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Abstract
The problem of accurately measuring the similar-
ity between graphs is at the core of many appli-
cations in a variety of disciplines. Most existing
methods for graph similarity focus either on local
or on global properties of graphs. However, even if
graphs seem very similar from a local or a global
perspective, they may exhibit different structure at
different scales. In this paper, we present a gen-
eral framework for graph similarity which takes
into account structure at multiple different scales.
The proposed framework capitalizes on the well-
known k-core decomposition of graphs in order
to build a hierarchy of nested subgraphs. We ap-
ply the framework to derive variants of four graph
kernels, namely graphlet kernel, shortest-path ker-
nel, Weisfeiler-Lehman subtree kernel, and pyra-
mid match graph kernel. The framework is not
limited to graph kernels, but can be applied to any
graph comparison algorithm. The proposed frame-
work is evaluated on several benchmark datasets
for graph classification. In most cases, the core-
based kernels achieve significant improvements in
terms of classification accuracy over the base ker-
nels, while their time complexity remains very at-
tractive.

1 Introduction
Graphs are well-studied structures which are utilized to
model entities and their relationships. In recent years, graph-
based representations have become ubiquitous in many appli-
cation domains. For instance, social networks, protein and
gene regulatory networks, and textual documents are com-
monly represented as graphs. Furthermore, in the past years,
graph classification has arisen as an important topic in many
domains such as in Computational Biology [Schölkopf et al.,
2004], in Chemistry [Mahé and Vert, 2009] and in Natural
Language Processing [Nikolentzos et al., 2017b]. For exam-
ple, in Chemistry, we are often interested in predicting the
mutagenicity of a chemical compound by comparing its graph
representation with other compounds of known functionality.

So far, kernel methods have emerged as one of the most ef-
fective tools for graph classification, and have achieved state-

of-the-art results on many graph datasets [Shervashidze et al.,
2011]. Once we define a positive semidefinite kernel func-
tion for the input data, a large family of learning algorithms
called kernel methods [Smola and Schölkopf, 1998] become
available. In more details, kernels are functions that corre-
spond to a dot product in a reproducing kernel Hilbert space,
and which measure the similarity between two objects. Ker-
nel functions do not require their inputs to be represented
as fixed-length feature vectors, and they can also be defined
on structured data such as graphs, trees and strings. Hence,
kernel methods provide a flexible framework for performing
graph classification.

Most graph kernels in the literature are instances of the
R-convolution framework [Haussler, 1999]. These kernels
decompose graphs into their substructures and add up the
pairwise similarities between these substructures. Specifi-
cally, there are kernels that compare graphs based on ran-
dom walks [Gärtner et al., 2003; Vishwanathan et al., 2010;
Sugiyama and Borgwardt, 2015], subtrees [Gärtner et al.,
2003; Mahé and Vert, 2009], cycles [Horváth et al., 2004],
shortest paths [Borgwardt and Kriegel, 2005], and small sub-
graphs [Shervashidze et al., 2009; Kriege and Mutzel, 2012].
Recently, there was a surge of interest in kernels that are
built upon global properties of graphs [Johansson et al., 2014;
Johansson and Dubhashi, 2015; Nikolentzos et al., 2017a]. In
general, these approaches embed the vertices of each graph in
a vector space, and then compare graphs based on these em-
beddings.

Most existing graph kernels can thus be divided into two
classes. The first class consists of kernels that compare local
substructures of graphs (i. e. trees, cycles, graphlets), while
the second class includes kernels that capture global proper-
ties of graphs and are sensitive to the large scale structure
of graphs. Some examples of the second class are the ran-
dom walk based kernels, and the kernels that compare graphs
based on the embeddings of their vertices. Therefore, ex-
isting graph kernels focus mainly on either local or global
properties of graphs. In practice, it would be desirable to
have a kernel that can take structure into account at multiple
different scales [Kondor and Pan, 2016]. Two well-known
kernels that account for that are the Weisfeiler–Lehman sub-
tree kernel [Shervashidze et al., 2011] and the propagation
kernel [Neumann et al., 2016]. However, both approaches
assume node-labeled graphs. Recently, the multiscale Lapla-



cian kernel was introduced to effectively compare structure at
different scales [Kondor and Pan, 2016], while some neural
network architectures were also designed to address the same
problem [Dai et al., 2016].

