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introduction
Pseudoline Arrangements

Projective plane P = disk with antipodal boundary points identified

A simple closed curve of P is a pseudoline if it is not contractible

The complement of a pseudoline is a topological disk
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introduction
Double Pseudoline Arrangements

Projective plane P = disk with antipodal boundary points identified

A simple closed curve of P is a double pseudoline if it is contractible

The complement of a double pseudoline ℓ has two connected components : a Möbius strip Mℓ and

a topological disk Dℓ
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introduction
Double Pseudoline Arrangements

Projective plane P = disk with antipodal boundary points identified

A simple closed curve of P is a double pseudoline if it is contractible

A double pseudoline arrangement is a finite set of double pseudolines such that any two of them

(i) have exactly four intersection points (and cross transversally at these points), and

(ii) induce a cell decomposition of P

Double pseudoline arrangements correspond via duality to configurations of disjoint convex bodies

in geometric projective planes

l. Habert & m. Pocchiola, Arrangements of double pseudolines (2006)
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Isomorphism
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introduction
Isomorphism

Two arrangements A and B are isomorphic if there is a homeomorphism of P that sends A on B

Two arrangements are isomorphic if and only if their face lattices are isomorphic
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introduction
Isomorphism

Two arrangements A and B are isomorphic if there is a homeomorphism of P that sends A on B

The number of isomorphism classes of arrangements of n pseudolines is

n 1 2 3 4 5 6 7 8 9 10 11

an 1 1 1 1 1 4 11 135 4 382 312 356 41 848 591

On-line Encyclopedia of Integer Sequences Identification A006248

j. Bokowski & a. g. de Oliveira, On the generation of oriented matroids (2000)

l. Finschi & k. Fukuda, Generation of oriented matroids - a graph theoretical approach (2002)

o. Aichholzer, f. Aurenhammer, & h. Krasser, Enumerating order types for small point

sets with applications (2002)

The value a11 is due to f. Aurenhammer (2002)
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introduction
Isomorphism

Two arrangements A and B are isomorphic if there is a homeomorphism of P that sends A on B

The number of isomorphism classes of arrangements of n pseudolines is

n 1 2 3 4 5 6 7 8 9 10 11

an 1 1 1 1 1 4 11 135 4 382 312 356 41 848 591

Our result : The number of isomorphism classes of arrangements of n double pseudolines is

n 1 2 3 4 5

An 1 1 13 6 570 181 403 533
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introduction
Isomorphism

Two arrangements A and B are isomorphic if there is a homeomorphism of P that sends A on B

The number of isomorphism classes of arrangements of n pseudolines is

n 1 2 3 4 5 6 7 8 9 10 11

an 1 1 1 1 1 4 11 135 4 382 312 356 41 848 591

Our result : The number of isomorphism classes of arrangements of n double pseudolines is

n 1 2 3 4 5

An 1 1 13 6 570 181 403 533

Comments on the computation of A5 :

1. running time : ≃ 3 weeks on 4 processors of 2 GHz

2. result size : complete data base represents ≃ 15 Go
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Example
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mutations
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mutations
Definition

A mutation is a homotopy of arrangements in which only one curve ℓ moves, sweeping a single

vertex of the remaining arrangement L r {ℓ}
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mutations
Connectivity

theorem. Any two double pseudoline arrangements (with the same number of double pseudolines)

are homotopic via a finite sequence of mutations, followed by a homeomorphism

l. Habert & m. Pocchiola, Arrangements of double pseudolines (2006)
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are homotopic via a finite sequence of mutations, followed by a homeomorphism

l. Habert & m. Pocchiola, Arrangements of double pseudolines (2006)

⇒ first enumeration algorithm : exploring the graph of mutations
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are homotopic via a finite sequence of mutations, followed by a homeomorphism

l. Habert & m. Pocchiola, Arrangements of double pseudolines (2006)

⇒ first enumeration algorithm : exploring the graph of mutations

Fails for arrangements of five double pseudolines (RAM memory limitation)
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mutations
Connectivity

theorem. Any two double pseudoline arrangements (with the same number of double pseudolines)

are homotopic via a finite sequence of mutations, followed by a homeomorphism

l. Habert & m. Pocchiola, Arrangements of double pseudolines (2006)

