tiefe Mysterien noch verhüllt, er bezieht sich auf den geheimnißvollen Zusammenhang, in welchem alle Körper, wie sie auch außer einander liegen, unter einander stehen; wird ihre Spannung gestört, so entsteht, wenn die sonstigen Bedingungen erfüllt sind, ein elektrischer Strom. Dieses Mysterium fühlen zu lassen, gab ich in § 2 die verschiedenen Definitionen der inducirten elektrischen Kraft durch lebendige Kraft, Druck etc. Ein Wort für & weiß ich nicht... Das Potential habe ich allerdings in einem etwas allgemeineren Sinne genommen; ich denke dies aber auch an einer Stelle der Abhandlung angedeutet zu haben. Ich gebe folgende Definition: das Potential eines Systems von Kräften, welche nach einem beliebigen Gesetz auf ein Element wirken, in Beziehung auf dieses Element ist die Function der drei rechtwinkligen Coordinaten desselben, deren erste partielle Differentialquotienten die mit diesen parallelen Componenten der Kraft darstellen, mit welcher das System der Kräfte auf das Element wirken und deren zweite partielle Differentialquotienten summirt gleich Null sind NB. Nicht jedes System von Kräften hat ein Potential, z. B. das System von Kräften eines ungeschlossenen Stromes hat kein Potential. Das Potential eines Systems beliebiger Kräfte bezogen auf ein System von Elementen ist die Summe der Potentiale des Kräftesystems in Beziehung auf alle Elemente. Noch muß ich bemerken, daß die Kräftesysteme der geschlossenen elektrischen Ströme, welche nach einem Gesetze wirken, in welchem die Richtungen der Ströme vorkommen, sich mittelst der durch ihre Curven gelegten Oberflächen o und  $\omega$  immer ersetzen lassen durch andere Kräftesysteme, welche nach dem Newton'schen Gesetze  $\frac{1}{r^2}$  wirken, was wohl immer der Fall sein wird, wenn das gegebene System der Kräfte ein Potential hat .. "

Die weiteren von Neumann und Kirchhoff in den Monatsberichten der Berliner Akademie sowie in den Poggen-

dorffschen Annalen veröffentlichten Arbeiten gaben noch bisweilen Gelegenheit zur Korrespondenz zwischen Neumann und Jacobi. "Die Benennung Kegelöffnung der Curve in Bezug auf den Punkt", schreibt Jacobi an Neumann, "habe ich auf Dirichlet's Vorschlag angenommen, ich wünsche, daß sie Ihren Beifall hat. ... Bei Ihrer Definition vom Potential kann dieselbe noch eine willkührliche Constante enthalten, da es nur Differentialbedingungen zu genügen hat. Multiplicirt man also, wie bei Ihnen, mit einem Raumelement und summirt, so kann noch der Draht mit einer willkührlichen Constanten multiplicirt hinzukommen, so daß die Sache nicht ganz bestimmt ist ... Schreiben Sie mir darüber einige Worte und bedenken Sie immer, daß ich nur nach flüchtigem Anblick urtheilen kann, also darauf gänzlich gefaßt bin, etwas Verkehrtes gesagt zu haben... Als Weber hier bei P. den Monatsbericht mit Ihrer Inhaltsangabe flüchtig sah, äußerte er, daß er von seinen unipolaren Untersuchungen zurückgekommen sei-... D. sagte mir neulich, er habe zu seiner Freude ein Problem gelöst, mit dem er sich lange beschäftigt, die Verbreitung der Elektricität auf einem rechtwinkligen Parallelepipedum; die Form der Entwicklungen schreitet nach einfachen, doppelten, dreifachen etc. Integralen fort... Der Vortrag von P. in der Akademie über Kirchhoff's Abhandlung bezog sich nur auf die letzten Zeilen in der Anmerkung, und da meinte P. R., P. hätte zu viel Aufhebens davon gemacht, was wohl der Fall war. Von der eigentlichen Abhandlung sprach P. gar nicht."

Zunächst gestattete das Befinden Jacobis diesem nur kleinere, mehr ergänzende Untersuchungen seiner früheren Arbeiten auszuführen; am 14 Februar veröffentlichte er eine kurze Note "Über den Wert, welchen das bestimmte

$${\rm Integral} \int\limits_0^{2\pi} \frac{d\varphi}{1-A\cos\varphi-B\sin\varphi} \ {\rm f\"{u}r} \ {\rm beliebige} \ {\rm imagin\"{a}re} \ {\rm Werte}$$

Jacobi als Mitglied der Akademie in Berlin

von A und B annimmt", und findet, unter der Annahme, daß die Funktion unter dem Integral nicht unendlich wird, also  $\Delta = ab' - a'b \ge \sqrt{a'^2 + b'^2}$ , worin A = a + a'i, B = b + b'i, daß, wenn  $(ab' - a'b)^2 > a'^2 + b'^2$ , das Integral verschwindet, während es, wenn  $(ab'-a'b)^2 < a'^2+b'^2$ , den Wert  $\frac{2\pi}{\sqrt{1-A^2-B^2}}$  annimmt mit positivem Werte des reellen

Teiles der Wurzelgröße; er ermittelt auch für ganze posi-

tive r die Werte der allgemeineren Integrale  $\int_{0}^{2\pi} \frac{\cos r\varphi \, d\varphi}{1 - A\cos\varphi - B\sin\varphi}$  und  $\int_{1}^{2\pi} \frac{\sin r\varphi \, d\varphi}{1 - A\cos\varphi - B\sin\varphi}$  als einfache algebraische Funktionen

 $\mathrm{der}\;\mathrm{Gr\"{o}Ben}\;D=a+b'+(a'-b)i\;\mathrm{und}\;D'=a-b'+(a'+b)i.$ 

Nicht bloß eignes schlechtes Befinden drückte Jacobi nieder, sondern auch die überaus traurigen Nachrichten von dem Gesundheitszustande seines verehrten alten Freundes Bessel raubten ihm alle Ruhe; er schreibt ihm in dieser Zeit öfter, ohne eine Antwort von ihm abzuwarten, und teilt ihm alles mit, was ihn bekümmert. Eisenstein hatte in dieser Zeit durch verschiedene Dinge seinen und Dirichlets sowie Steiners Unwillen in hohem Grade erregt. "Wir haben hier einige Noth mit Eisenstein", schreibt er am 23 Februar an Bessel, "...da mündliche Vorstellungen nichts helfen, so habe ich ihn (zuerst in meinem Leben) publice getadelt, was einen guten Effect gemacht zu haben scheint. Gauss ist uns ganz unbegreiflich, der ihn, der noch keinen einzigen Satz fand, sondern nur anderer Sätze sinnreich bewiesen oder bloße Durchführungen fremder Gedanken gemacht, wie Weber sagt, augenblicklich sich selbst gleichgestellt hat..."

Schon am 17. März wurde Jacobi schwer von der Todesnachricht Bessels getroffen. "Hier ist niemand", schreibt ihm Neumann am 20. März, "der von Bessel auf eine ihm würdige Weise sprechen kann; Sie werden es in der Academie thun, und weil Sie es allein können, gern thun",

und in bezug auf die früheren Bemerkungen Jacobis bezüglich der Arbeit Neumanns fügt dieser hinzu:

"Ob es am Ende doch nicht besser wäre, die Definition des Potentials zu unterlassen? Was eigentlich hervorzuheben wäre, liegt in meiner Definition nur versteckt; es ist dies, daß es Kräftesysteme giebt, welche in Bezug auf ein Element, auf welches sie wirken, kein Potential haben, wohl aber in Bezug auf bestimmte Systeme von Elementen, und daß in diesem Falle statt jenes Kräftesystems sich ein anderes substituiren läßt, welches auch in Bezug auf ein Element ein Potential hat. Das Potential dieser substituirten Kräfte steht unter der Gauss'schen Definition  $\sum_{n=0}^{\infty} \frac{m}{n} \cdots$ Für Kirchhoff hat das Concilium 200 & Reisestipendium bewilligt und wird später beim Minister antragen, seinerseits auch 200 \$\psi\$ zuzulegen. Ob Kirchhoff wohl, wenn es glückt, mit 400 \( \psi \) eine Reise nach Paris machen und sich ½ Jahr dort aufhalten kann?..."

Da Jacobi sich für Kirchhoff in hohem Grade interessierte und ihn am liebsten in seine Nähe gezogen hätte, so beeilte er sich am 2. April Neumann zu antworten:

"In Bezug auf Kirchhoff sind Poggendorff und Magnus der auf eigne Erfahrungen begründeten Meinung, daß falls er etwa in Paris etwas zu arbeiten beabsichtige, er dies dort nicht erreichen würde, sondern daß es für ihn das zweckmäßigste wäre, sich hier in der Chemie noch zu vervollkommnen, wozu er in K. gar keine Gelegenheit hat, hier aber eine außerordentliche hätte, indem ihm Rose's und Magnus' Zuvorkommenheit von großer Hülfe sein könnte. Dabei solle er sich eine eigne experimentelle Arbeit mitbringen, zu der er hier durch Apparate unterstützt werden könnte. Paris könnte er sich dann in einem Aufenthalte von 6 Wochen ansehen. Übrigens wäre es wohl gut für Kirchhoff, wenn Sie privatim über ihn an Schulze schrieben in Bezug auf das, was ihm vom Ministerium gewährt werden soll. Sie müssen eiumal von ihrer Gewohnheit abstrahiren und sich zu dieser extraordinären Leistung bequemen ..."