In this paper, we propose a framework for comparing struc-
ture in graphs at a range of different scales. Our framework is
based on the k-core decomposition which is capable of un-
covering topological and hierarchical properties of graphs.
Specifically, the k-core decomposition builds a hierarchy of
nested subgraphs, each having stronger connectedness prop-
erties compared to the previous. By measuring the similarity
between the corresponding according to the hierarchy sub-
graphs and combining the results, we can build more accurate
measures of graph similarity. More specifically, the contribu-
tions of this paper are threefold:

• We propose a general framework that allows exist-
ing graph similarity algorithms to compare structure in
graphs at multiple different scales. The framework is
based on the k-core decomposition of graphs and is ap-
plicable to any graph comparison algorithm.

• We demonstrate our framework on four graph kernels,
namely the graphlet kernel, the shortest path kernel,
the Weisfeiler-Lehman subtree kernel, and the pyramid
match kernel.

• We evaluate the proposed framework on several bench-
mark datasets from bioinformatics, chemoinformatics
and social networks. In most cases, the variants obtained
from our framework achieve significant improvements
over the base kernels.

The rest of this paper is organized as follows. Section 2
introduces some preliminary concepts and gives details about
graph degeneracy and the k-core decomposition. Section 3
provides a detailed description of our proposed framework for
graph similarity. Section 4 evaluates the proposed framework
on several standard datasets. Finally, Section 5 concludes.

2 Preliminaries
In this section, we first define our notation, and we then intro-
duce the concepts of k-core and degeneracy. We also give de-
tails about the algorithm that extracts the k-cores of a graph.

2.1 Definitions and Notations
Let G = (V,E) be an undirected and unweighted graph
consisting of a set V of vertices and a set E of edges be-
tween them. We will denote by n the number of vertices
and by m the number of edges. The neighbourhood N (v)
of vertex v is the set of all vertices adjacent to v. Hence,
N (v) = {u : (v, u) ∈ E} where (v, u) is an edge be-
tween vertices v and u of V . We denote the degree of ver-
tex v by d(v) = |N (v)|. Given a subset of vertices S ⊆ V ,
let E(S) be the set of edges that have both end-points in S.
Then, G′ = (S,E(S)) is the subgraph induced by S. We use
G′ ⊆ G to denote that G′ is a subgraph of G. The degree of a
vertex v ∈ S, dG′(v), is equal to the number of vertices that
are adjacent to v in G′. A labeled graph is a graph with labels
on vertices and/or edges. In this paper, we will consider two

types of graphs: (1) unlabeled graphs and (2) graphs with la-
beled vertices. For the second type of graphs, given a set of
labels L, ` : V → L is a function that assigns labels to the
vertices of the graph.

2.2 Degeneracy and k-core Decomposition
The k-core decomposition of graphs is a powerful tool for
network analysis and it is commonly used as a measure of
importance and well connectedness for vertices in a broad
spectrum of applications. The study of k-core decomposition
and degeneracy goes back to the 60s. More specifically, the
first definition of a concept related to k-core (coloring num-
ber) was given by Erdős and Hajnal [1966]. The degeneracy
of a graph was later defined by Lick and White [1970]. The
notion of k-core was first introduced by Seidman [1983] to
study the cohesion of social networks. In recent years, the
k-core decomposition has been established as a standard tool
in many application domains such as in network visualization
[Alvarez-Hamelin et al., 2006], in protein function prediction
[Wuchty and Almaas, 2005] and in graph clustering [Giat-
sidis et al., 2014].

