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Abstract. Generalized associahedra were introduced by S. Fomin and A. Zelevinsky in con-

nection to finite type cluster algebras. Following recent work of L. Pournin in types A and B,
this paper focuses on geodesic properties of generalized associahedra. We prove that the graph

diameter of the n-dimensional associahedron of type D is precisely 2n − 2 for all n greater

than 1. Furthermore, we show that all type BCD associahedra have the non-leaving-face prop-
erty, that is, any geodesic connecting two vertices in the graph of the polytope stays in the

minimal face containing both. This property was already proven by D. Sleator, R. Tarjan and

W. Thurston for associahedra of type A. In contrast, we present relevant examples related to
the associahedron that do not always satisfy this property.

keywords. Associahedron – graph diameter – pseudotriangulation – flip graph.

1. Introduction

The associahedron is a convex polytope whose vertices are in correspondence with triangulations
of a convex polygon and whose edges are flips among them. Motivated by efficiency of repeated ac-
cess and information update in binary search trees, D. Sleator, R. Tarjan and W. Thurston [STT88]
showed that the diameter of the n-dimensional associahedron is at most 2n − 4 for n greater
than 9, and used arguments in hyperbolic geometry to prove that this bound is tight when n is
large enough. They also conjectured that the diameter is 2n − 4 for all n greater than 9. This
conjecture was recently settled using purely combinatorial arguments by L. Pournin [Pou14b], who
explicitly exhibited two triangulations realizing this maximal distance.

Associahedra are considered as one of the most important families of examples in polytope the-
ory [DRS10, Zie95]. Besides their combinatorial beauty, they are of great importance in diverse
areas in mathematics, computer science and physics [Sta63, Sta97, MHPS12]. One of the most
significant appearances of associahedra is in the theory of cluster algebras initiated by S. Fomin
and A. Zelevinsky [FZ02, FZ03a]. They introduced a notion of generalized associahedra which
extends the concept of associahedra to any Weyl group [FZ03b]. These essential objects encode
the flip graphs of cluster algebras of finite type, and were realized as polytopes for the first time by
F. Chapoton, S. Fomin and A. Zelevinsky [CFZ02]. The concept of generalized associahedra was
further extended to arbitrary Coxeter groups by N. Reading in [Rea06]. All these Coxeter associ-
ahedra, including those corresponding to Weyl groups, were realized as polytopes by C. Hohlweg,
C. Lange and H. Thomas [HLT11] in connection with the Cambrian fans studied by N. Read-
ing and D. Speyer in [RS09]. Three interesting cases of generalized associahedra are the infinite
families of type A (classical associahedra), of type B/C (cyclohedra), and of type D.

In this paper, we show that the diameter of the n-dimensional associahedron of type D is
precisely 2n− 2 for all n greater than 1. This is done using a convenient combinatorial model for
type D associahedra in terms of centrally symmetric pseudotriangulations of a regular 2n-gon with
a small hole in the center. The same proof was presented independently by Y. Lebrun in [Leb14]
using the combinatorial model in terms of decorated triangulations of the punctured n-gon arising
from the work of S. Fomin, M. Shapiro and D. Thurston [FST08]. As in [Pou14b], our methods
are purely combinatorial and we explicitly describe two vertices of the polytope which are at
maximal distance. In a recent preprint [Pou14a], L. Pournin extends his method used in type A
to derive the asymptotic diameter of type B associahedra: he shows that the diameter of the
n-dimensional associahedron of type B is asymptotically 5n/2. As the type I2(p) associahedron
is a (p + 2)-gon with diameter bp/2c+ 1, L. Pournin’s and our paper thus settle the problem
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type A B/C D
asymptotic diameter 2n− 4 5n/2 2n− 2

Table 1. Asymptotic diameters of type A, B/C and D associahedra.

type A B/C D E F H I2(p)
rank 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 10 11 12 n 6 7 8 4 3 4 2
diameter 2 4 5 7 9 11 12 15 3 5 7 9 11 14 16 18 21 23 25 2n− 2 11 14 19 8 6 10 bp/2c+ 1

Table 2. Diameters of small rank associahedra of arbitrary finite types.

of the graph diameters of generalized associahedra. For completeness, we gather in Table 1 the
asymptotic diameters for type A, B/C and D associahedra, and in Table 2 the precise diameters
of the small rank generalized associahedra. The latter were reported in [STT88] for type A, in
[Pou14a] for type B, and were computed using C. Stump’s Sage package on subword complexes
for exceptional types.