Inzwischen hatte sich das recht schlechte Verhältnis von Jacobi zu Eisenstein ein wenig gebessert, und es ist interessant, die Auffassung des jugendlichen Eisenstein aus einem vom 20. April datierten und an Stern gerichteten Schreiben dieses bisweilen krankhaft erregten und in seiner Gesundheit schon nervös zerrütteten, genialen Mathematikers kennen zu lernen:

"Es wäre meine Pflicht gewesen, auf Ihren herzlichen liebevollen Brief, der mir die größte Freude bereitet hat, sogleich zu antworten. Aber theils ist meine Faulheit an der Verzögerung schuld, theils hatte ich gar keine rechte Lust, auf die fatale Geschichte mit Jacobi wieder zurückzukommen. Das ganze Räthsel ist, daß es Jacobi verdrießt, daß ich nicht sogleich, nachdem ich von seinen Arbeiten über Kreistheilung erfahren hatte, öffentlich seine Priorität anerkannt habe, während ich doch Gauss so oft anführe. Daß ich nun dies unterlassen habe, daran ist bloß meine unschuldige Einfalt Schuld, da ich mich um dergleichen Aeußerlichkeiten nicht kümmerte, sondern nur an die Wissenschaft selbst dachte; durch Gauss habe ich nun einmal meine mathematische Bildung erlangt, seine Leistungen sind mir geläufig, und deshalb führe ich ihn an; die Arbeiten von Jacobi sind mir erst zugänglich geworden, seit ich ihn persönlich kenne, d. h. seit er hier in Berlin ist. Muß man denn wirklich alles durchkramen, ehe man drucken läßt; ich glaubte, daß, wenn man sich mit dem Crelle'schen Journal au fait erhält, man genug thut. Inzwischen kann Jacobi selbst unmöglich daran glauben, daß ich ihm seine Sachen gestohlen habe, denn er hat eben auf diese meine früheren Arbeiten hin vor 5/4 Jahren den

Antrag zu meiner Doctorernennung bei der Breslauer Facultät gestellt. Übrigens gebührt in den Beweisen der Reciprocitätssätze weder mir noch Jacobi die Priorität, sondern Gauss; aber gedruckt sind die Beweise zuerst von mir erschienen; am Ende hat doch Jacobi auch nur gesagt, daß er die Beweise gefunden habe, Gauss hat dasselbe aber schon viel früher gesagt, Theoria residuorum biquadr. und schon an einem viel früheren Orte: demonstrationes et ampliationes novae etc. etc. — hic aqua haeret . . . Schon einige Zeit, ehe ich Ihren Brief erhielt, hatte ich ein Manuscript fertig, worin ich Jacobi in höchst gemäßigter Weise antworte und die Untersuchungen vereint zusammenstelle, welche ich in früherer Zeit über Kreistheilung angestellt hatte; denn was ich damals herausgab, war kaum die Hälfte dessen, was ich herauszugeben beabsichtigte, bis mir Jacobi in die Quere kam. Ich habe es aber aufgegeben, dieses Manuscript wenigstens für jetzt drucken zu lassen, denn einmal ist Jacobi außerdem ganz freundlich gegen mich, bis auf die allerletzte Zeit, wo ich ihn selten besuche, was aber an mir und nicht an ihm liegt, und dann darf ich ihn mir auch jetzt nicht erzürnen, weil ich meine Habilitation hier beabsichtige, wobei er mir einerseits nutzen andererseits aber auch sehr schaden kann. ."

Für den Sommer 1846 hatte Jacobi eine Vorlesung über die allgemeine Theorie der Oberflächen und Linien doppelter Krümmung angekündigt, die er vor zwölf Zuhörern hielt; noch vor Beginn derselben legte er am 7. Mai der Akademie eine "Über den Eulerschen Beweis der merkwürdigen Eigenschaften der Pentagonalzahlen" betitelte, aber in den Monatsberichten nicht veröffentlichte Untersuchung vor, deren Ausführung er am 12. Mai unter dem Titel "Beweis des Satzes, daß jede nicht fünfeckige Zahl ebenso oft in eine gerade als ungerade Anzahl verschiedener Zahlen zerlegt werden kann" dem Crelleschen Journal übergab, und in welcher er einen rein arithmetischen Beweis gab für den von

Euler aus der Entwicklung des Produktes  $(1 \pm q)(1 \pm q^2)$ .  $(1\pm q^3)\ldots$  in eine Reihe hergeleiteten Satz, daß jede Zahl, welche nicht die Form  $\frac{1}{2}(3i^2\pm i)$  einer fünfeckigen Zahl hat, ebensooft in eine gerade als in eine ungerade Menge anderer voneinander verschiedener Zahlen zerlegt werden kann, Zahlen dagegen von der Form  $\frac{1}{2}(3i^2 \pm i)$  in eine gerade Menge einmal mehr oder weniger als in eine ungerade zerlegt werden können, und zwar das eine oder das andere, je nachdem i gerade oder ungerade ist. Jacobi bezeichnet, wenn eine Größe P auf alle mögliche Arten aus anderen, welche unter sich und von Null verschieden sind und aus der Zahl gegebener Elemente  $\alpha, \beta, \gamma, \dots$  genommen werden sollen, durch Addition zusammengesetzt wird, ohne dabei ein Element wiederholt anzuwenden, den positiven oder negativen Überschuß der Anzahl derjenigen Zusammensetzungen, in welchen die Zahl der angewandten Elemente gerade ist, über die Anzahl derjenigen, in welchen diese Anzahl ungerade ist, mit  $(P, \alpha, \beta, \gamma, \ldots)$  und beweist den folgenden Satz: Es seien  $b_0$  und a positive Größen, ma ein die Größe  $b_0$  übertreffendes Vielfaches von a; es sei  $b_0, b_1, b_2, \ldots$  eine abnehmende arithmetische Reihe mit der konstanten Differenz -a und  $a, a_1, a_2, \ldots$  eine beliebige wachsende arithmetische Reihe; ferner sei  $s_i = a_1 + a_2 + \cdots + a_i$ , so wird das Aggre $gat(b_0, a) + (b_1, a, a_1) + (b_2, a, a_1, a_2) + \dots + (b_{m-1}, a, a_1, \dots a_{m-1})$ verschwinden, außer wenn  $b_i$  einer der Größen  $s_{i-1} + 2s_i$  oder  $2s_{i-1} + s_i$  gleich wird, und in diesem Falle den Wert  $(-1)^i$ erhalten, woraus gefolgert werden kann, daß der Überschuß der Anzahl der Zusammensetzungen einer Zahl P aus einer geraden Zahl über die Anzahl ihrer Zusammensetzungen aus einer ungeraden Zahl verschiedener ganzer positiver Zahlen, wenn P eine fünfeckige Zahl  $\frac{1}{2}(3i^2\pm i)$  ist, gleich  $(-1)^i$  wird und verschwindet für alle übrigen Werte von P. Aus der zum Beweise dieses Satzes von Jacobi hergeleiteten Beziehung  $(b_0, a) + (b_1, a, a_1) + (b_2, a, a_1, a_2) + \dots + (b_{m-1}, a, a_1, \dots a_{m-1})$  $= [b_0] - [c_0] - (b_m, a_1, a_2, \dots a_{m-1}) - \{(c_1, a_1) + (c_2, a_1, a_2)\}$ 

 $+\cdots+(c_{m-2},a_1,a_2,\ldots a_{m-2})\}$ , worin  $c_i=b_{i+1}-a_{i+1}$ , und das Zeichen [N] = 1, wenn N verschwindet, und = 0, wenn N von Null verschieden ist, ergibt sich, indem die konstante Differenz der Reihe a, a<sub>1</sub>, a<sub>2</sub>, . . . der Einheit gleich genommen und  $q^a=z$  gesetzt wird, die die Eulersche Gleichung einschließende allgemeinere Beziehung (1-z) $+z(1-z)(1-qz)+z^2(1-z)(1-qz)(1-q^2z)+\cdots=1+\sum_{i=0}^{\infty}(-1)^iq^{\frac{1}{2}(3i^2-i)}z^{3i-1}+\sum_{i=0}^{\infty}(-1)^iq^{\frac{1}{2}(3i^2+i)}z^{8i}, \text{ aus der eine}$ 

Reihe weiterer neuer Formeln für die Theorie der elliptischen Transzendenten hergeleitet wird.

