A simple and constructive proof to a generalization of Lüroth’s theorem

François OLLIVIER
LIX, UMR CNRS 7161
École polytechnique
91128 Palaiseau cedex
France
francois.ollivier@lix.polytechnique.fr

Brahim SADIK
Département de Mathématiques
Faculté des Sciences Semlalia
B.P. 2390, 40000 Marrakech
Maroc
sadik@ucam.ac.ma

March 2022

Abstract. A generalization of Lüroth’s theorem expresses that every transcendence degree 1 subfield of the rational function field is a simple extension. In this note we show that a classical proof of this theorem also holds to prove this generalization.

Keywords: Lüroth’s theorem, transcendence degree 1, simple extension.

Résumé. Une généralisation du théorème de Lüroth affirme que tout sous-corps de degré de transcendance 1 d’un corps de fractions rationnelles est une extension simple. Dans cette note, nous montrons qu’une preuve classique permet également de prouver cette généralisation.

Mots-clés : Th. de Lüroth, degré de transcendance 1, extension simple.

Authors’ extended version of: Ollivier (François) and Sadik (Brahim), “A simple and constructive proof to a generalization of Lüroth’s theorem”, Turkish Journal of Mathematics, on line, waiting for inclusion in an issue, 2022.

DOI [10.3906/mat-2110-13]
Introduction

Lüroth’s theorem ([23]) plays an important role in the theory of rational curves. A generalization of this theorem to transcendence degree 1 subfields of rational functions field was proven by Igusa in [11]. A purely field theoretic proof of this generalization was given by Samuel in [6]. In this note we give a simple and constructive proof of this result, based on a classical proof [7, 10.2 p.218].

Let \(k \) be a field and \(k(x) \) be the rational functions field in \(n \) variables \(x_1, \ldots, x_n \). Let \(K \) be a field extension of \(k \) that is a subfield of \(k(x) \). To the subfield \(K \) we associate the prime ideal \(\Delta(K) \) which consists of all polynomials of \(K[y_1, \ldots, y_n] \) that vanish for \(y_1 = x_1, \ldots, y_n = x_n \). When the subfield \(K \) has transcendence degree 1 over \(k \), the associated ideal is principal. The idea of our proof relies on a simple relation between coefficients of a generator of the associated ideal \(\Delta(K) \) and a generator of the subfield \(K \). When \(K \) is finitely generated, we can compute a rational fraction \(v \) in \(k(x) \) such that \(K = k(v) \). For this, we use some methods developed by the first author in [3] to get a generator of \(\Delta(K) \) by computing a Gröbner basis or a characteristic set.

Main result

Let \(k \) be a field and \(x_1, \ldots, x_n, y_1, \ldots, y_n \) be \(2n \) indeterminates over \(k \). We use the notations \(x \) for \(x_1, \ldots, x_n \) and \(y \) for \(y_1, \ldots, y_n \). If \(K \) is a field extension of \(k \) in \(k(x) \) we define the ideal \(\Delta(K) \) to be the prime ideal of all polynomials in \(K[y] \) that vanish for \(y_1 = x_1, \ldots, y_n = x_n \).

\[
\Delta(K) = \{ P \in K[y] : P(x_1, \ldots, x_n) = 0 \}.
\]

Lemma 1. — Let \(K \) be a field extension of \(k \) in \(k(x) \) with transcendence degree 1 over \(k \).

i) The ideal \(\Delta(K) \) is principal in \(K[y] \).

ii) If \(K_1 \subset K_2 \) and \(\Delta(K_i) = K_i[y]G_i \), for \(i = 1, 2 \), then \(K_1 = K_2 \).

iii) \(\Delta(K) = \hat{\Delta}(K) := (p(y) - p(x)/q(x)q(y)|p/q \in K) \).

iv) The ideal \(\hat{\Delta}(K) := k[x]\Delta(K) \cap k[x, y] \) is a radical ideal, which is equal to \((q(x)p(y) - p(x)q(y)|p/q \in K) \).
Let G be such that $\Delta(\mathcal{K}) = (G)$, with $G = \sum_{j=0}^{d} p_j(x)/q_j(x) y^j$ and $\gcd(p_j,q_j) = 1$, for $0 \leq j \leq d$. Let $Q := \operatorname{PPCM}(q_j | 0 \leq j \leq d)$, then $\hat{G} := QG$ is such that $G(y,x) = -G(x,y)$ and $\deg_x \hat{G} = \deg_y \hat{G} = d$.

Proof. — i) In the unique factorization domain $\mathcal{K}[y]$, the prime ideal $\Delta(\mathcal{K})$ has codimension 1. Hence, it is principal.

ii) Assume that $\mathcal{K}_1 \neq \mathcal{K}_2$. There exists $p(x)/q(x) \in \mathcal{K}_2$ a reduced fraction, with $p(x)/q(x) \notin \mathcal{K}_1$. The set $\{1, p(x)/q(x)\}$ may be completed to form a basis $\{e_1 = 1, e_2 = p/q, \ldots, e_s\}$ of \mathcal{K}_2 as a \mathcal{K}_1-vector space. Then, e is also a basis of $\mathcal{K}_2[y] = \mathcal{K}_2\mathcal{K}_1[y]$ as a $\mathcal{K}_1[y]$-module and Ge is a basis of $\Delta(\mathcal{K}_2) = \mathcal{K}_2\Delta(\mathcal{K}_1)$ as a $\mathcal{K}_1[y]$-module. So, $p(y) - p(x)/q(x)q(y) \in \Delta(\mathcal{K}_2)$ is equal to $p(y)e_1 - q(y)e_2$, which implies that G divides p and q, a contradiction.