In connection to this graph diameter question, we also show that all infinite families of associ-
ahedra of finite types have the non-leaving-face property, namely every geodesic connecting two
vertices in the graph of the polytope stays in the minimal face containing both. This is a known
result of D. Sleator, R. Tarjan and W. Thurston [STT88, Lemma 3] for type A. Using similar
normalization ideas, we prove it type-by-type for types BCD. By computer experiment with the
computer software Sage [S+12], we also checked this property in the exceptional types E6, F4, H3

and H4. The remaining types E7 and E8 were still to be checked when N. Williams announced a
type-free proof of the non-leaving-face property for all generalized associahedra [Wil15]. In con-
trast, we present five remarkable examples related to the associahedron which do not always satisfy
this property: the pseudotriangulation polytopes, the multiassociahedra, the graph associahedra,
the secondary polytopes, and the flip graphs on all triangulations of a point set.

2. Pseudotriangulation model for type D associahedra

In this section, we present a combinatorial model for the type Dn associahedra Asso(Dn) in
terms of pseudotriangulations of a geometric configuration Dn. The vertices of Asso(Dn) cor-
respond to centrally symmetric pseudotriangulations, and its edges to flips between them. In
Remark 1, we compare our geometric interpretation to the classical models of type D cluster al-
gebras presented by S. Fomin and A. Zelevinsky in [FZ03b, Section 3.5][FZ03a, Section 12.4] and
by S. Fomin, M. Shapiro and D. Thurston in [FST08].

We consider a regular convex 2n-gon, together with a disk D placed at its center, whose radius
is small enough such that D only intersects the long diagonals of the 2n-gon. We denote by Dn the
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Figure 1. The configuration D3 has 9 centrally symmetric pairs of chords (left).
A centrally symmetric pseudotriangulation T of D3 (middle). The centrally sym-
metric pseudotriangulation of D3 obtained from T by flipping the chords 2r and 2̄r.
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resulting configuration, see Figure 1. The vertices of Dn are labeled by 0, 1, . . . , n−1, 0, 1, . . . , n− 1
in counterclockwise direction, such that two vertices p and p are symmetric with respect to the
center of the polygon. The chords of Dn are all the diagonals of the 2n-gon, except the long ones,
plus all the segments tangent to the disk D and with one endpoint among the vertices of the 2n-gon.
Note that each vertex p is adjacent to two of the latter chords; we denote by pl (resp. by pr) the
chord emanating from p which goes tangent on the left (resp. right) to the disk D, and we call
these chords central. For example, the four central chords that appear in Figure 1 (middle) are
0r, 0̄r, 2r and 2̄r. The faces of the type Dn associahedron can be interpreted geometrically on the
configuration Dn as follows:

(i) Facets correspond to centrally symmetric pairs of (internal) chords of the geometric config-
uration Dn, see Figure 1 (left).

(ii) Faces correspond to crossing-free centrally symmetric sets of chords. The face lattice corre-
sponds to the reverse inclusion lattice on crossing-free centrally symmetric sets of chords.

(iii) Vertices correspond to centrally symmetric pseudotriangulations of Dn (i.e. inclusion maxi-
mal centrally symmetric crossing-free sets of chords of Dn). Each pseudotriangulation of Dn
contains exactly 2n chords, and partitions conv(Dn) r D into pseudotriangles (i.e. interi-
ors of simple closed curves with three convex corners related by three concave chains). See
Figure 1 (middle) and (right). We refer to [RSS08] for a complete survey on pseudotriangu-
lations, including their history, motivations, and applications.

(iv) Edges correspond to flips of centrally symmetric pairs of chords between centrally symmetric
pseudotriangulations of Dn. A flip in a pseudotriangulation T replaces an internal chord e
by the unique other internal chord f such that (T r e) ∪ f is again a pseudotriangulation
of T . Indeed, deleting e in T merges the two pseudotriangles of T incident to e into a
pseudoquadrangle (i.e. the interior of a simple closed curve with four convex corners
related by four concave chains), and adding f splits the pseudoquadrangle into two new
pseudotriangles. The chords e and f are the two unique chords which lie both in the interior
of and on a geodesic between two opposite corners of . We refer again to [RSS08] for
more details.

For example, the two pseudotriangulations of Figure 1 are related by a centrally symmetric
pair of flips. We have represented different kinds of flips between centrally symmetric pseu-
dotriangulations of the configuration Dn in Figure 2. Finally, Figure 3 shows the flip graph
on centrally symmetric pseudotriangulations of D3, and Figures 13 and 14 the one for D4.
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Figure 2. Different kinds of flips in type D.
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Figure 3. The type D3 flip graph interpreted geometrically with centrally sym-
metric pseudotriangulations of D3. Note that this graph is the 1-skeleton of the
3-dimensional associahedron since D3 = A3.