More formally, let G be a graph and G′ a subgraph of G
induced by a set of vertices S. Then, G′ is defined to be a k-
core of G, denoted by Ck, if it is a maximal subgraph of G in
which all vertices have degree at least k. Hence, if G′ is a k-
core of G, then ∀v ∈ S, dG′(v) ≥ k. Each k-core is a unique
subgraph of G, and it is not necessarily connected. The core
number c(v) of a vertex v is equal to the highest-order core
that v belongs to. In other words, v has core number c(v) =
k, if it belongs to a k-core but not to any (k + 1)-core. The
degeneracy δ∗(G) of a graph G is defined as the maximum
k for which graph G contains a non-empty k-core subgraph,
δ∗(G) = maxv∈V c(v). Furthermore, assuming that C =
{C0, C1, . . . , Cδ∗(G)} is the set of all k-cores, then C forms a
nested chain:

Cδ∗(G) ⊆ . . . ⊆ C1 ⊆ C0 = G

Since the k-cores of a graph form a nested chain of subgraphs,
the k-core decomposition is a very useful tool for discovering
the hierarchical structure of graphs. Figure 1 depicts an ex-
ample of a graph and its corresponding k-core decomposition.
As we observe, the degeneracy of this graph is δ∗(G) = 3;
thus, the decomposition creates four nested k-core subgraphs,
with the 3-core being the maximal one. The nested structure
of the k-core subgraphs is indicated by the dashed lines. Fur-
thermore, the color on the nodes indicates the core number c
of each vertex.

The popularity of the k-core decomposition stems mainly
from the fact that it can be computed in linear time [Matula
and Beck, 1983; Batagelj and Zaveršnik, 2011]. The algo-
rithm for performing the k-core decomposition of a graph is
illustrated in Algorithm 1. The algorithm runs in O(n+m)
time. The underlying idea is that we can obtain the i-core of
a graph if we recursively remove all vertices with degree less
than i and their incident edges from the graph until no other
vertex can be removed. Since higher-order cores are nested
within lower-order cores, we compute k-cores sequentially
from k = 0 to k = δ∗(G). Therefore, at each iteration, the
algorithm removes the lowest degree vertex and sets its core
number accordingly.
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Figure 1: Example of core decomposition of graph.

Algorithm 1 k-core Decomposition

Input: A graph G = (V,E)
Output: A set of k-cores C
C = {V }
k = minv∈V d(v)
for i = 1 to n do

Let v be the vertex with the smallest degree in G
if d(v) > k then

add V to C
k = d(v)

end if
V = V \ {v}

end for

3 Degeneracy Framework
In this Section, we propose a new framework for graph simi-
larity that is based on the concept of k-core, and we show how
existing graph kernels can be plugged into the framework to
produce more powerful kernels.

3.1 Core-based Graph Kernels
We next propose a framework for obtaining variants of ex-
isting graph kernels. Since the framework utilizes the k-core
decomposition, we call the emerging kernels core variants of
the base kernels. The proposed framework allows the com-
parison of the structure of graphs at multiple different scales
as these are expressed by the graphs’ k-cores.

The intuition of using the k-core algorithm to decompose
a graph is that internal cores are more important compared
to external cores. Hence, they are more likely to reveal in-
formation about the class label of the graph compared to ex-
ternal cores. This is by no means implausible since inter-
nal cores correspond to subgraphs of high density. As men-
tioned above, the k-core decomposition is typically used to
identify areas of increasing connectedness inside the graph.
In almost all graphs, density is an indication of importance
[Lee et al., 2010]. For example, in protein-protein interaction
networks, dense subgraphs may correspond to protein com-
plexes. Hence, we expect that by decomposing graphs into

Algorithm 2 Core-based Kernel

Input: A pair of graphs G and G′
Output: Result of the kernel function val
val = 0
δ∗min = min

(
δ∗(G), δ∗(G′)

)
Let Ci, C ′i be the i-cores of G,G′, for i = 0, . . . , δ∗min
for i = δ∗min to 0 do
val = val + kernel(Ci, C

′
i)

end for

subgraphs of increasing importance, we will be able to cap-
ture their underlying structure, and compare them effectively.