In dieser Zeit begann Jacobi sich eingehender mit den Anwendungen der elliptischen Funktionen auf geometrische und mechanische Probleme zu beschäftigen, und wurde dadurch auf eine Reihe von Hilfsuntersuchungen in der Theorie der elliptischen und hyperelliptischen Transzendenten geführt, von denen er zunächst am 13. Mai 1846 die "Über die Vertauschung von Parameter und Argument bei der dritten Gattung der Abelschen und höheren Transzendenten" betitelte veröffentlichte. Zuvörderst gibt Jacobi einen Beweis für das von  $\mathbf A$ b el in einer nachgelassenen  $\mathbf A$ rbeit ausgesprochene Theorem, wonach, wenn f(x) eine ganze Funktion von x, ferner  $f_1(x), f_2(x)$  zwei beliebige ganze Funktionen von x sind, welche der Gleichung  $f_1(x) + f_2(x) = \frac{df(x)}{dx}$  genügen, und  $\frac{d\log\varphi(x)}{dx} = \frac{f_1(x)}{f(x)}, \ \frac{d\log\psi(x)}{dx} = \frac{f_2(x)}{f(x)}$  gesetzt wird, der Ausdruck  $\varphi(\alpha) \int \frac{dx}{(x-\alpha)\varphi(x)} - \psi(x) \int \frac{d\alpha}{(\alpha-x)\psi(\alpha)}$  ein Aggregat von Produkten der Form ist  $C_{m,n} \int \frac{\alpha^m d\alpha}{\psi(\alpha)} \int \frac{x^n dx}{\varphi(x)}$ , worin m und nganze positive Zahlen und die Größen  $C_{m,n}$  Konstanten sind, die Jacobi in der Form

$$\frac{n+1}{m+n+2} \, a_2^{(m+n+1)} - \frac{m+1}{m+n+2} \, a_1^{(m+n+1)}$$

findet, wenn  $a_i^{(i)}$  und  $a_s^{(i)}$  die Koeffizienten von  $x^i$  in den ganzen Koenigsberger, Jacobi-Biographie.

Funktionen  $\psi(x) \frac{d\varphi(x)}{dx}$  und  $\varphi(x) \frac{d\psi(x)}{dx}$  sind. Um die ebenfalls von Abel gegebene Ausdehnung dieses Satzes auf die Integrale linearer Differentialgleichungen zu untersuchen, geht Jacobi von dem Hilfssatz aus, daß einem Ausdrucke  $Ay + A_1y' + \cdots + A_ny^{(n)}$  immer ein anderer  $Bz + B_1z'$  $+ \cdot \cdot + B_n z^{(n)}$  entspricht, von der Art, daß für unbestimmte Funktionen y und z der Ausdruck z  $[Ay + A_1y' + \cdots + A_ny^{(n)}]$  $+y\left[Bz+B_{1}z'+\cdots+B_{n}z^{(n)}
ight]$  ein vollständiges Differential ist, und zwar besteht dann notwendig die Beziehung  $By + B_1y' + \dots + B_ny^{(n)} = -Ay + \frac{d(A_1y)}{dx} - \frac{d^2(A_2y)}{dx^2} + \dots$  $\pm \frac{d^n(A_n y)}{dx^n}$ , mittels welcher der zweite Ausdruck aus dem ersten bestimmt wird, und ebenso folgt  $Ay + A_1y' + \cdots = -By$  $+\frac{d(B_1y')}{dx}-\cdots$ ; bezeichnet man nun den ersteren Ausdruck  $\mathrm{mit}[y]_{2},\mathrm{den}\,\mathrm{letzteren}\,\mathrm{mit}[y]_{1}\,\mathrm{und}\,\mathrm{das}\,\mathrm{Integral}\int(z[y]_{1}+y[z]_{2})dx$ mit [y, z], so gestaltet Jacobi den Abelschen Satz, nachdem er gezeigt, daß, wenn  $y_1, y_2, \ldots y_n$  die n Lösungen der Gleichung  $[y]_1 = 0$ , und  $z_1, z_2, \dots z_n$  die der Gleichung  $[z]_2 = 0$ sind, die  $n^2$  Ausdrücke  $[y_i, z_z]$  Konstanten gleich sind, und daß daher, da man für  $z_1, \ldots z_n$  beliebige lineare Funktionen derselben mit konstanten Koeffizienten einführen kann, diese Konstanten so bestimmt werden können, daß die Ausdrücke  $[y_i, z_i] = 1, [y_i, z_z] = 0$  sind, in die folgende Form um: Genügen  $A, A_1, \ldots A_n$  und  $B, B_1, \ldots B_n$  der Bedingung, daß der oben bezeichnete Ausdruck ein vollständiges Differential wird, und bestimmt man die n unabhängigen Lösungen der Differentialgleichungen in y und z so, daß das für unbestimmte Funktionen y und z und ohne Hinzufügung einer willkürlichen Konstanten dargestellte Integral [y, z]verschwindet, wenn man  $y=y_i, z=z_z$ , oder = 1 wird, wenn man  $y=y_i, z=z_i$  setzt, ist ferner  $C_{m,p}$  der Koeffizient von  $\frac{1}{x}$  in dem Ausdrucke  $-x^{-m-1}\{Ay+A_1y'+\cdots+A_ny^{(n)}\},$ wenn  $y = x^{-p-1}$ , oder was dasselbe ist, in dem Ausdrucke  $x^{-p-1}\{By + B_1y' + \cdots + B_ny^{(n)}\}, \text{ wenn } y = x^{-m-1} \text{ gesetzt}$ wird, sind endlich  $\eta_1, \eta_2, \ldots, \eta_n; \zeta_1, \zeta_2, \ldots, \zeta_n$  die Funktionen von  $\alpha$ , in welche sich  $y_1, y_2, \dots y_n; z_1, z_2, \dots z_n$  verwandeln, wenn man  $\alpha$  für x substituiert, so wird  $H(x)\left\{z_1^{(i)} \int \frac{y_1 dx}{(x-\alpha)^{x+1}}\right\}$  $+\cdots+arepsilon_n^{(i)}\intrac{y_ndx}{(x-lpha)^{arkappa+1}}\Big\}-\Pi(i)\left\{\eta_1^{(oldsymbol{z})}\intrac{\xi_1dlpha}{(lpha-x)^{i+1}}+\cdots+
ight.$  $\left\{ \eta_n^{(z)} \int rac{\zeta_n d \, lpha}{(lpha - x^{i+1})} 
ight\} = \sum C_{m,p} \eta_g^{(z)} z_h^{(i)} \int lpha^m \zeta_g d lpha \cdot \int x^p y_h dx, ext{ wo in }$ der mit  $\Sigma$  bezeichneten vierfachen Summe g und h die Werte  $1, 2 \dots n$  erhalten, m und p alle Werte, für welche sich in einer oder in mehreren von den Funktionen  $x^{-l-1}A_i$  ein Term  $x^{m+p}$  findet, und die Accente i und z, welche die Ordnung der Differentiale anzeigen, beliebig angenommene Zahlen aus der Reihe der Zahlen 0, 1,  $2 \dots n-1$  sind. Hat die Differentialgleichung  $Ay + A_1y'$  $+\cdots+A_ny^{(n)}=0$  die Form der isoperimetrischen, so wird die Differential gleichung  $By + B_1y' + \cdots + B_ny^{(n)} = 0$  mit ihr identisch, jede Lösung ist zugleich ein Faktor, welcher sie integrabel macht und umgekehrt. "Um das aufgestellte allgemeine Theorem in ein vollständiges Licht zu setzen, und insbesondere die Anfangsgrenzen der Integrale zu bestimmen, und die notwendigen Beschränkungen des Theorems anzugeben, ist es nötig, den Charakter der Lösungen der linearen Differentialgleichungen, deren Koeffizienten ganze rationale Funktionen der Variabeln sind, näher zu ergründen, wofür, wenn man die 2. Ordnung überschreitet, noch wenig von den Mathematikern geschehen ist."

Am 1. Juni wurde Jacobi zum associé étranger der Pariser Akademie erwählt. "C'est par les noms de Newton et de Leibniz", schreibt ihm Liouville noch an demselben Tage, "que s'ouvre notre liste d'associés; les noms de Gauss et de Jacobi figureront dignement à côté."