⇒ first enumeration algorithm : exploring the graph of mutations

Fails for arrangements of five double pseudolines (RAM memory limitation)

theorem. Any two double pseudoline arrangements containing a subarrangement L (and with

the same number of double pseudolines) are homotopic via a finite sequence of mutations where L

remains fixed, followed by a homeomorphism

v. Pilaud & m. Pocchiola, A relative homotopy theorem for arrangements of double pseu-

dolines
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incremental algorithm
Notations

An = the set of isomorphism classes of arrangements of n double pseudolines

pointed arrangement A• = arrangement A with a distinguished double pseudoline

A•
n = the set of isomorphism classes of pointed arrangements
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⇓
An isomorphism between two pointed arrangements A• and B• is a homeomorphism of P that

sends A• on B• respecting the distinguished double pseudoline
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incremental algorithm
Incremental method

Given the set An = {a1, . . . , ap}, our algorithm enumerates An+1 by mutation of an added double

pseudoline
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incremental algorithm
Incremental method

Given the set An = {a1, . . . , ap}, our algorithm enumerates An+1 by mutation of an added double

pseudoline

For all i ∈ {1, . . . , p}, we

1. add a double pseudoline α to the arrangement ai
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Given the set An = {a1, . . . , ap}, our algorithm enumerates An+1 by mutation of an added double

pseudoline

For all i ∈ {1, . . . , p}, we

1. add a double pseudoline α to the arrangement ai

2. enumerate the set S•
i of arrangements of A•

n+1 containing ai, by mutation of α
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incremental algorithm
Incremental method

Given the set An = {a1, . . . , ap}, our algorithm enumerates An+1 by mutation of an added double

pseudoline

For all i ∈ {1, . . . , p}, we

1. add a double pseudoline α to the arrangement ai

2. enumerate the set S•
i of arrangements of A•

n+1 containing ai, by mutation of α

3. select in Si the set Ri with no subarrangements in {a1, . . . , ai−1}
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incremental algorithm
Incremental method

Given the set An = {a1, . . . , ap}, our algorithm enumerates An+1 by mutation of an added double

pseudoline

For all i ∈ {1, . . . , p}, we

1. add a double pseudoline α to the arrangement ai

2. enumerate the set S•
i of arrangements of A•

n+1 containing ai, by mutation of α

3. select in Si the set Ri with no subarrangements in {a1, . . . , ai−1}

Ri is the set of arrangements of An+1 whose first subarrangement among {a1, . . . , ap} is ai.

An+1 =

p⊔

i=1

Ri
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incremental algorithm
Adding a double pseudoline

How can we add a double pseudoline to an arrangement A ?

1. choose an arbitrary double pseudoline and duplicate it

Julien Ferté, Vincent Pilaud, and Michel Pocchiola Enumerating double pseudoline arrangements



incremental algorithm
Adding a double pseudoline

How can we add a double pseudoline to an arrangement A ?

1. choose an arbitrary double pseudoline and duplicate it
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incremental algorithm
Adding a double pseudoline

How can we add a double pseudoline to an arrangement A ?

1. choose an arbitrary double pseudoline and duplicate it

2. pump the added double pseudoline ℓ until no vertex of A lies in Mℓ
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incremental algorithm
Adding a double pseudoline

How can we add a double pseudoline to an arrangement A ?

1. choose an arbitrary double pseudoline and duplicate it

2. pump the added double pseudoline ℓ until no vertex of A lies in Mℓ

3. add four crossings
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two open problems
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two open problems
Axiomatization

Pseudoline arrangements admit simple axiomatizations :

(i) few axioms

(ii) dealing with configurations of at most five pseudolines

Enumeration = complete list of arrangements of at most five double pseudolines

= axiomatization
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two open problems
Axiomatization

Pseudoline arrangements admit simple axiomatizations :

(i) few axioms

(ii) dealing with configurations of at most five pseudolines

Enumeration = complete list of arrangements of at most five double pseudolines

= axiomatization

Well, we have about 200 000 000 axioms

Is it possible to algorithmically reduce our axiomatization ?
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two open problems
Realizability

Certain pseudoline arrangements are not realizable in the Euclidean plane

Inflating pseudolines into thin double pseudolines in such an arrangement give rize to non-realizable

double pseudoline arrangement.

Are there smaller examples ?
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Thank you.

Julien Ferté, Vincent Pilaud, and Michel Pocchiola Enumerating double pseudoline arrangements