Remark 1. Our geometric interpretation of type D associahedra slightly differs from that of
S. Fomin and A. Zelevinsky in [FZ03b, Section 3.5][FZ03a, Section 12.4]. Namely, to obtain their
interpretation, we can just remove the disk in the configuration Dn and replace the centrally
symmetric pairs of chords {pl, p̄l} and {pr, p̄r} by long diagonals [p, p̄] colored in red and blue
respectively. Another classical model for the type D cluster algebra is given by the decorated trian-
gulations of the punctured n-gon from the work of S. Fomin, M. Shapiro and D. Thurston [FST08].
We can obtain this model by folding our 2n-gon around its central symmetry. In [Leb14], Y. Le-
brun gives the same proof of the diameter of the type D associahedron presented in the next
section using this punctured n-gon model.

3. Diameter

In this section, we present an explicit formula for the diameter of type D associahedra.

Theorem 2. The diameter of the n-dimensional associahedron of type D is exactly 2n−2 for all n
greater than 1.

Define the left star Sl to be the pseudotriangulation formed by all left central chords pl

for p ∈ [n] ∪ [n̄]. Similarly, the right star Sr is formed by all right central chords pr for p ∈ [n]∪ [n̄].

Lemma 3. The flip distance between the left star Sl and the right star Sr is precisely 2n− 2.

Proof. We first claim that there is a path of exactly 2n− 2 flips between Sl and Sr. This path is
illustrated in Figure 4, where the label on each arrow records the number of flips used to pass from
one pseudotriangulation to the next one. Consider an arbitrary pair of opposite points {p, p̄} of Dn.
Starting from Sl, we successively flip the chord (p+ i)l to the chord [p, p+ i+ 1] for i ∈ [n− 2],
then the chord pl to the chord (p − 1)r, then the chord (p − 1)l to the chord p̄r, and finally
we successively flip the chord [p, p̄ − i] to the chord (p̄ − i − 1)r for i ∈ [n − 2]. Of course,
we perform simultaneously the centrally symmetric flips of those just described. We thus used
(n− 2) + 1 + 1 + (n− 2) = 2n− 2 flips to transform Sl into Sr.

We now show that it is impossible to use less flips to transform Sl into Sr. Observe that a pair
of left central chords {pl, p̄l} crosses any pair of right central chords {qr, q̄r} except when p = q.
Therefore, if a centrally symmetric pseudotriangulation has strictly more than two pairs of left
central chords then none of the possible flips produces a pair of right central chords. This means
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Figure 4. The distance between the two stars Sl and Sr is 2n− 2.

that we need to apply at least n − 2 flips to the left star until we are able to make a flip that
produces a pair of right central chords. Since the right star has n pairs of right central chords, we
need at least n additional flips to produce it. This proves that any path between Sl and Sr uses
at least (n− 2) + n = 2n− 2 flips. �

Lemma 4. Let T be a centrally symmetric pseudotriangulation of Dn.

(i) If T contains ` ≥ 1 centrally symmetric pairs of left central chords {pl, p̄l}, then T is precisely
at distance n−` from the left star Sl and precisely at distance n+`−2 from the right star Sr.

(ii) If T contains r ≥ 1 centrally symmetric pairs of right central chords {pr, p̄r}, then T is precisely
at distance n−r from the right star Sr and precisely at distance n+r−2 from the left star Sl.

Proof. We prove Point (i) of the lemma, the other point follows by symmetry. Assume thus that T
contains ` ≥ 1 centrally symmetric pairs of left central chords.

Every non-left-central pair of chords in T needs to be flipped at least once in a path connecting T
and Sl. Moreover, it is possible to flip them one at a time such that each flip produces a pair of
left central chords: at each step, flip a pair of centrally symmetric internal diagonals incident to
a pseudotriangle touching the central disk. This shows that T is precisely at distance n− ` from
the left star Sl.

The proof that T is at distance n+`−2 from Sr uses similar arguments to those in the proof of
Lemma 3. If ` = 1, then T has exactly one pair of right central chords. In this case, the distance
between T and Sr is n+`−2 = n−1 as desired. A geodesic between T and Sr can be obtained by
successively flipping the n− 1 non-right-central pairs of chords in T such that each flip produces
a pair of right central chords. If ` ≥ 2, then we need to apply at least ` − 2 flips to T until we
are able to make a flip that produces a pair of right central chords. Since the right star has n
pairs of right central chords, we need at least n additional flips to produce it. Hence, the distance
between T and Sr is n+ `− 2. �

Proof of Theorem 2. By Lemma 3, the diameter of the n-dimensional associahedron of type D
is at least 2n − 2. It remains to show that the distance between any two centrally symmetric

pseudotriangulations T and T̃ is at most 2n− 2. Let ` and ˜̀ (resp. r and r̃) be the number of left

(resp. right) central pairs of chords in T and T̃ respectively. If T and T̃ contain a central pair of
chords of the same kind, say left, then they can be connected by a path passing through the left
star Sl of length

n− `+ n− ˜̀≤ 2n− 2.
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If not, we can assume without loss of generality that ` ≥ 1 and r̃ ≥ 1. By Lemma 4, there are two

paths connecting T and T̃ passing through the star triangulations Sl and Sr respectively of length

(n− `) + (n+ r̃ − 2) = 2n− 2− `+ r̃ and (n+ `− 2) + (n− r̃) = 2n− 2 + `− r̃.
Clearly, one of these two numbers is less than or equal to 2n− 2. �

4. Non-leaving-face property

This section is devoted to the following natural property related to diameter and graph distance
on polytopes.