iii) We remark that $\hat{\Delta}(\mathcal{K})$ does not define any prime component containing polynomials $k[y]$, so that $\hat{\Delta}(\mathcal{K}) : k[y] = \hat{\Delta}(\mathcal{K})$. The inclusion \supset is immediate. Let $P \in \Delta(\mathcal{K})$ with $P(x,y) = \sum_{j=0}^{s} p_j(x)/q_j(x) y^j$. We have $P(x,x) = 0$ and by symmetry $P(y,y) = 0$, so $P = P(x,y) - P(y,y) = \sum_{j=0}^{s} (p_j(x)/q_j(x) - p_j(y)/q_j(y)) y^j$. So, throwing away denominators in $k[y]$, $\prod_{j=0}^{s} q_j(y) P \in \hat{\Delta}(\mathcal{K})$, so that $P \in \hat{\Delta}(\mathcal{K}) : k[y] = \hat{\Delta}(\mathcal{K})$, hence the result.

iv) The ideal $\Delta(\mathcal{K})$ is prime, so that $k(x) \Delta(\mathcal{K})$ and $\hat{\Delta}(\mathcal{K})$ are radical. We remark that $\hat{\Delta}(\mathcal{K})$ does not define any prime component containing polynomials $k[x]$ or in $k[y]$, so that $\hat{\Delta}(\mathcal{K}) : (k[x]k[y]) = \hat{\Delta}(\mathcal{K})$. The inclusion \supset is immediate. Using the generators $p(y) - p(x)/q(x)q(y)$, $p/q \in \mathcal{K}$, a finite set of fractions Σ is enough by Noetherianity, so that $\prod_{p/q \in \Sigma} q(x) \delta(\mathcal{K}) \subseteq (p(y) - p(x)/q(x)q(y)|p/q \in \mathcal{K})$, which provides the reverse inclusion, using the previous remark.

v) By construction, \hat{G} is a generator of $\hat{\Delta}(\mathcal{K})$. All the generators of $\hat{\Delta}(\mathcal{K})$ in iv) being antisymmetric, \hat{G} is antisymmetric, which also implies that $\deg_x \hat{G} = \deg_y \hat{G} = d$.

Theorem 2. — Let \mathcal{K} be a field extension of k in $k(x)$ with transcendence degree 1 over k. Then, there exists v in $k(x)$ such that $\mathcal{K} = k(v)$.

Proof. — By lem. [1] i), the prime ideal $\Delta(\mathcal{K})$ of $\mathcal{K}[y]$ is principal. Let G be a monic polynomial such that $\Delta(\mathcal{K}) = (G)$ in $\mathcal{K}[y]$. Let $c_0(x), \ldots, c_r(x)$ be the coefficients of F as a polynomial in $\mathcal{K}[y]$. Since x_1, \ldots, x_n are transcendental over k there must be a coefficient $v := c_i$ that lies in $\mathcal{K}\setminus k$.

3
Write \(v = \frac{f(x)}{g(x)} \) where \(f \) and \(g \) are relatively prime in \(k[x] \). By lem. 1, \(\max(\deg_x f, \deg_x g) \leq d := \deg_x G \). As \(g(x)f(y) - f(x)g(y) \) is a multiple of \(\tilde{G} \), \(\max(\deg_x f, \deg_x g) = d \). Let \(D := f(y) - vg(y) \). As \(D \in \Delta(K) \), the remainder of the Euclidean division of \(G \) by \(D \) is also in \(\Delta(K) \) and of degree less than the degree of \(G \). It must then be 0. Therefore \(D \) is a generator of \(\Delta(k(v)) \) and of \(\Delta(K) \), with \(k(v) \subset K \), and by lem. 1 ii), we need have \(\Delta(K) = \Delta(k(v)) \) and \(K = k(v) \).

The following result, given by the first author in [3] prop. 4 p. 35 and [4] th. 1 in a differential setting that includes the algebraic case, permits to compute a basis for the ideal \(\Delta(K) \).

Proposition 3. — Let \(K = k(f_1, \ldots, f_r) \) where the \(f_i = \frac{P_i}{Q_i} \) are elements of \(k(x) \). Let \(u \) be a new indeterminate and consider the ideal

\[
\mathcal{J} = \left(P_1(y) - f_1Q_1(y), \ldots, P_r(y) - f_rQ_r(y), u \left(\prod_{i=1}^{r} Q_i(y) - 1 \right) \right)
\]

in \(K[y, u] \). Then

\[
\Delta(K) = \mathcal{J} \cap K[y].
\]

Conclusion

A generalization of Lüroth’s theorem to differential algebra has been proven by J. Ritt in [5]. One can use the theory of characteristic sets to compute a generator of a finitely generated differential subfield of the differential field \(\mathcal{F}(y) \) where \(\mathcal{F} \) is an ordinary differential field and \(y \) is a differential indeterminate. In a forthcoming work we will show that Lüroth’s theorem can be generalized to one differential transcendence degree subfields of the differential field \(\mathcal{F}(y_1, \ldots, y_n) \).

References