Jacobi, der es sich zur Aufgabe gemacht, den mathematischen Unterricht an den höheren Schulen und Universitäten Deutschlands zu heben, verschmähte es nicht, der mathematischen Welt auch sein Urteil über Bücher von elementarem Charakter kundzugeben, und es ist besonders ein von ihm am 19. Juni 1846 verfaßtes Vorwort zu A. L. Buschs Vorschule der darstellenden Geometrie von hervorragendem Interesse. Jacobi hebt dieses Buch als ein solches hervor, welches nicht bloß auf Gymnasien eine treffliche Vorschule liefern, sondern auch Künstlern und Technikern eine nützliche Unterweisung bieten wird. "... Die durch ernstes Studium und fleißige Übung mit Zirkel und Lineal hervorgegangene Kenntnis streng geometrischer Formen und Proportionen kam Dürer hauptsächlich in der Kunst zu statten, durch welche er am meisten das Staunen seiner Zeitgenossen und die Bewunderung der Nachwelt erregt hat, wenn, wie Erasmus in seinem Dialoge über die richtige Aussprache des Lateinischen und Griechischen sich ausdrückt, 'größer wie Apelles, ohne den Lockreiz der Farben, bloß durch glückliche Anwendung schwarzer Linien er Schatten, Licht, Glanz, Erhöhungen, Vertiefungen, die verschiedene Stellung desselben Gegenstandes, die harmonischen Maße, ja das zu malen Unmögliche, Feuer, Lichtstrahlen, Donner, Wetterleuchten, Blitz, Nebel, alle Sinne und Leidenschaften, die ganze menschliche Seele von der Leibesgestalt wiederstrahlend, ja fast die Stimme selbst so vor die Augen hinstellt, daß durch Hinzufügung der Farbe dem Werke nur unrecht geschehe.' Das gründliche geometrische Vorstudium erweiterte den Blick und die Sphäre der Tätigkeit jener alten Meister, Piero della Francesca, Gentile und Giovanni Bellini, Alessandro Botticelli, Filippino und Domenico Ghirlandajo, Pietro Perugino, Andrea, Mantegna, welche, wie uns der große Mathematiker Fra Luca dal Borgo, der häufig mit ihnen in geometrischen Gesprächen verkehrte, in seiner Summa Arithmetica berichtet, immer mit Zirkel und Lineal ihre Werke proportionierten und sie so zu der Vollendung brachten,

die wir an ihnen bewundern... Die Strenge der geometrischen Beweise ist eine Erfindung der Griechen, welche dem menschlichen Verstande nur zur höchsten Ehre gereicht. Aber sie ist nur dem reiferen Knaben- und angehenden Jünglingsalter eine passende und gesunde Nahrung, und dann nebst der Grammatik eine wahre Zucht des Verstandes. Dem Knaben, dem diese Welt der geometrischen Formen noch eine gänzlich fremde ist, mit den ersten Vorstellungen, die man ihm davon überliefert, zugleich schon zuzumuten, sich darin in der Weise folgerechten Denkens nach systematischem Fortschritt zu bewegen, scheint keine gute Pädagogik. Ich schreibe diesem Mißverhältnis hauptsächlich das beachtenswerte Phänomen zu, daß zwar von den andern Unterrichtsgegenständen eine Färbung, ein Interesse im späteren Leben zurückzubleiben pflegt, von den mathematischen dagegen bei der großen Mehrzahl der Lernenden jede Spur bis auf die Erinnerung schwindet, während doch gerade diese Formen, diese Proportionen, deren Gesetzmäßigkeit und Zusammenhang den jugendlichen Scharfsinn beschäftigt hat, uns auch in der Folge fortwährend umgeben und ihre Fragen an uns richten..."

Einige Umformungen der unendlichen Produkte und Reihen seiner Fundamenta führten ihn zu einer Verallgemeinerung der hypergeometrischen Reihen, und er veröffentlichte darüber am 28. Juni eine kürzere Note betitelt "Über einige der Binomialreihe analoge Reihen". Ersetzt man den p Binomialkoeffizienten der Binomialreihe durch  $v_p = \frac{(1-v)(1-xv)(1-x^2v) - (1-x^{p-1}v)}{(1-x)(1-x^2)(1-x^3) - (1-x^p)}, \text{ so folgt, wenn die } \text{Reihe} 1 + \frac{v-w}{1-x}z + \frac{(v-w)(v-xw)}{(1-x)(1-x^2)}z^2 + \frac{(v-w)(v-xw)(v-x^2w)}{(1-x)(1-x^3)}z^3 + \cdots \text{ mit } (w,v) \text{ bezeichnet wird, daß } \frac{1}{[w,v]} = [v,w] \text{ und } [w,v] = \frac{[w,1]}{[v,1]} \text{ ist. Es ergibt sich ferner } [w,v] = \frac{(1-wz)(1-xwz)(1-x^2wz)}{(1-vz)(1-xvz)(1-x^2vz)}, \text{ und danach außer einer schon}$ 

Jacobi als Mitglied der Akademie in Berlin

von Schweins gefundenen Formel noch

$$=\frac{(1-r)(1-xr)\dots(1-x^{n-1}r)}{(1-r)(1-xr)\dots(1-x^{m+n-1}r)}$$

sich mit wachsendem n sehr schnell der Einheit nähert. Die oben für die Entwicklung einer Reihe in ein unendliches Produkt aufgestellten Beziehungen führen für x=r=s =t=1 auf den speziellen Fall der hypergeometrischen Reihe  $1+\frac{\alpha\beta}{1-\gamma}+\frac{\alpha(\alpha+1)\beta(\beta+1)}{1-2-\gamma(\gamma+1)}+\cdots$ , welcher Grenzfall schwieriger zu behandeln ist als der allgemeine, in welchem x um eine beliebige endliche Größe kleiner als 1 ist, weil bekanntlich  $\alpha$ ,  $\beta$ ,  $\gamma$  noch Bedingungen unterworfen werden müssen, damit die Reihe konvergent ist.

Endlich ist aus dem Sommer noch eine kurze, aber wichtige und folgenreiche Arbeit zu erwähnen, die Jacobi am 14. Juli unter dem Titel "Über eine neue Methode zur Integration der hyperelliptischen Differentialgleichungen und über die rationale Form ihrer vollständigen algebraischen Integralgleichungen" veröffentlichte. Wenn man für das System hyperelliptischer Differentialgleichungen  $\frac{dx_1}{\sqrt{X_1}} + \cdots + \frac{dx_n}{\sqrt{X_n}} = 0$ , worin X eine ganze  $\frac{dx_n}{\sqrt{X_n}} = 0$ , worin X eine ganze

Funktion 2n. Grades ist, die algebraischen Integrale in rationaler Form darstellen will, so wie Euler für n=2 das Integral von  $\frac{dx_1}{\sqrt{X_1}} + \frac{dx_2}{\sqrt{X_2}} = 0$  in die Form einer Gleichung 2. Ordnung zwischen  $x_1 + x_2$  und  $x_1 x_2$  gebracht hat, so führt die Fortschaffung der Wurzelgrößen wegen der möglichen Reduktibilität der rational gemachten Gleichung auf Schwierigkeiten. Jacobi findet, daß das System von n-1 rationalen Gleichungen, durch welche jenes hyperelliptische System vollständig integriert wird, aus einer Gleichung 2. Grades zwischen der Summe der Größen  $x_1, \ldots x_n$  und der Summe ihrer Amben, und aus n-2 andern Gleichungen besteht, mittels welcher durch diese beiden Größen die Summe der Ternen, Quaternen etc., endlich das Produkt der Variabeln linear ausgedrückt werden. Zur Bildung dieser Gleichungen muß X in der Form  $S^2 - RT$  dargestellt werden, wo R, S, Tganze Funktionen n. Grades sind, und die hierbei willkürlich anzunehmenden konstanten Größen geben die willkürlichen Konstanten, mit denen die rationalen Integralgleichungen behaftet sind; stellt man dann die Gleichung auf  $Ry^2 + 2Sy + T = 0 = Yx^n - Y_1x^{n-1} + \cdots \pm Y_n$ , worin  $Y, Y_1, \dots Y_n$  ganze Funktionen 2. Grades von y sind, und nennt  $x_1, x_2, \dots x_n$  die zu einem gegebenen y gehörigen Werte von x, so ergibt sich durch Differentiation  $\frac{ax_i}{\sqrt{S^2 - R \cdot T}}$  $+\frac{2dy}{Y(x_i-x_1)(x_i-x_2)\cdots(x_i-x_n)}=0$ , oder wenn  $P_i$  eine rationale Funktion von  $x_i$  ist,  $\sum \frac{P_i dx_i}{\sqrt{S_i^2 - R_i T_i}} + Q dy = 0$ , worin  $Q = \frac{2}{Y} \sum_{(x_i - x_1) \dots (x_i - x_n)}^{P_i}$  sich vermöge der obigen Gleichung rational durch y ausdrückt. Ist  $P_i$  eine ganze Funktion von niedrigerem Grade als dem n-1, so ist Q=0, und man erhält somit das hyperelliptische Differentialgleichungssystem. Zur Darstellung der Funktion X in der Form  $S^2 - RT$  benutzt Jacobi das Lagrangesche Interpolationsproblem, indem er eine ganze Funktion S vom n-1. Grade bestimmt, welche für n willkürlich angenommene Werte  $a_1, a_2, \ldots a_n$  dieselben Werte annimmt wie  $\sqrt{X}$  und sodann  $S^2-X$  in zwei Faktoren zerlegt; dann folgt aus  $u_1=\frac{Y_1}{Y}$  und  $u_2=\frac{Y_2}{Y}$ , worin  $u_1$  und  $u_2$  die Summe von  $x_1, x_2, \ldots x_n$  und die Summe ihrer Amben ist, durch Elimination von y eine Gleichung 2. Ordnung zwischen  $u_1$  und  $u_2$ , während die analogen Verbindungen  $u_m$  sich linear durch  $u_1$  und  $u_2$  ausdrücken lassen. Jacobi spricht das gefundene Theorem noch folgendermaßen aus: "Setzt man  $f(x)=(bx^n+b_1x^{n-1}+\cdots+b_n)^2+(cx^n+\cdots+c_n)^2-(ax^n+a_1x^{n-1}+\cdots+a_n)^2$ , so werden die Differentialgleichungen:  $\frac{dx_1}{\sqrt{f(x_1)}}+\cdots+\frac{dx_n}{\sqrt{f(x_n)}}=0$ ,

 $\cdots \frac{x_1^{n-2}dx_1}{\sqrt{f(x_1)}} + \cdots + \frac{x_n^{n-2}dx_n}{\sqrt{f(x_n)}} = 0 \text{ vollständig integriert, wenn}$ man für  $x_1, \ldots x_n$  die Wurzeln der Gleichung  $ax^n + \cdots + a_n$   $= (bx^n + \cdots + b_n)\cos\varphi + (cx^n + \cdots + c_n)\sin\varphi \text{ setzt, wo } \varphi$ einen veränderlichen Winkel bedeutet."