Definition 5. A polytope P has the non-leaving-face property if any geodesic connecting two
vertices in the graph of P stays in the minimal face of P containing both.

Many classical polytopes have the non-leaving-face property:

(i) the n-gon: proper faces are segments;
(ii) the simplex: any two vertices are at distance 1;
(iii) any simplicial polytope: any two vertices belonging to a proper face are at distance 1;
(iv) the n-cube: the distance between any two vertices is the Hamming distance between them

(i.e. the number of coordinates where they differ);
(v) the permutahedron: the distance between two permutations σ, σ̃ in the permutahedron is

the number of inversions of σ−1σ̃, and the minimal face containing σ and σ̃ is the ordered
partition {σ([ni+1] r [ni]) | i ∈ [p]}, where 0 = n0 < n1 < · · · < np = n is the finest subdivi-
sion of [n] such that σ([ni+1]r [ni]) = σ̃([ni+1]r [ni]) for all i ∈ [p]; leaving the minimal face
containing σ and σ̃ thus introduces useless inversions and therefore lengthen the way from σ
to σ̃;

(vi) the associahedron: see [STT88, Lemma 3] and Theorem 6;
(vii) the cyclohedron (which we refer to as type B/C associahedron): see Theorem 6.

However, there are also many examples of polytopes that do not satisfy the non-leaving-face
property, for example a pyramid over a hexagon. Other examples related to associahedra are
presented in Section 5.

Note that the non-leaving-face property implies the classical non-revisiting property (between
any two vertices, there exists a path which does not leave and revisit any facet), which in turn
implies the Hirsch bound on the diameter of the polytope [Kle65], see also [San13]. The reverse
implications are wrong, consider e.g. a pyramid over a square. The Hirsch bound for generalized
associahedra also follows from their vertex-decomposability [CLS14], or from general results on
flag polytopes by K. Adiprasito and B. Benedetti [AB14]. We focus here on the non-leaving-face
property and refer to [San13] for further details.

In this section, we show that all associahedra of type A, B/C, or D have the non-leaving-face
property. This property was proven in type A by D. Sleator, R. Tarjan, and W. Thurston [STT88,
Lemma 3]. We generically use the term “triangulation” to refer to the geometric model for clusters
in type A, B/C or D: classical triangulations of the (n+ 3)-gon in type An, centrally symmetric
triangulations of the 2n-gon in type Bn/Cn, and centrally symmetric pseudotriangulations of the
configuration Dn in type Dn. Similarly, “diagonal” refers to a diagonal in type An, to a centrally
symmetric pair of diagonals or a long diagonal in type Bn/Cn, and to a centrally symmetric pair
of chords of the configuration Dn in type Dn.

Theorem 6. All associahedra of type A, B/C, D have the non-leaving-face property. In other

words, no common diagonal between two triangulations T, T̃ is flipped in a geodesic between T and T̃ .

Remark 7. Since the type I2(n) associahedra are all polygons, this proposition proves that all
infinite families of associahedra have the non-leaving-face property. We also checked this property
for the exceptional types E6, F4, H3 and H4. We use a variant of breadth first search algorithm
to compute all geodesics from a given point and we check along the way that these geodesics stay
in the smallest face containing their endpoints. For concrete computations, we use the subword
complex model for finite type cluster algebras [CLS14] as implemented by C. Stump in Sage [S+12].
This time-consuming verification (about half a day for E6) was still to be done on types E7 and E8
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when N. Williams announced a type-free proof of the non-leaving-face property for all generalized
associahedra [Wil15] using sortable elements and Cambrian lattices [Rea06]. Below, we stick to
our original type-by-type proof which involves more geometric arguments.

Theorem 6 is a consequence of the following stronger statement. In fact Proposition 8 even
shows that any path leaving the minimal face containing two vertices has at least 2 more steps
than the geodesic connecting them.

Proposition 8. Let T and T̃ be two triangulations of type A, B/C, or D, and χ be a diagonal

in T r T̃ . If the flip of χ in T produces a diagonal that belongs to T̃ , then there exists a geodesic

between T and T̃ which starts by the flip of χ.

The proof of Proposition 8 relies on a normalization argument, generalizing the normalization
of [STT88, Lemma 3] for classical triangulations. We first introduce the normalization on trian-
gulations of types A, B/C and D, and then return to the proof of Theorem 6 and Proposition 8
in Section 4.2.

