Computing iterated derivatives of a function computed with a Runge - Kutta operator
Clara Masse, John Masse and François Ollivier
We define a Runge - Kutta operator for the differential equation y'=-y^2.
> | ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
(1) |
> | ![]() |
![]() ![]() |
(2) |
Derivatives of the Runge - Kutta operator.
> | ![]() |
![]() ![]() ![]() |
(3) |
Derivatives of the actual solution 1/(1+h).
> | ![]() |
![]() ![]() ![]() |
(4) |
Order 2 operator.
> | ![]() |
![]() |
(5) |
> | ![]() |
![]() |
(6) |
> | ![]() |
![]() |
(7) |
> |