We next introduce the degeneracy framework for deriving
core variants of existing kernels.
Definition 1. Let G = (V,E) and G′ = (V ′, E′) be two
graphs. Let also k be any kernel for graphs. Then, the core
variant of the base kernel k is defined as

kc(G,G
′) = k(C0, C

′
0)+k(C1, C

′
1)+ . . .+k(Cδ∗min

, C ′δ∗min
)

(1)
where δ∗min is the minimum of the degeneracies of the two
graphs, and C0, C1, . . . , Cδ∗min

and C ′0, C
′
1, . . . , C

′
δ∗min

are
the 0-core, 1-core,. . ., δ∗min-core subgraphs of G and G′ re-
spectively.

In the following, we will prove the validity of the core vari-
ants produced by our framework.
Theorem 1. Let the base kernel k be any positive semidefinite
kernel on graphs. Then, the corresponding core variant kc of
the base kernel k is positive semidefinite.

Proof. Let φ be the feature mapping corresponding to the
base kernel k

k(G,G′) = 〈φ(G), φ(G′)〉

Let gi(·) be a function that removes from the input graph all
vertices with core number less than i and their incident edges.
Then, we have

k(Ci, C
′
i) =

〈
φ(gi(G)), φ(gi(G

′))
〉

Let us define the feature mapping ψ(·) as φ(gi(·)). Then we
have

k(Ci, C
′
i) = 〈ψ(G), ψ(G′)〉

hence k is a kernel onG andG′ and kc is positive semidefinite
as a sum of positive semidefinite kernels.

Given two graphs G,G′ and a base kernel k, the steps of
computing the core variant of k are given in Algorithm 2.

The above definition provides a framework for increas-
ing the expressive power of existing graph kernels. In con-
trast to other existing frameworks, the proposed framework
is not limited to R-convolution kernels [Yanardag and Vish-
wanathan, 2015] or to node-labeled graphs [Shervashidze et
al., 2011]. Furthermore, it should be mentioned that the pro-
posed framework is not even restricted to graph kernels, but
can be applied to any algorithm that compares graphs. Hence,
it can serve as a generic tool applicable to the vast literature
of graph matching algorithms [Conte et al., 2004].



3.2 Computational Complexity
The proposed framework takes into account structure at dif-
ferent scales, yet it remains an interesting question how it
compares to base kernels in terms of runtime complexity. Its
computational complexity depends on the complexity of the
base kernel and the degeneracy of the graphs under com-
parison. More specifically, given a pair of graphs G,G′
and an algorithm A for comparing the two graphs, let OA
be the time complexity of algorithm A. Let also δ∗min =
min

(
δ∗(G), δ∗(G′)

)
be the minimum of the degeneracies of

the two graphs. Then, the complexity of computing the core
variant of algorithm A is Oc = δ∗minOA. It is well-known
that the degeneracy of a graph is upper bounded by the max-
imum of the degrees of its vertices and by the largest eigen-
value of its adjacency matrix λ1. Since in most real-world
graphs it holds that λ1 � n, it also holds that δ∗max � n, and
hence, the time complexity added by the proposed framework
is relatively low.

3.3 Dimensionality Reduction Perspective
The k-core decomposition can also be seen as a method for
performing dimensionality reduction on graphs. Given the
i-cores Ci, i = 1, . . . , δ∗(G) of a graph G, each core Ci
can be considered as an approximation of the graph where
features of low importance (i. e. vertices belonging to low-
order cores and their incident edges) have been removed from
the graph. The approximation error can be computed by the
Frobenius norm of the difference of the adjacency matrices
of the two graphs er = ||A − Ai||F where A,Ai are the
adjacency matrices of graph G and its i-core respectively.