4.1. Normalization. A normalization is a useful tool to transform a geodesic between two tri-
angulations into a geodesic starting with a prescribed flip. In particular, it is a projection from
the graph of the associahedron to the graph of one of its facets. Recall that we use the terms
“triangulation” and “diagonal” generically for the corresponding geometric models in types A,
B/C, and D.

Proposition 9. For any type A, B/C or D, and for any diagonal χ, there exists a normaliza-
tion Nχ, that is, a map T 7→ Nχ(T ) satisfying the following properties:

(P0) for any triangulation T , the normalization Nχ(T ) is a triangulation containing χ;
(P1) if χ ∈ T , then Nχ(T ) = T ;
(P2) if T, T ′ are two adjacent triangulations, then Nχ(T ) and Nχ(T ′) coincide or are adjacent;
(P3) if T, T ′ are two adjacent triangulations with χ ∈ T ′ r T , then Nχ(T ) = Nχ(T ′) = T ′.

We prove this proposition type-by-type using the geometric models in types A, B/C, and D.
We refer to the recent preprint of N. Williams [Wil15] for a type-free proof.

Type A — We use the same definition as [STT88, Lemma 3]. The normalization Nχ with
respect to a diagonal χ := [p, q] transforms a triangulation T to the triangulation Nχ(T ) obtained
by deleting all diagonals of T crossing χ and filling in the resulting empty region Rχ(T ) by the
triangulation where all diagonals are incident to p. Figure 5 illustrates this normalization.

p
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p

p

p

p

p

p

p

p

p

T

Figure 5. Normalization map for type A.

Properties (P0) and (P1) are clear by construction. For Properties (P2) and (P3), consider two
adjacent triangulations T and T ′, let δ ∈ T and δ′ ∈ T ′ be such that T r {δ} = T ′ r {δ′}, and
let Q denote the quadrangle with diagonals δ and δ′. If χ crosses both δ and δ′, then the quad-
rangle Q lies in the retriangulated region Rχ(T ) = Rχ(T ′), so that Nχ(T ) = Nχ(T ′). If χ crosses
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neither δ nor δ′, then the quadrangle Q is disjoint from the retriangulated region Rχ(T ) = Rχ(T ′)
and Nχ(T ) r {δ} = Nχ(T ′) r {δ′}. If χ crosses δ but not δ′, and χ 6= δ′, then Nχ(T ) = Nχ(T ′)
if p is an endpoint of δ′, and Nχ(T ) r {[p, x]} = Nχ(T ′) r {δ′} otherwise, where x denotes the
endpoint of δ separated from χ by δ′. Finally, if χ = δ′, then Rχ(T ) = Q while Rχ(T ′) = ∅, so
that Nχ(T ) = Nχ(T ′) = T ′.

To extend Nχ to types B/C and D, it is convenient to consider the following equivalent de-
scription of this normalization: imagine that all diagonals of T are rubber bands attached to their
endpoints and pull the rubber bands crossed by χ along χ towards p to obtain Nχ(T ). In other
words, each diagonal [x, y] of T crossing χ is replaced by [x, p] and [p, y].

Type B/C — For type B/C, we distinguish whether or not χ is a long diagonal to define the
normalization Nχ:

• The normalization Nχ with respect to a centrally symmetric pair χ := {[p, q], [p̄, q̄]} of
distinct diagonals transforms a centrally symmetric triangulation T into the centrally
symmetric triangulation Nχ(T ) obtained by deleting all diagonals of T crossing χ and
filling the resulting empty region Rχ(T ) by a centrally symmetric triangulation where
all diagonals are incident to the points p and p̄ (note that the region Rχ(T ) need not
be connected). To define the triangulation replacing T inside Rχ(T ), imagine that all
diagonals of T are rubber bands attached to their endpoints and pull the rubber bands
crossed by χ along χ towards p and p̄ to obtain Nχ(T ). In other words, each diagonal [x, y]
of T crossing χ is replaced by:

– [x, p] and [p, y] if it only crosses [p, q] (and similarly with [p̄, q̄]);
– [x, p], [p, p̄], and [p, y] if it crosses both [p, q] and [p̄, q̄], and [p, q] separates x from the

origin while [p̄, q̄] separates y from the origin.
• The normalization with respect to a long diagonal χ := [p, p̄] of the 2n-gon transforms a cen-

trally symmetric triangulation T to the centrally symmetric triangulation Nχ(T ) obtained
by deleting all diagonals of T crossing χ and filling in the resulting empty region Rχ(T )
by the triangulation where all vertices clockwise between p and p̄ are connected to p̄, while
all vertices clockwise between p̄ and p are connected to p.