Bei dem regen Interesse und der tiefen theoretischen Einsicht in die Probleme der Astronomie und der Mechanik war es natürlich, daß, als Mädler seine bekannte Arbeit über die Zentralsonne veröffentlichte, Jacobi seinem Bruder Moritz gegenüber seine Ansicht über diese Hypothese unverhohlen aussprach, der sie den Mitgliedern der Petersburger Akademie zunächst mündlich mitteilte und nachher in deren Berichten abdrucken ließ. Am 31. Juli 1846 schrieb Schumacher an Jacobi: "Eine Relation, die Struve mir aus einem Briefe macht, den Sie an Ihren Herrn Bruder in Petersburg geschrieben haben, veranlaßt mich, Sie mit diesen Zeilen zu behelligen. Bei der famösen Centralsonne von Mädler sagen Sie (nach Struve's Relation), daß es sich garnicht darum handle, daß dies oder jenes falsch sei, und fügen hinzu, die Sache käme darauf zurück, als wenn man aus einer arbiträren Constanten, die bei der Integration einer Differentialgleichung vorkomme, die Beschaffenheit der

Differentialgleichung finden wolle. Ich muß zu meiner Beschämung bekennen, daß ich dies nicht ganz verstehe. Daß dies oder jenes falsch sei, weiß ich sehr wohl, wenn dies und jenes die vorangeschickte Theorie bedeutet, in der er in seiner ersten Hypothese die Sterne als überall gleichförmig im Raume vertheilt betrachtet, sie demzufolge als in einer sehr großen Kugel enthalten annimmt und die bekannten Gesetze von der Anziehung einer Kugel auf sie anwendet (wogegen ich nicht viel zu erinnern sehe), nachher aber, die erste Hypothese verlassend, die Sterne als in einem flachen, linsenförmigen Körper gleichförmig vertheilt voraussetzt und auf diesen Fall die für die Kugel geltenden Saetze stillschweigend anwendet. ... Er fügte hinzu, indem er sich auf die von ihm angeführten eignen Bewegungen der Sterne stützt, daß er seine Entdeckung der Discussion ausgesetzt zu sehen wünsche. ... Ich bitte jetzt um Belehrung, wie diese eigne Bewegung der Sterne, vorausgesetzt daß er sie für alle in einer seiner Hypothese günstigen Richtung beweisen könne, auf die Constanten Ihrer Differentialgleichung zurückkomme... Struve schreibt ferner, daß Sie bereit seien, zu einem beliebigen Gebrauch Maedler's Unsinn recht klar auseinander zu setzen - ich brauche wohl nicht zu sagen, daß die Astr. Nachr. es sich zur Ehre rechnen werden, einen solchen Aufsatz aufzunehmen..."

Und an Gauss schreibt Schumacher am folgenden Tage: "Jacobi hat, einem von Struve erhaltenen Briefe zufolge, an seinen Bruder in Petersburg geschrieben 'Ich finde, daß die Herrn Astronomen von dem Unsinn in Mädler's Centralsonne, durch die er die Dorpater Sternwarte verfinstert, mehr wegen der Person eine dunkle (?) Ahndung haben, als die Unermeßlichkeit des Unsinns einsehen. Denn es handelt sich gar nicht darum, daß dies oder jenes falsch ist, sondern es ist, wie wenn Einer aus dem Werthe einer willkührlichen Constante, die bei der Integration einer Differentialgleichung vorkommt, die also eben willkührlich ist,

etwas über die Beschaffenheit der Differentialgleichung selber finden will. Sollte Struve zu einem beliebigen Zwecke wünschen, daß ich ihm darüber klar schreibe, so stehe ich gern zu Diensten.' Die Sprache dieses Artikels ist übertrieben violent, auch scheint mir, trotz Jacobi's großer Autorität, die Vergleichung mit der Differentialgleichung zu hinken, wenn er unter den eignen Bewegungen, die Mädler aufführt, die Constanten versteht. Die durch Integration eingeführten Constanten hängen als ganz willkührlich nicht von der Beschaffenheit der Differentialgleichung ab, die eignen Bewegungen hängen aber allerdings von der Anziehung der Centralsonne ab ..."; er fügt am 9. August noch hinzu: "Jacobi, den ich, wie Sie wissen, um Erläuterung des Gleichnisses mit der Differentialgleichung und den Constanten bat (das man, wie mir scheint, weit einfacher und allgemein verständlicher auf die Aufgabe des Königsberger Schulmeister reduciren könnte, der seinen Kindern als Ferienarbeit das Problem gegeben hatte, wenn ein & Butter 5 Ggr. kostet, was kostet eine Tonne Heringe?) hat mir darauf wie folgt geantwortet: 'Was die Centralsonne selbst betrifft, so will Herr M. aus Beobachtungen über Größe und Richtung der Geschwindigkeiten der Fixsterne etwas beweisen, das sich auf die anziehenden Massen bezieht. Beides steht aber in gar keinem Zusammenhange. Auf anziehende Kräfte schließen wir bei einer Veränderung der Geschwindigkeit. Wir kennen aber keine Veränderung der eignen Bewegung der Fixsterne, und wenn Bessel in der letzten Zeit etwas davon wahrzunehmen glaubte, so ist doch die Sache noch nicht ausgemacht, auch hat Mädler nirgends auf diese Veränderung Rücksicht genommen. Betrachten wir die Bewegung der Welten der Milchstraße als ein mathematisches Problem, so sind die Orte der Fixsterne und ihre Geschwindigkeiten zu irgend einer Zeit, nebst ihren Massen, die von einander gänzlich unabhängigen Data des Problems, aus denen dann

durch die Gesetze der Anziehung die Orte der Fixsterne zu irgend einer andern Zeit berechnet werden können. Aber zwischen diesen Datis giebt es keinen Zusammenhang und keinen Schluß von dem einen auf die andern. Will man selbst Herrn M.'s herausgebrachte Richtungen als richtig annehmen, so kann man doch daraus nichts über die anziehenden Massen, oder ihren Schwerpunkt schließen.' Später fügt er noch hinzu 'Einer meiner Freunde hat die Bemerkung gemacht, daß die Anziehung einer solchen Milchstraßenschicht gänzlich unbestimmt ist, d. h. ganz von der besondern Anziehung der dem angezogenen Punkte zunächst liegenden Masse abhängt. Könnte man auch solche Anordnung derselben ersinnen, welche ein gegebenes Resultat hervorbringt, so würde jede kleine Aenderung dieser Anordnung eine totale Aenderung der Anziehung hervorbringen, also die Annahme immer in rerum natura unstatthaft sein' ... "

Erst am 2/14. Dezember erhält Jacobi von seinem Bruder eine Antwort auf seine Auslassungen:

"Dein Mädler-Brief hatte in der Classe viel Aufsehen erregt. Er ist abgedruckt aber hernach unterdrückt worden. angeblich weil Graf Ouvaroff die Protection, die er früher Mädler habe angedeihen lassen, nicht so plötzlich und auf so fulminante Weise wollte desavouirt sehen. Die Sache ist aber so viel interessanter, denn jeder theilt dem andern unter dem Siegel der Verschwiegenheit den Inhalt dieses Briefes mit. Theils durch List, theils durch Überredungskunst habe ich mir 2 Abdrücke dieses Briefes verschafft, welche ich meinen Nachkommen hinterlassen werde, welche in etwa 100 Jahren diese Briefe an einen Engländer für eine enorme Summe zu verkaufen, testamentlich verpflichtet werden. Indeß habe ich Fuss auf die Hostie zuschwören müssen, bei Lebzeiten keinen Mißbrauch mit diesem Briefe zu treiben . . . Du wirst von einer Entdeckung gehört haben, die ich so glücklich war zu machen; ich erlaube Dir davon als von etwas Wichtigem zu sprechen, das auch

Jacobi als Mitglied der Akademie in Berlin

den schärfsten Beobachtern entgangen wäre. Wenn Du aber versprichst, recht verschwiegen zu sein, so will ich Dir sagen, daß ich solcher kleinen Münzen noch mehr in meinen Schreibebüchern aufgezeichnet habe. Ich weiß nicht, wie ich es mir aus und zurecht legen soll; ist es Reichthum oder Armseligkeit, welche die Berliner Physiker so gierig nach solcher kleinen Münze macht?"