In cases where the input graphs are very large, the running
time of high-complexity algorithms is prohibitive. For exam-
ple, computing the shortest path kernel on the D&D dataset
takes almost 1 hour. In such cases, we can take advantage of
the k-core decomposition to effectively prune a large num-
ber of vertices from the input graphs by retaining only their
high-order cores. Then, it may be possible to employ a high-
complexity algorithm. For example, by replacing the graphs
contained in the D&D dataset with their 3-cores, we managed
to compute the core variant of the shortest path kernel in less
than 5 minutes and to achieve accuracy comparable to the best
performing algorithms (avg. acc = 77.92).

3.4 Base Kernels
We apply the proposed framework to the following four graph
kernels:
(1) graphlet kernel (GR) [Shervashidze et al., 2009]: The
graphlet kernel counts identical pairs of graphlets (i. e. sub-
graphs with k nodes where k ∈ 3, 4, 5) in two graphs.
(2) shortest path kernel (SP) [Borgwardt and Kriegel, 2005]:
The shortest path kernel counts pairs of shortest paths in two
graphs having the same source and sink labels and identical
length.
(3) Weisfeiler-Lehman subtree kernel (WL) [Shervashidze
et al., 2011]: The Weisfeiler-Lehman subtree kernel for a
number of iterations counts pairs of matching subtree patterns
in two graphs, while at each iteration updates the labels of the
vertices of the two graphs.

(4) pyramid match graph kernel (PM) [Nikolentzos et al.,
2017a]: The pyramid match graph kernel first embeds the ver-
tices of the input graphs in a vector space. It then partitions
the feature space into regions of increasingly larger size and
takes a weighted sum of the matches that occur at each level.

For some base kernels, one might be able to exploit the
fact that high-order cores are contained into lower-order cores
in order to perform some computations only once instead of
repeating them for all cores. One example of such a base
kernel is the graphlet kernel. Given two cores of a graph Ci
and Cj with i < j, all the graphlets found in Cj will also be
present in Ci.

4 Experiments and Evaluation
In this section, we first describe the datasets that we used for
our experiments. We next give details about the experimental
settings. We last report on the performance of the base kernels
and the core variants.

4.1 Datasets
We evaluated the proposed framework on standard graph
classification datasets derived from bioinformatics and
chemoinformatics (MUTAG, ENZYMES, NCI1, PTC-MR,
D&D), and from social networks (IMDB-BINARY, IMDB-
MULTI, REDDIT-BINARY, REDDIT-MULTI-5K, REDDIT-
MULTI-12K)1. Note that the social network graphs are unla-
beled, while all other graph datasets come with vertex labels.

4.2 Experimental Setup
To perform graph classification, we employed a C-Support
Vector Machine (SVM) classifier and performed 10-fold
cross-validation. The whole process was repeated 10 times
for each dataset and each method. The parameter C of the
SVM was optimized on the training set only.

All kernels were written in Python2. The parameters of
the base kernels and their corresponding core variants were
selected using cross-validation on the training dataset. We
chose parameters for the graph kernels as follows. For the
graphlet kernel, on labeled graphs, we count all connected
graphlets of size 3 taking labels into account, while on unla-
beled graphs, we sample 500 graphlets of size up to 6. For
the Weisfeiler-Lehman subtree kernel, we chose the number
of iterations h from {4, 5, 6, 7}. For the pyramid match ker-
nel, the dimensionality of the embeddings d was chosen from
{4, 6, 8, 10}, while the number of levels L was chosen from
{2, 4, 6}.

We report in Table 1 average prediction accuracies and
standard deviations. Core variants with statistically signifi-
cant improvements over the base kernels are shown in bold
as measured by a t-test with a p value of ≤ 0.05. We also
report in Table 2 the time required for computing the kernel
matrix of each core variant relative to the time required for

1The datasets, further references and statistics are available
at https://ls11-www.cs.tu-dortmund.de/staff/
morris/graphkerneldatasets

2Code available at https://www.lix.polytechnique.
fr/˜nikolentzos/code/core_framework.zip