Figure 6 illustrates this normalization, where the three leftmost pictures correspond to the first
situation, while the two rightmost correspond to the second situation. As in type A, a straight-
forward case analysis shows that Nχ indeed defines a normalization in both situations.
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Figure 6. Normalization map for type B/C.

Type D — For type D, we distinguish whether or not χ is a pair of central chords to define the
normalization Nχ:

• The normalization Nχ with respect to a centrally symmetric pair χ := {[p, q], [p̄, q̄]} of di-
agonals of the 2n-gon transforms a centrally symmetric pseudotriangulation T into the
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centrally symmetric pseudotriangulation Nχ(T ) obtained by deleting all chords of T cross-
ing χ and filling the resulting empty region Rχ(T ) by a centrally symmetric pseudotrian-
gulation where all diagonals are incident to the point p and p̄ (note that the region Rχ(T )
needs not be connected). To define the pseudotriangulation replacing T inside Rχ(T ),
imagine that all chords of T are rubber bands attached to their endpoints and pull the
rubber bands crossed by χ along χ towards p and p̄ to obtain Nχ(T ). In other words, each
diagonal [x, y] of T crossing χ is replaced by:

– [x, p] and [p, y] if it only crosses [p, q] and p̄ /∈ {x, y} (and similarly exchanging p and p̄);
– [x, p], pr and p̄l if it only crosses [p, q], if x is on the right of the line from p to p̄, and

if y = p̄ (and similarly exchanging p and p̄, or left and right);
– [x, p], pr, p̄l, and [p̄, y] if it crosses both [p, q] and [p̄, q̄], if [p, q] separates x from the

origin while [p̄, q̄] separates y from the origin, and if the origin is on the left of the
line from x to y (and similarly exchanging left and right).

Similarly, each left central chord xl (resp. xr) of T crossing χ is replaced by [x, p] and pl

(resp. pr) if it crosses [p, q] (and similarly for [p̄, q̄]).
• The normalization Nχ with respect to a centrally symmetric pair χ of central chords trans-

forms a centrally symmetric pseudotriangulation T into the centrally symmetric pseudotri-
angulation Nχ(T ) obtained by deleting all chords of T crossing χ and filling the resulting
empty region Rχ(T ) by the left star Sl (resp. right star Sr) on this region if χ is a pair of
left (resp. right) central chords.

Figure 7 illustrates this normalization, where the three leftmost pictures correspond to the first
situation, while the two rightmost correspond to the second situation. The same case analysis
as in type A, replacing the quadrangle Q by the pseudoquadrangle formed by glueing the two
pseudotriangles of T incident to δ (or equivalently the two pseudotriangles of T ′ incident to δ′)
shows that Nχ indeed defines a normalization in both situations.

T

p p

p

p

pp
p p

p

p

pp

Figure 7. Normalization map for type D.

4.2. Proof of Theorem 6 and Proposition 8. Using the normalization introduced in the
previous section, we are ready to prove the non-leaving-face property.

Proof of Proposition 8. Consider two triangulations T and T̃ and a diagonal χ in T r T̃ , such that

the flip of χ in T produces a diagonal χ′ that belongs to T̃ . Let T = T0, T1, . . . , Tk = T̃ be an arbi-

trary geodesic between T and T̃ . Consider the sequence T = T0,Nχ′(T0),Nχ′(T1), . . . ,Nχ′(Tk). By

Property (P1) above, the last triangulation in this sequence is T̃ . By Property (P3), the first two
triangulations are connected by a flip. Since there exists at least one i such that χ′ ∈ Ti+1 r Ti,
Property (P3) also ensures that Nχ′(Ti) = Nχ′(Ti+1). Finally, Property (P2) asserts that any two
consecutive triangulations in the remaining sequence either coincide or are adjacent. Erasing dupli-

cated consecutive triangulations in this sequence gives a normalized path from T to T̃ , which starts

by the flip of χ, and is a geodesic since it is not longer than the geodesic T = T0, T1, . . . , Tk = T̃ . �
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Proof of Theorem 6. Let T and T̃ be two triangulations. Consider a path π from T to T̃ which

flips a common chord of T and T̃ . Let T1 be the first triangulation along π which does not

contain T ∩ T̃ , and let T0 the previous triangulation along π. By Proposition 8, there exists a

geodesic π′ from T1 to T̃ starting with T0. Combining the subpath of π from T to T0 with the

subpath of π′ from T0 to T̃ produces a path from T to T̃ shorter than π. It follows that no common

chord of T and T̃ can be flipped along a geodesic between T and T̃ . �

5. Further examples related to the associahedron

To conclude, we survey five relevant generalizations of the flip graph on triangulations of a
convex polygon. The diameter of these flip graphs is not precisely determined but we present
some known asymptotic bounds. Interestingly, these five families contain specific examples that
do not always satisfy the non-leaving-face property.