Nachdem Jacobi seine Vorlesungen am 24. Juli geschlossen, ging er sogleich wieder an die Ausführung seiner längst begonnenen Arbeiten und teilt gelegentlich am 1. August Liouville einige Resultate aus seinen vor 14 Jahren angestellten Untersuchungen über die Attraktion eines homogenen dreiachsigen Ellipsoids auf einen außerhalb gelegenen Punkt mit, in denen er zu einem Abschluß der Lösung gelangt ist 1. durch eine Koordinatentransformation, 2. durch eine Substitution, durch welche die Wurzel  $\sqrt{1-m^2\sin^2\beta\cos^2\psi-n^2\sin^2\beta\sin^2\psi}$ , welche in das transformierte Doppelintegral eintritt, rational gemacht wird vermöge der doppelten Substitution  $m \sin \beta \cos \psi = \sin \eta \cos \vartheta$ ,  $n \sin \beta \sin \psi = \sin \eta \sin \vartheta$ ; 3. durch eine neue Koordinatentransformation, deren Deutung eine Reihe geometrischer Theoreme für die Theorie der konfokalen Flächen lieferte. Zugleich berichtet er Liouville, daß die beiden Differentialgleichungen  $\frac{dx}{\sqrt{X}} + \frac{dy}{\sqrt{Y}} + \frac{dz}{\sqrt{Z}} = 0$ ,  $\frac{xdx}{\sqrt{X}} + \frac{ydy}{\sqrt{Y}} + \frac{zdz}{\sqrt{Z}} = 0$ , worin X, Y, Z dieselben Funktionen 6. Grades resp. von x, y, z sind, integriert werden durch eine Gleichung 2. Grades zwischen den zwei Größen x + y + z, yz + xz + xy, und eine andere Gleichung von der Form  $xyz = \alpha(yz + zx + xy)$  $+ \beta(x + y + z) + \gamma$ , worin  $\alpha, \beta, \gamma$  Konstanten, welches nur ein spezieller Fall des in der obenerwähnten Arbeit ausgesprochenen Theorems ist.

In den Herbstferien erschien der erste Band der "Opuscula mathematica" Jacobis mit einer Widmung desselben an König Friedrich Wilhelm IV., welche das Datum des 30. August 1846 trägt, und von der einige Stellen hier hervorgehoben werden mögen, da sie schon in den nächsten Lebensjahren Jacobis eine verhängnisvolle Rolle spielen sollten:

"... Die ersten Mathematiker ihrer Zeit müssen auch bei dem größten Könige sein, lautete der Lagrange berufende Brief des preußischen Ministers ... Euler hat in den 20 Jahren, in denen er der mathematischen Klasse der Berliner Akademie als Direktor vorstand, die gesamte Mathematik umgestaltet. In andern 20 Jahren erhob sein Nachfolger Lagrange die Wissenschaft der mathematischen Analysis durch reiche Entdeckungen und vollendete Form zur glänzendsten Höhe... Aber der Aufschwung der mathematischen Wissenschaft ist damals noch bei uns ein vorübergehender gewesen. Sie war noch kein Lebensbaum geworden, der in dem Boden des preußischen Volkes Wurzel geschlagen ... Mit Lagrange glänzten in Frankreich fünf andere mathematische Namen ersten Ranges, und es schien Frankreich, wie in den Waffen, so auch in der Mathematik unüberwindlich. Nachdem es nun aber auf dem Kriegsfelde glücklich besiegt worden, haben wir, wie in der Sage von der Hunnenschlacht die Schatten in den Lüften fortkämpften, in den Regionen des Gedankens weiter gekämpft, unterstützt von der heiligen Allianz mit dem Geiste, die Preußen geschlossen, und manchen glorreichen Sieg in den Wissenschaften erstritten. Und so rühmen wir uns, auch in der mathematischen Wissenschaft nicht mehr die Zweiten zu sein . . . In der Nähe des Thrones Eurer Majestät sehen wir freudig den weisen Altmeister, den vielgewanderten, in allen Zungen und Weltteilen gepriesenen, dessen Name das Symbol jeder Wissenschaftlichkeit ist . . . Aber ich habe gezweifelt, ob eine aus allen Teilen der Mathematik zusammengefügte Mosaikarbeit sich den Augen Ew. Majestät darstellen dürfte; ob ich nicht die Vollendung einer der von mir vorbereiteten, vielleicht minder unwerten Arbeiten abwarten sollte, welche

Jacobi als Mitglied der Akademie in Berlin.

in mehr künstlerischer Einheit einen Hauptzweig der Wissenschaft abschließen . . ."

In der schon oft hervorgetretenen gereizten Art schreibt Schumacher am 20. November 1846 an Gauss: "Jacobi's mathematische Werke Th. I. habe ich jetzt erhalten und die Vorrede gelesen, von der Humboldt sprach. Sie ist allerdings sehr arrogant, auch hinken seine Vergleichungen mitunter. Er vergleicht die preußischen Mathematiker, die den Kampf, den die Armeen siegreich gegen Frankreich gekämpft haben, jetzt um geistige Eminenz fortkämpfen, mit den Geistern (er sagt 'Schatten der Gefallenen', versteht aber die Geister der Gefallenen, wenn ein simile da sein soll) der in der Hunnenschlacht Gefallenen, die den Kampf in den Wolken fortsetzten, was doch eigentlich nichts als ein Wortspiel mit zwei ganz verschiedenen Bedeutungen des Wortes Geist ist. Ebensowenig sind Wolken und Nebelgebilde ein Terrain für mathematische Wettkämpfe. Es ginge schon eher, wenn er von den Kämpfen der Hegel'schen Schule gegen andere philosophische Schulen gesprochen hätte. – Und so rühmen wir (die Preußen) uns auch in der mathematischen Wissenschaft nicht mehr die zweiten zu sein, wird durch das Verbum sein zu einer lächerlichen Anmaßung. Hätte er gesagt, nicht mehr zu den zweiten zu gehören, so würde man gegen die Behauptung nichts haben können, wenn man auch gewünscht hätte, daß sie von einem Nicht-Preußen ausgesprochen wäre, aber analysiren Sie das, was er gesagt hat, genau. Offenbar heißt, wir rühmen uns nicht mehr die zweiten zu sein, wir waren früher die zweiten, aber wir rühmen uns nicht mehr zu dieser Klasse zu gehören. Weil sie sich rühmen, so müssen sie in keine untere Klasse gekommen sein, sondern in eine obere. Über der zweiten Klasse steht nur die erste Klasse. Er sagt also mit dürren Worten, wir rühmen uns die ersten Mathematiker zu sein. Wenn sie aber die ersten Mathematiker sind, so gehören alle andern Mathematiker zu einer unteren Klasse. Zu den ersten Mathematikern zu gehören, involvirt dagegen schon die Existenz anderer Mathematiker von derselben Klasse." Der Schluß dieses unschönen Briefes ist so gehässig und inferior, daß er hier eine Stelle nicht finden darf.

Gauss antwortet am 23. November nur mit den Worten: "Jacobi's Werke habe ich noch nicht gesehen."

Am Ende der Ferien gestaltete sich der Gesundheitszustand Jacobis wieder derart, daß er die für den Winter angekündigte Vorlesung über die Theorie der Zahlen nicht halten konnte, und kaum imstande war, einige Resultate seiner mechanischen Arbeiten in kurzer Form der Akademie vorzulegen. Am 26. Oktober las er über "Eine neue Theorie der Variation der Konstanten in den Problemen der Mechanik" als ersten Teil der am 23. November vorgelegten Note "Zwei Beispiele zur neuen Methode der Dynamik". Nach Ausführung des Satzes, wie man aus dem vollständigen Integral der Hamiltonschen partiellen Differentialgleichung die Integrale der Bewegungsgleichungen finden kann, wird bemerkt, daß, wenn für das gestörte Problem  $T = U + \Omega + h$ ist, worin  $\Omega$  die Störungsfunktion bedeutet, sich ohne weitere Rechnung die Differentialgleichungen für die gestörten Elemente in der Form  $\frac{d\alpha_i}{dt} = \frac{\partial \Omega}{\partial \beta_i}$ ,  $\frac{d\beta_i}{dt} = -\frac{\partial \Omega}{\partial \alpha_i}$  ergeben. Als Beispiele hierzu werden die elliptische Bewegung eines Planeten um die Sonne und die geodätische Linie auf einem Ellipsoid entwickelt, wie er dies früher schon in Vorlesungen und Briefen ausgeführt hatte.