METHOD

DATASET MUTAG ENZYMES NCI1 PTC-MR D&D

GR 69.97 (± 2.22) 33.08 (± 0.93) 65.47 (± 0.14) 56.63 (± 1.61) 77.77 (± 0.47)
CORE GR 82.34 (± 1.29) 33.66 (± 0.65) 66.85 (± 0.20) 57.68 (± 1.26) 78.05 (± 0.56)
SP 84.03 (± 1.49) 40.75 (± 0.81) 72.85 (± 0.24) 60.14 (± 1.80) 77.14 (± 0.77)
CORE SP 88.29 (± 1.55) 41.20 (± 1.21) 73.46 (± 0.32) 59.06 (± 0.93) 77.30 (± 0.80)
WL 83.63 (± 1.57) 51.56 (± 2.75) 84.42 (± 0.25) 61.93 (± 2.35) 79.19 (± 0.39)
CORE WL 87.47 (± 1.08) 47.82 (± 4.62) 85.01 (± 0.19) 59.43 (± 1.20) 79.24 (± 0.34)
PM 80.66 (± 0.90) 42.17 (± 2.02) 72.27 (± 0.59) 56.41 (± 1.45) 77.34 (± 0.97)
CORE PM 87.19 (± 1.47) 42.42 (± 1.06) 74.90 (± 0.45) 61.13 (± 1.44) 77.72 (± 0.71)

METHOD

DATASET IMDB IMDB REDDIT REDDIT REDDIT
BINARY MULTI BINARY MULTI-5K MULTI-12K

GR 59.85 (± 0.41) 35.28 (± 0.14) 76.82 (± 0.15) 35.32 (± 0.09) 22.68 (± 0.18)
CORE GR 69.91 (± 0.19) 47.34 (± 0.84) 80.67 (± 0.16) 46.77 (± 0.09) 32.41 (± 0.08)
SP 60.65 (± 0.34) 40.10 (± 0.71) 83.10 (± 0.22) 49.48 (± 0.14) 35.79 (± 0.09)
CORE SP 72.62 (± 0.59) 49.43 (± 0.42) 90.84 (± 0.14) 54.35 (± 0.11) 43.30 (± 0.04)
WL 72.44 (± 0.77) 51.19 (± 0.43) 74.99 (± 0.57) 49.69 (± 0.27) 33.44 (± 0.08)
CORE WL 74.02 (± 0.42) 51.35 (± 0.48) 78.02 (± 0.23) 50.14 (± 0.21) 35.23 (± 0.17)
PM 68.53 (± 0.61) 45.75 (± 0.66) 82.70 (± 0.68) 42.91 (± 0.42) 38.16 (± 0.19)
CORE PM 71.04 (± 0.64) 48.30 (± 1.01) 87.39 (± 0.55) 50.63 (± 0.50) 42.89 (± 0.14)

Table 1: Classification accuracy (± standard deviation) of the graphlet kernel (GR), shortest path kernel (SP), Weisfeiler-Lehman subtree
kernel (WL), pyramid match kernel (PM) and their core variants on the 10 graph classification datasets. Core variants with statistically
significant improvements over the base kernels are shown in bold as measured by a t-test with a p value of ≤ 0.05.

computing the kernel matrix of its base kernel as measured
on a 3.4GHz Intel Core i7 with 16Gb of RAM.

4.3 Results
We begin our experiments by comparing the base kernels
with their core variants. Table 1 demonstrates that the pro-
posed framework improves the classification accuracy of ev-
ery base kernel on almost all datasets. More specifically, the
core variants outperformed their base kernels on 37 out of the
40 experiments. It should be mentioned that the difference in
performance between the core variants and their base kernels
was larger on the social interaction datasets compared to the
bioinformatics and chemoinformatics datasets. The obtained
results confirm our intuition that the densest areas of graphs
are the most important. Furthermore, the results show that
the hierarchy of nested subgraphs generated by the k-core de-
composition allows existing algorithms to compare structure
in graphs at multiple different scales. On most datasets, the
increase in performance of the GR, SP and PM kernels due to
the use of the proposed framework is very large. Specifically,
core GR improved by more than 10% the accuracy attained
by the GR kernel on 4 datasets. Conversely, core WL yielded
in general only slightly better accuracies compared to its base
kernel. The WL kernel builds a summary of the neighbor-
hood of each vertex. Our intuition is that the local neighbor-
hood of a vertex in a k-core is not dramatically different from
its neighbourhood in the graph. Hence, for small values of
the parameter h of WL, the summaries that are generated in a
k-core are very similar to those generated in the whole graph

