 4. The Minkowski decomposition of the 2-dimensional removahe-
dron Remo(Bex5) into faces of the standard simplex.
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4.2. Proof of Theorem 27. This section is devoted to the proof of Theorem 27. We start with
the following technical lemma on the affine dimension of Minkowski sums.

Lemma 35. (i) Let (Pi)i∈I be polytopes lying in orthogonal subspaces of Rn. Then

dim
∑

Pi =
∑

dimPi.

(ii) If I ⊆ 2S is such that
⋂
I 6= ∅, then dim

∑
I∈I4I = |

⋃
I| − 1.

Proof. Point (i) is immediate as the union of bases of the linear spaces generated by the poly-
topes Pi is a basis of the linear space generated by

∑
Pi. For Point (ii), fix x ∈

⋂
I and an

arbitrary order I1, . . . , Ip on I. Define I ′j := Ij r
(
{x} ∪

⋃
k<j Ik

)
. We then have

dim
∑
I∈I
4I ≥ dim

∑
j∈[p]
I′j 6=∅

4I′j∪{x} ≥
∑
j∈[p]
I′j 6=∅

dim4I′j∪{x} =
∑
j∈[p]
I′j 6=∅

|I ′j | =
∣∣⋃ I

∣∣− 1,

where the first inequality holds since 4I′j∪{x} is a face of 4Ij , the second one is a consequence of

Point (i), and the last equality holds since we have the partition(⋃
I
)
r {x} =

⊔
j∈[p]
I′j 6=∅

I ′j . �

Proof of Theorem 27. Let C be a generating subset of a connected building set B, let y := (yC)C∈C
be strictly positive real numbers, let z := (zR)R⊆S be defined by zR =

∑
C⊆R yC , and consider the

polytope Mink(y) = Defo(z).
Let T be a B-tree and N :=N(T) be the corresponding B-nested set. For N ∈ N, let

XN :=N r
⋃
N ′∈N
N ′(N

N ′

denote the label corresponding to N in the B-tree T, so that (XN )N∈N partitions S.
For C ∈ C, we define N(C) to be the inclusion maximal element N of N such that C∩XN 6= ∅.

Note that this element is unique: otherwise, the union of the maximal elements N ∈ N such
that C ∩XN 6= ∅ would be contained in B, thus contradicting Condition (N2) in Definition 10.
Observe also that N(C) is the inclusion minimal element N of N such that C ⊆ N .

We now define

FN :=
∑
C∈C

yC4C∩XN(C)
.

We will show below that FN is a face of Mink(y) whose normal cone is precisely the cone C(N).
The map N → FN thus defines an anti-isomorphism from the nested complex N (B) to the face
lattice of Mink(y).

Consider any vector f := (fs)s∈S in the relative interior of the cone C(N). This implies that fs = fN
is constant on each N ∈ N, and fN < fN ′ for N,N ′ ∈ N with N ( N ′. Let f : RS → R be the
linear functional defined by f(x) = 〈f |x〉 =

∑
s∈S fsxs. Since N(C) is the inclusion maximal

element N of N such that C ∩N 6= ∅ and N → fN is increasing, the face of 4C maximizing f is
precisely 4C∩N(C). It follows that FN is the face maximizing f on Mink(y), since the face maxi-
mizing f on a Minkowski sum is the Minkowski sum of the faces maximizing f on each summand.
We conclude that FN is a face of Mink(y) whose normal cone contains at least C(N), and therefore
that the map N→ FN is a poset anti-homomorphism.

To conclude, it is now sufficient to prove that the dimension of FN is indeed |S| − |N|. The
inequality dimFN ≤ |S| − |N| is clear since the normal cone of FN contains the cone C(N). To
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obtain the reverse inequality, observe that

dimFN = dim

(∑
C∈C

yC4C∩XN(C)

)
= dim

( ∑
N∈N

∑
C∈C

N(C)=N

4C∩XN

)

≥
∑
N∈N

dim

( ∑
C∈C

N(C)=N

4C∩XN

)
≥
∑
N∈N

(|XN | − 1) = |S| − |N|.

The first inequality holds by Lemma 35 (i) since the XN are disjoints. The second inequality
follows from the assumption that C is a generating subset of B. Indeed, fix N ∈ N and pick an
element x ∈ XN . Observe that if C ∈ C is such that x ∈ C ⊆ N , then N(C) = N . Moreover,
since N is the union of the elements C ∈ C such that x ∈ C ⊆ N , we obtain that XN is the union
of the sets C ∩XN over the elements C ∈ C such that x ∈ C ⊆ N . By Lemma 35 (ii), this implies
that

dim

( ∑
C∈C

N(C)=N

4C∩XN

)
≥ dim

( ∑
C∈C

x∈C⊆N

4C∩XN

)
≥ |XN | − 1.

This concludes the proof that the dimension of FN is given by |S| − |N|, and thus that the
map N→ FN is an anti-isomorphism. �
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