Im Zusammenhange mit dieser Mitteilung schrieb er am 31. Dezember seinem Bruder: "Als ich in Manchester Hamilton über seine Arbeiten über analytische Mechanik becomplimentirte, sagte er mir, er hätte dieselben wieder bereits vergessen. Dies kam mir höchst sonderbar vor, da er nicht so viel gemacht hatte, um das Recht zu haben, diese Arbeiten zu vergessen... Eine schöne Preisaufgabe für die Petersburger Akademie wäre: Die Hülfsmittel der heutigen Analysis anzugeben, um die reciproke Distanz zweier Planeten, in den Fällen, in welchen beide Excentricitäten oder wenigstens eine keinen sehr erheblichen Werth haben, nach den Vielfachen der excentrischen Anomalieen zu entwickeln . . . Was mich selbst betrifft, so hatte ich seit Juli, wo ich die letzte Abhandlung publicirte, wahrscheinlich in Folge der zu großen und anhaltenden Hitze, der ich mich zu sehr aussetzte, mehrere schlechte Monate. Endlich war ich dazu gekommen, ein großes Memoire über analytische Mechanik zu schreiben, welches Ostrogr. hoffentlich so rühren wird, daß er deßhalb deutsch lernen wird. Eben als ich die letzte Hand daran legen wollte, erging an mich von Humboldt eine Reihe Fragen über griechische Mathematik. Nun ist bei mir das Unglück, daß mich alles gleich in einen Ocean von Untersuchungen stürzt, so daß ich, ohne H.'s Fragen zu beantworten, doch 2 Monate nur unter diesen Studien verbrachte."

Noch vor Schluß des Jahres legte Jacobi der Akademie am 10. Dezember eine Abhandlung "Über die Abbildung eines Ellipsoids auf einer Ebene vor", die jedoch nicht veröffentlicht wurde. Seine Aufzeichnung darüber wurde später aus seinen hinterlassenen Papieren von S. Cohn unter dem Titel "Über die Abbildung eines ungleichachsigen Ellipsoids auf einer Ebene, bei welcher die kleinsten Teile ähnlich bleiben" mitgeteilt. Gauss hatte die Differentialgleichung aufgestellt, auf welche die in den kleinsten Teilen ähnliche Abbildung für beliebige Flächen führt und für diejenigen speziellen Flächen 2. Ordnung integriert, die zugleich Umdrehungsflächen, Kegel oder Zylinder sind; nachdem Jacobi schon vor längerer Zeit in einer in der Akademie gelesenen Note für beliebige Flächen 2. Ordnung die Integration vermittels der Einführung der sogenannten elliptischen Koordinaten als auf Quadraturen zurückführbar bezeichnet hat, entwickelt er hier, indem er in bekannter Weise das Linienelement  $Edu^2 + 2 Fdu dv + Gdv^2$  in zwei Teile zerlegt und jeden Teil zu einem vollständigen Differential macht, die expliziten Formeln. Nachdem er zunächst die Umdrehungsflächen allgemein durch Quadraturen auf einer Ebene abgebildet, geht er zur ähnlichen Abbildung des Ellipsoids und der beiden Hyperboloide über und findet für das erstere, wenn

$$\begin{array}{c} U = \int \sqrt{\frac{\varrho^2 - \varrho_1^2}{(\varrho_1^2 - b^2)(c^2 - \varrho_1^2)}} d\varrho_1, \ \ V = \int \sqrt{\frac{\varrho^2 - \varrho_2^2}{(b^2 - \varrho_2^2)(c^2 - \varrho_2^2)}} d\varrho_2, \\ \text{worin} \ \ \varrho, \ \varrho_1, \ \varrho_2 \quad \text{die elliptischen Koordinaten darstellen,} \end{array}$$

worin  $\varrho$ ,  $\varrho_1$ ,  $\varrho_2$  die elliptischen Koordinaten darstellen,  $U+i\,V=\varphi(p+q\,i)$ , worin  $\varphi$  eine willkürliche Funktion und p, q die rechtwinkligen Koordinaten in der Ebene bedeuten. Durch Einführung zweier Hülfsvariabeln erhält Jacobi die einfachen Formen

$$U = \frac{1}{2} \log e^{2hu} \frac{\Theta(u+a)}{\Theta(u-a)}, \quad V = hv + \frac{1}{2i} \log \frac{H(a+iv)}{H(a-iv)},$$

welche ihm wahrscheinlich in Rücksicht auf die in Aussicht genommenen Veröffentlichungen seiner großen Untersuchungen über das Rotationsproblem die Veranlassung zur Publikation in der Akademie gaben. Es werden schließlich noch einige spezielle Fälle behandelt, in denen z. B. der einen Krümmungslinienschar ein Strahlenbüschel, der andern konzentrische Kreise entsprechen sollen, und diese Resultate für Rotationsellipsoide spezialisiert.

Die häufigen Schwindelanfälle und sonstigen Schwächezustände hinderten Jacobi an anhaltender, intensiver geistiger
Anstrengung, und es war ihm eine erwünschte Beschäftigung
und geistige Erholung, als ihn im Jahre 1846, wie er bereits seinem Bruder mitgeteilt, Humboldt veranlaßte, ihm
über die Mathematik der Hellenen fragmentarische Mitteilungen zu machen, welche dieser zu seinem Kosmos benutzen
wollte. Jacobi sandte ihm ein Manuskript über die Mathematik des klassischen Altertums, namentlich über Euklid,
Archimedes und Apollonius, dessen Lektüre Humboldt großen Genuß gewährte, der sich jedoch später beklagte, "in seiner Unwissenheit davon weniger Gewinn haben

ziehen zu können, als die Ausarbeitung Jacobi Anstrengung gekostet hätte. Es ist das erste mal, daß ich etwas ganz aufgebe." Im Dezember 1846 gab Humboldt die Blätter an Jacobi zurück und ersuchte ihn, dieselben an Schumacher zur Aufnahme in dessen Jahrbuch zu senden, was Jacobi jedoch unterließ; noch kurz vor dessen Tode sandte ihm Humboldt auch die letzten in seinem Besitz befindlichen Blätter nebst den von Jacobi gegebenen Erläuterungen über die Natur der Zahlen zurück. Es mögen aus diesen Blättern, die sich im Nachlasse Jacobis vorfanden, einige Bruchstücke hier veröffentlicht werden, und zwar zunächst einige Zeilen, welche die Überschrift "Aphorismen" tragen:

"1. Erfindung der Kegelschnitte

Proclus sagt: Das vom Schnitt habe beim Plato seinen Anfang genommen, Eudoxus habe es weiter ausgeführt und dabei sich der Analysis bedient. Es ist die Frage ob τὰ περὶ τὴν τομὴν bloß vom Schnitte des geraden Kegels zu verstehen ist, oder überhaupt, daß Plato angeraten, indem Probleme wie die Verdoppelung des Würfels über den Kreis hinausweisen, neue Curven dadurch zu suchen, daß man bekannte oder leicht zu erzeugende Flächen durch Ebenen schneidet. Die Kugel giebt wieder nur Kreise, der gerade Kegel giebt die drei bekannten Kegelschnitte, welche Eratosthenes in seiner Epistel an den König Ptolemaeus die Menechmeische Trias nennt, und sie von den sogenannten krummen Linien (κάμπυλαι γοαμμαί), deren sich Eudoxus bedient habe, unterscheidet. Also hätte Eudoxus noch höhere Curven gekannt? Von diesen werden bestimmt die Schnitte der Speira genannt, welche entsteht, wenn man eine Ebene um eine ihrer Linien dreht und in der Ebene sich einen Kreis denkt, dessen Centrum nicht in der Axe liegt. Solche Fläche, die nach unserer Sprache vom vierten Grade ist, hat schon Archytas in einem unzweifelhaft echten Fragment betrachtet. Archytas aber ist älter, wie Eudoxus jünger als Plato, obgleich beide seine

Zeitgenossen. Es kann also wohl Plato und Eudoxus überhaupt Schnitte von Flächen gelehrt haben, und Menechmus hätte dann speciell Kegelschnitte behandelt. Bis Apollonius haben Aristaeus, Euclides, Conon und Archimedes die Kegelschnitte fast vollständig ausgebildet. Doch scheinen die Hauptlehren vom Brennpunkte, der aber noch keinen Namen hat, vom Apollonius (daß Summe bei der Ellipse oder Differenz der Radii Vectoren bei der Hyperbel constant sind). Störend ist, daß Eutocius sagt, Eudoxus erzähle zwar im Prooemium, er habe krumme Linien angewendet, aber in der Schrift selbst habe er nichts davon gefunden. Eratosthenes hat die Schriften von Eudoxus, Archytas, Menechmus nicht selber vor Augen gehabt, sondern sagt λέγεται. Den Eudoxus muß man sich als den größten und berühmtesten Math. s. Zeit denken; den göttergleichen nennt ihn Eratosthenes. Nach Archimedes' Zeugniß hat er zuerst die Gleichheit zweier Körper (zweier Pyramiden mit gleicher Basis und Höhe) dadurch bewiesen, daß er sie in unendlich viele congruente Theile zerschnitt. Er ist so der Erfinder der Exhaustionsmethode geworden.

2. Diophantus' Zeitalter ist etwas früher zu setzen. Das einzige Citat über seine problemata arithmetica, das verloren gegangen war, hat Nesselmann wieder aufgefunden. S. s. Gesch. d. Algebra S. 245 etc., das einzig brauchbare hierüber. Hienach hat er in der Mitte des 4. Jahrh. unter Julianus Apostata gelebt, und zwar spätestens.