and do not thus provide much additional information.
In terms of runtime, we can observe that in most cases, the

extra computational cost required to compute the core variant
of a kernel is negligible. We computed the average degen-
eracy δ∗ave of the graphs contained in each dataset (shown in
Table 2), and we observed that the running time is very re-
lated to its value. On the IMDB-BINARY and IMDB-MULTI
datasets, computing the core variant requires more than 6
times the time of computing the base kernels. However, even
that increase in running time is by no means prohibitive. It
is also interesting to note that the extra computational cost
comes with a significant improvement in accuracy.

We next investigate why the core variants lead to greater
improvements on the social interaction datasets compared to
the bioinformatics and chemoinformatics datasets. We at-
tribute this difference in the behavior of the core variants to
the underlying structure of the two types of graphs. Figure 2
illustrates the degree distribution of the D&D and REDDIT-

BINARY datasets. We observe that the latter follows the well-
known power-law distribution while the former does not. We
should mention that we have observed almost identical behav-
ior on the other bioinformatics/chemoinformatics and social
interaction datasets, and the plots were omitted for illustration
purposes. We can safely assume that the higher-order cores of
the graphs of the REDDIT-BINARY dataset capture the most
informative areas of the graph. Conversely, in graphs with
structure similar to that of the graphs of the bioinformatics
datasets, many nodes may end up sharing the exact same core
number due to the coarse granularity of the k-core decompo-



MUTAG ENZYMES NCI1 PTC-MR D&D IMDB IMDB REDDIT REDDIT REDDIT
BINARY MULTI BINARY MULTI-5K MULTI-12K

SP 1.69X 2.52X 1.62X 1.65X 3.00X 12.42X 17.34X 1.04X 1.05X 1.18X

GR 1.85X 2.94X 1.75X 1.50X 3.44X 7.95X 8.20X 2.24X 2.37X 2.80X

WL 1.76X 2.77X 1.68X 1.62X 3.34X 7.13X 6.84X 1.52X 1.58X 1.54X

PM 1.87X 2.79X 1.68X 1.50X 3.67X 6.92X 6.33X 1.90X 1.98X 1.96X

δ∗ave 2.00 2.98 1.98 1.73 3.96 9.15 8.15 2.33 2.27 2.24

Table 2: Comparison of running times of base kernels vs their core variants. The values indicate the relative increase in running time when
compared to the corresponding base kernel.
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Figure 2: Degree distribution of D&D (left) and REDDIT-BINARY (right) datasets. Both axis of the right figure are logarithmic.
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Figure 3: Classification accuracy of the graphlet kernel (GR) and its
core variant (core GR) on the IMDB-BINARY dataset for the whole
range of k-cores.

sition (leading to small degeneracies).
Finally, we compare the core GR kernel with its base ker-

nel on the whole range of k-cores on the IMDB-BINARY
dataset. For k ∈ {0, . . . , 29}, we compute the GR kernel and
its core variant, perform graph classification, and compare the
achieved accuracies. The obtained results are shown in Fig-
ure 3. We can see that for k < 20, core GR systematically
leads to better accuracies compared to its base kernel. The

same behavior was also observed on most of the remaining
datasets. An interesting observation is that for some k, by
retaining only the internal k-cores of the graphs, we can get
better classification accuracies compared to the 0-cores (i. e.
the input graphs).

5 Conclusion
In this paper, we defined a general framework for improv-
ing the performance of graph comparison algorithms. The
proposed framework allows existing algorithms to compare
structure in graphs at multiple different scales. The conducted
experiments highlight the superiority in terms of accuracy of
the core variants over their base kernels at the expense of only
a slight increase in computational time.
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