5.1. Pseudotriangulation polytope. A (pointed) pseudotriangulation of a point set P in gen-
eral position in the plane is a maximal set of edges of P which is crossing-free and pointed (any
vertex is adjacent to an angle wider than π). Flips between pseudotriangulations are defined as in
item (iv) in Section 2. We refer to [RSS08] for a survey on pseudotriangulations and their prop-
erties. Using rigidity properties of pseudotriangulations and the expansive motion polyhedron,
G. Rote, F. Santos and I. Streinu showed in [RSS03] that the flip graph on pseudotriangulations
of P can be realized as the graph of the pseudotriangulation polytope. This polytope is a realization
of the type A associahedron when P is in convex position.

The diameter of the pseudotriangulation polytope of P is known to be bounded between |P |
and |P | · log(|P |), see [Ber05] and [RSS08]. These are the best current bounds to our knowledge.

O. Aichholzer [Aic10] observed that not all pseudotriangulation polytopes satisfy the non-
leaving-face property. His example is represented in Figure 8. The point set P is formed by a
small downward triangle O together with a big upward triangle whose vertices are replaced by
convex chains with m = 6 points. Figure 8 shows a path of 3m + 4 = 22 flips from the top

left pseudotriangulation T to the bottom left pseudotriangulation T̃ , flipping common edges of T

and T̃ . In contrast, any path from T to T̃ which preserves their common edges has length at

least 4m−1 = 23. Indeed, if the edges of T ∩ T̃ are preserved, no flip produces an edge of T̃ before
all but one edge incident to one vertex of the small downward triangle O have been flipped. We

thus need at least m − 1 flips before a flip can create edges of T̃ r T , and then at least 3m flips
to create them all.

1 1 1

1 1 1
1

Figure 8. A geodesic (of length 3m+ 4 = 22) between two pseudotriangulations
that flips common edges between them.

5.2. Multiassociahedron. A k-triangulation of a convex m-gon is a maximal set of diagonals not
containing a (k + 1)-crossing, i.e. a set of k + 1 pairwise crossing diagonals. In a k-triangulation,
every k-relevant diagonal (i.e. with at least k vertices of the m-gon on each side) can be flipped
to obtain a new k-triangulation. We refer to [PS09] for a local description of this operation. The
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question whether the flip graph can be realized as the graph of a convex polytope remains open,
except for very particular cases including the classical n-dimensional associahedron when k = 1
and m = n + 3. We can however study the diameter of the flip graph and the properties of its
geodesics.

The best known bounds for the diameter δ(m, k) of the flip graph on k-triangulations of the
m-gon are given by(

k +
1

2

)
·m− (k + 1)2 ≤ δ(m, k) ≤ 2k ·m− 2k(4k + 1).

The upper bound, due to T. Nakamigawa [Nak00], holds for all m ≥ 4k2(2k + 1). Observe that
it is tight when k = 1 by the result of [STT88, Pou14b] on the associahedron. The lower bound,
proved in [Pil10, Lemma 2.39], holds for all m ≥ 4k + 2. We refer to [Pil10, Section 2.3.2] for a
summary of known properties on the diameter of the multiassociahedron.

We now show that the multiassociahedron does not satisfy the non-leaving-face property,
i.e. that not all k-triangulations along a geodesic between two k-triangulations always contain
their common diagonals for large enough values of k and m. We can argue using the universality
property of multitriangulations [PS12, Proposition 5.6]. This property ensures in particular that
the flip graph on pseudotriangulations of any planar point set in general position can be embedded
as a subgraph induced by all k-triangulations containing a certain subset of diagonals in the flip
graph on k-triangulations of an m-gon for large enough k and m. The path of Figure 8 thus results
in a path in the flip graph on k-triangulations of the m-gon which contradicts the non-leaving-face
property.

In fact, computer experiments with the software Sage [S+12] provided us with a much smaller
example illustrated on Figure 9. This figure shows a path of 4 flips between the leftmost 2-

triangulation T and the rightmost 2-triangulation T̃ of the octagon, such that a common diagonal
is flipped along the sequence. In each 2-triangulation, the blue dashed edge is inserted by the
previous flip while the red bold edge is deleted by the next flip. Alternatively, it might help
the reader to visualize these flips on the pseudoline arrangements represented below (see [PP12,

Section 3.3]). To see that the path represented in this figure is a geodesic, observe that T r T̃

contains 3 edges whose flip in T all produce an edge not in T̃ .

18

45

27

36

14 25 36 47 58

15 26 37 48

16 27 38

Figure 9. A geodesic between two 2-triangulations of the octagon that flips a
common edge between them.