3. Was Keppler mathematisch gebraucht hat, um seine Gesetze zu finden, ist sehr wenig gewesen; auch hat er ja das materielle Organ des Fernrohres nicht nöthig gehabt, das erst Flamsteed in die regelmäßigen Bb. einführte. Tycho hätte recht gut unter den Ptolemäern seine Bb. machen und Keppler daraus mit den Hülfsmitteln des Apollonius seine Gesetze berechnen können. Er hat dazu kein neueres Organ der Algebra gebraucht. Etwas genauere Sinus- oder Chordentafeln als sie seit Hipparch im Gebrauch

waren, konnte er mit den damals bekannten Mitteln sich leicht schaffen.

Ich bemerke bei dieser Gelegenheit, daß der Name die große Syntaxis, den man in der Regel dem Werke des Ptolemaeus giebt, oft eine verkehrte Ansicht desselben herbeigeführt hat. Er selbst nennt es die mathematische Syntaxis, mathematisch heißt aber so viel wie dogmatisch, wie Sextus Empiricus contra mathematicos, d. i. gegen den Dogmatismus in der Philosophie geschrieben hat. Ptolemaeus giebt also ein dogmatisches Lehrsystem, und bestätigt die einzelnen Lehren durch ein Paar aus den bekannten Beobachtungsreihen aufgegriffene Beispiele.

3. Was hat Plato in der Mathematik gewußt und nicht gewußt? Antwort: er hat ungefähr das gewußt, was in den 11 ersten von den 13 Büchern des Euclides steht. Namentlich wird bei ihm die Auflösung der quadratischen Gleichungen durch geometrische Construction neben der Division durch eine solche als eine seit den Pythagoräern bekannte Operation angeführt. Es kommen hier aber immer nur solche quadratische Gleichungen in Betracht, die eine einzige positive Wurzel haben Quadratische Gleichungen mit zwei positiven Wurzeln, und zwar ausdrücklich alle beiden Wurzeln, finden wir erst in Mohammed ben Musa. Die Betrachtung der negativen und imaginären Wurzeln gehört den Italiänern des 16. Jahrh., insbesondere Cardan und Bombelli. Die fünf regelmäßigen Körper hat er gekannt, doch nicht berechnen können, da sie nach dem Zeugnis der Theologumena Arithmetica erst sein Schwestersohn und Nachfolger in der Akademie näher untersucht hat. Dessen Werk über die pythagoräischen Zahlen hat zur einen Hälfte von den wichtigsten mathematischen Lehren, den regelm. K., Polygonal-, Pyramidalzahlen gehandelt, und zur andern Hälfte, — von den wunderbaren Eigenschaften der Zahl 10! Wie gingen doch Wissenschaft und Aberglaube Hand in Hand!

4. Wichtiger als Algebra war für die Fortschritte der Astronomie und die Entdeckung ihrer Gesetze die praktische Rechenkunst Aber die Alten haben es nicht der Mühe werth gehalten, etwas darüber aufzuschreiben. Archimedes in seiner Kreismessung giebt uns mehrere approximative Bestimmungen von Quadratwurzeln in Zahlen, mehrere Ptolemäus, ohne anzugeben, wie sie gefunden sind. Die späten Commentare von Eutocius und Theon sind für uns die einzige Quelle, aus der wir erfahren, wie sie dividirt und Quadratwurzeln ausgezogen haben. Bis zur Ausziehung von Cubikwurzeln scheinen sie es nicht gebracht zu haben. Araber und Inder scheinen in diesen Dingen auch keine Helden gewesen zu sein.

5. Wenn man nach den Anfängen von Algebra, Analysis, Differential- oder Integralrechung u. dgl. frägt, muß man zweierlei unterscheiden, die Erfindung der Gedanken oder des Symbols. Nur mit der Einführung des letzteren geht die eigentliche mathematische Wissenschaft an, die die verschiedenen Gegenstände betrifft. Integrirt haben Eudoxus und Archimedes, aber die Integralrechnung datirt erst von Einführung des  $\int$  und d. Dieses  $\int$  besagt: so oft du mich siehst, denke dir jedesmal die zwei Seiten Betrachtungen, welche Archimedes hier anstellen würde. Man kann hiedurch also ein Archimedisches Buch auf eine Seite bringen, und eben die hiedurch herbeigeführte leichtere Übersicht wird Mittel der Erfindung, und das, was ein Endziel der Betrachtung war, wird ein Element und als solches durch das Symbol gestempelt. Die Alten haben in ihrer Geometrie viel mehr gerechnet als wir, insbesondere Apollonius, und oft mehr als zu billigen ist und so, daß es fast unausstehlich ist; die geometrische Anschauung findet sich viel mehr bei den Neueren. Aber ihre Symbolik war sehr mangelhaft, wenngleich sie manches durch eine sehr ausgebildete Terminologie ersetzen.

Dreierlei ist das Material ihrer Algebra: die ganze Zahl,

die gerade Linie und die abstracte Größe; so folgen sie nach der Gedankenschwere auf einander. Das 5. Buch des Euclides wird für immer die Basis der allgemeinen Größenlehre bleiben. Aber er ist bei den Verhältnissen stehen geblieben, hat nicht die Producte und Potenzen selbständig gefaßt, sondern sie immer, wo es auf allgemeine Größen ankam, ihnen die Verhältnisse substituirt. Nur in Linien hat er das Product aus zwei oder drei Factoren durch Rechteck und Parallelepipedum oder, wo sie gleich sind, durch Quadrat oder Würfel dargestellt, und das analoge auf ganze Zahlen ausgedehnt. Aber wo höhere Potenzen auch in ganzen Zahlen vorkommen, wird gleich die stetige Proportion angewendet. Erst Diophantus hat selbständige Benennungen und Bezeichnungen für die sechs ersten Potenzen; die Bezeichnungen sind die abgekürzten Namen, was aber ausreicht, um damit Formeln und Gleichungen zu bilden. Inder, Araber, die Italiäner des 16. Jahrhunderts, Vieta selbst sind hierin nicht weiter gegangen. Erst spät wurde der ungeheure Schritt gemacht, den Exponent der Potenz auch durch ein allgemeines Symbol zu bezeichnen. Von der Einführung des Zeichens  $x^{12}$  für die 12. Potenz von xdatirt der Anfang der neueren Analysis. Die Einführung der negativen und imaginären Größen ist das zweite Hauptmoment. Schon Diophantus hat ein Zeichen ∧ für minus eingeführt, und die bekannten Regeln minus  $\times$  minus ist plus, minus imes plus ist minus gegeben, aber er braucht sie nie für sich, sondern nur immer in Verbindung mit positiven. Der Satz, daß es in der Mathematik nur eine einzige Art durch die besonderen Größenverhältnisse der zu Grunde liegenden Data herbeigeführter Unmöglichkeit giebt, nämlich die Gleichung xx + 1 = 0, ist der tiefste der Analysis. Dadurch erhält dies Unmögliche eine bestimmte Form und kann in die Rechnung eingeführt werden. Hiervon datiren fast alle Fortschritte der neueren Zeit, und die Praxis, die lange Zeit sich dagegen gewehrt hat, hat eben

so viel Nutzen daraus gezogen als die Theorie. Die Einführung der periodischen Sinusreihen war ein neuer großer Schritt Euler's. Die Scheu des hauptsächlich numerische Werthbestimmungen bezweckenden Mathematikers vor dem Imaginären war die Ursache, daß Legendre der wichtigste Fortschritt der neueren Analysis, die Einführung der doppelt periodischen Functionen, entgangen ist."

Die weiteren Aufzeichnungen sind in Form von zwei an Humboldt gerichteten sehr langen Briefen enthalten; die diesen Mitteilungen vorausgeschickte umfangreiche Einleitung möge durch eine aus derselben entnommene Stelle allgemeineren Inhaltes hier charakterisiert werden:

"Den mathematischen Betrachtungen soll sich zuerst die Priestercaste der Assyrer, Babylonier, Ägypter in ihrer beschaulichen Muße zugewendet haben. Wenn man aber bedenkt, daß diejenigen hellenischen Weisen, welche am meisten mit den ägyptischen Priestern verkehrt haben sollen, für die Erfindung der ersten Elementarsätze der Geometrie den Göttern Hekatomben opferten, so ist entweder eine vorhellenische mathematische Wissenschaft (worunter ich nicht die auf empirischem Wege gewonnenen Resultate der beobachtenden Astronomie begreife) nicht vorhanden gewesen, oder doch den Hellenen nichts davon bekannt geworden. Aber auch aus der ganzen Zeit der stufenweisen Entwicklung der Mathematik bei den Hellenen während der Blüthe ihrer Bildung bis zur Zeit Alexanders' des Großen, von Thales bis Plato's Schüler Philippos von Mende, bis zu welchem die alten Geschichtschreiber der Mathematik, wie der Peripatetiker Eudemos, ihre Geschichte fortführen, ist nichts in seiner ursprünglichen Form auf uns gekommen, sondern wir kennen von den tiefen mathematischen Arbeiten dieser reichen Zeit nur die bereits in ein System geordneten Resultate. Was davon den einzelnen gebührt, darüber sind uns nur dürftige Berichte übrig geblieben . . . "