5.3. Graph associahedron. Fix a finite connected graph G. A nested set on G is a set of tubes
(proper connected induced subgraphs) of G which are pairwise nested, or disjoint and non-adjacent
in G. The simplicial complex of all nested sets on G is called nested complex and has been realized
as the boundary complex of the G-associahedron [CD06]. Two maximal nested sets are connected
by a flip if one can be obtained from the other by replacing a tube with the unique other tube
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that produces a new nested set. Specific families of graph-associahedra provide relevant families of
polytopes: path associahedra are classical type A associahedra, cycle associahedra are cyclohedra
(or type B/C associahedra), star associahedra are stellohedra, and complete graph associahedra
are type A permutahedra.

Graph properties of graph associahedra are studied by T. Manneville and V. Pilaud in [MP14].
They show that the diameter δ(G) of the G-associahedron is a non-decreasing function of the
graph G, meaning that δ(G) ≤ δ(G′) if G is a subgraph of G′. Combining this non-decreasing
property with the diameter of the permutahedron on the one hand, and the analysis of the diam-
eter δ(T ) for trees on the other hand (based on [Pou14b]), they obtain that the diameter δ(G) is
bounded by

max(2n− 20,m) ≤ δ(G) ≤
(
n

2

)
,

where n and m denote the number of vertices and edges of G.
Concerning the non-leaving-face property, they observed the following facts:

(i) Not all graph associahedra satisfy the non-leaving-face property. Figure 10 reproduces their

example. It shows a path of length 2n between two maximal nested sets N, Ñ on the star

with n branches. In contrast, the minimal face containing N and Ñ is an n-dimensional

permutahedron and the graph distance between N and Ñ in this face is
(
n
2

)
. Therefore,

the corresponding graph associahedron (stellohedron in this case) does not satisfy the non-
leaving-face property when n ≥ 5.

1 1

1 1 1

1

1

1

Figure 10. A geodesic (of length 2n) between two maximal nested sets of the
star that flips a common nested set.

(ii) Any geodesic between two maximal nested sets N, Ñ on G remains in the face of the G-asso-

ciahedron corresponding to all common tubes of N and Ñ which are not contained in tubes

of N r Ñ .

5.4. Secondary polytopes. The secondary polytope of a point set P ⊂ Rd is a polytope whose
face lattice is isomorphic to the refinement poset of regular subdivisions of P , i.e. polyhedral
subdivisions of P which can be obtained as the vertical projection of the lower convex hull of
the points of P lifted by an arbitrary height function. In particular, the graph of the secondary
polytope of P has one vertex for each regular triangulation of P and one edge for each regular flip.
See [DRS10] for a detailed presentation of this polytope. For example, the classical associahedron
is the secondary polytope of a convex point set in the plane. The secondary polytope of a d-dimen-
sional configuration of n points has dimension n− d− 1, and it is known that its diameter cannot
exceed

min

(
(d+ 2)

(
n⌊

d
2 + 1

⌋),( n

d+ 2

))
,

see [DRS10, Corollary 5.3.11].
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Figure 11. The secondary polytope of two dilated copies of the standard simplex
(left) is combinatorially equivalent to the stellohedron (right).

As observed by F. Santos [San15], the secondary polytope of two dilated copies of the stan-
dard (n− 1)-dimensional simplex is combinatorially equivalent to the graph associahedron of the
star with n leaves (stellohedron) discussed in Section 5.3. For example, Figure 11 illustrates the
correspondence between the secondary polytope of the “mother of all examples” [DRS10, Exam-
ple 2.2.5] and the graph associahedron of the tripod. As illustrated in Figure 10, the stellohedron
of dimension n ≥ 5 does not satisfies the non-leaving-face property. Therefore, not all secondary
polytopes satisfy the non-leaving-face property.

5.5. Flip graph on all triangulations. Our last example is the flip graph on all triangulations
(regular or not) of the point set P . This graph is not always connected [San00], but it is connected
for point sets in the plane, in which case the diameter is at most 4n [DRS10, Corollary 3.4.4].
This bound assumes that flips that insert or delete a vertex are allowed. Otherwise, the diameter
can be become quadratic as illustrated by the “double chain” example in [DRS10, Example 3.4.5]
reproduced in Figure 12. This example also shows that geodesics between two triangulations in
the flip graph delete and reinsert common edges between them.

Figure 12. Two triangulations of the double chain.
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Figure 13. The type D4 flip graph. We have represented some of the corresponding centrally symmetric pseudotriangulations of D4

on this picture, while the others can be found on Figure 14. In each pseudotriangulation, the number at the center of the disk is its
label in the flip graph, and each pair of chords is labeled with the pseudotriangulation obtained when flipping it. The underlying
graph used for the representation is a Schlegel diagram of the type D4 associahedron [CFZ02, HLT11, PS15].
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centrally symmetric pseudotriangulations, the flip graph and the explanation of the labeling conventions.
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