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ABSTRACT

We present a novel class of divergences induced by a smooth
convex function called total Jensen divergences that are in-
variant by construction to rotations, a feature inducing a con-
formal factor on ordinary Jensen divergences. We analyze the
relationships between this novel class of total Jensen diver-
gences and the total Bregman divergences. We then define
total Jensen centroids, analyze their robustness, and prove
that the k-means++ initialization that bypasses explicit cen-
troid computations is good enough in practice to guarantee
probabilistically a constant approximation factor to the opti-
mal k-means clustering.

Index Terms— Clustering, centroids, k-means++, Jensen-
Shannon divergence, Burbea-Rao divergences.

1. INTRODUCTION AND PRIOR WORK

A divergence D(p : q) ≥ 0 is a smooth distortion measure
that quantifies the dissimilarity between any two data points p
and q (with D(p : q) = 0 iff. p = q). A statistical divergence
is a divergence between probability (or positive) measures.
One motivation to design new divergence families, like the
proposed total Jensen divergences, is to elicit some statistical
robustness property that allows to bypass the use of costly
M -estimators [1].

1.1. Skew Jensen and Bregman divergences

For a strictly convex and differentiable function F , called the
generator (or potential function), we define a family of pa-
rameterized distortion measures with α 6∈ {0, 1} by:

J ′
F
α (p : q) = (F (p)F (q))α − F ((pq)α),

where (pq)γ = γp + (1 − γ)q = q + γ(p − q) and
(F (p)F (q))γ = γF (p) + (1− γ)F (q) = F (q) + γ(F (p)−
F (q)). The skew Jensen divergences are asymmetric (when
α 6= 1

2 ) and does not satisfy the triangular inequality of met-
rics. For α = 1

2 , we get a symmetric divergence J ′F1
2
(p : q) =

J ′F1
2

(q : p), also called Burbea-Rao divergence [2]. It follows

from the strict convexity of the generator that J ′Fα (p : q) ≥ 0

with equality if and only if p = q (identity of indiscernibles).
The skew Jensen divergences may not be convex divergences:
they are convex iff. F ′′(x) ≥ 1

2F
′′((x + y)/2), ∀x, y ∈ X .

Note that the generator may be defined up to a constant c, and
that J ′λF+c

α (p : q) = λJ ′
F
α (p : q) for λ > 0. By rescaling

those divergences by a fixed factor 1
α(1−α) , we obtain a con-

tinuous 1-parameter family of divergences, called the α-skew
Jensen divergences, defined over the full real line α ∈ R as
follows [4, 2]:

JFα (p : q) =


1

α(1−α)J
′F
α (p : q) α 6= {0, 1},

BF (p : q) α = 0,
BF (q : p) α = 1.

where BF (· : ·) denotes the Bregman divergence [6, 3]:
BF (p : q) = F (p) − F (q) − 〈p− q,∇F (q)〉, with 〈x, y〉 =
x>y denoting the scalar product for vectors. Indeed, the limit
cases of Jensen divergences JFα (p : q) = 1

α(1−α)J
′F
α (p : q)

when α = 0 or α = 1 tend to a Bregman divergence [3, 2]:

lim
α→0

JFα (p : q) = BF (p : q), lim
α→1

JFα (p : q) = BF (q : p).

The skew Jensen divergences are related to statistical di-
vergences between probability distributions: Namely, the
skew Bhattacharrya divergence [2]: Bhat(p1 : p2) =
− log

∫
p1(x)αp2(x)1−αdν(x), between p1 = pF (x|θ1)

and p2 = pF (x|θ2) belonging to the same exponential fam-
ily {pF (x|θ) = exp(〈x, θ〉 − F (θ))}θ amounts to compute
equivalently a skew Jensen divergence on the correspond-
ing natural parameters for the log-normalized function F :
Bhat(pF (x|θ1) : pF (x|θ2)) = J ′

F
α (θ1 : θ2) (ν is the count-

ing measure for discrete distributions and the Lebesgue mea-
sure for continuous distributions).

1.2. Total Bregman divergences

Let us consider an application in medical imaging to motivate
the need for a particular kind of invariance when defining di-
vergences: In Diffusion Tensor Magnetic Resonance Imag-
ing (DT-MRI), 3D raw data are captured at voxel positions
as 3D ellipsoids denoting the water propagation character-
istics [1]. To perform common signal processing tasks like
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Fig. 1. Geometric proof for the total Jensen divergence: The
figure illustrates the two right-angle triangles 4T1 and 4T2.
We deduce that angles b̂ and â are congruent, and we get the
formula on tJα(p : q) = Jα(p : q) cos â.

denoising, interpolation or segmentation tasks, one needs to
define a proper dissimilarity measure between any two such
ellipsoids. Those ellipsoids are mathematically handled as
Symmetric Positive Definite (SPD) matrices [1] that can also
be interpreted as centered 3D Gaussian probability distribu-
tions. In order not to be biased by the chosen coordinate
system for defining those ellipsoids, we ask for a divergence
that is invariant to rotations of the coordinate system. For a
divergence parameterized by a generator function F derived
from the graph of that generator, the invariance under rota-
tions means that the geometric quantity defining the diver-
gence should not change if the original coordinate system is
rotated. This is clearly not the case for the skew Jensen di-
vergences that rely on the vertical axis to measure the ordi-
nal distance. To cope with this drawback, the family of total
Bregman divergences (tB) have been introduced and shown to
be statistically robust [1]. Note that although the traditional
Kullback-Leibler divergence (or its symmetrizations like the
Jensen-Shannon divergence or the Jeffreys divergence [2]) be-
tween two multivariate Gaussians could have been used to
provide the desired invariance, the processing tasks are not
robust to outliers and perform less well in practice [1].

The total Bregman divergence amounts to compute a
scaled Bregman divergence: Namely a Bregman divergence
multiplied by a conformal factor [5] ρB : tBF (p : q) =

BF (p:q)√
1+〈∇F (q),∇F (q)〉

= ρF (q)BF (p : q):

ρF (q) =
1√

1 + 〈∇F (q),∇F (q)〉
. (1)

For example, choosing the generator F (x) = 1
2 〈x, x〉 with

x ∈ X = Rd, we get the total square Euclidean distance:
tE(p, q) = 1

2
〈p−q,p−q〉√

1+〈q,q〉
. That is, ρF (q) =

√
1

1+〈q,q〉 and

BF (p : q) = 1
2 〈p− q, p− q〉 = 1

2‖p − q‖22. Total Bregman
divergences have proven successful in many applications like
Diffusion tensor imaging [1] (DTI) or shape retrieval [7], just

to name a few. The total Bregman divergences can be defined
over the space of symmetric positive definite (SPD) matrices
met in DT-MRI [1]. One key feature of the total Bregman
divergence defined over such matrices is its invariance under
the special linear group SL(d) that consists of d × d matri-
ces of unit determinant: tBF (A>PA : A>QA) = tBF (P :
Q), ∀A ∈ SL(d).

2. TOTAL JENSEN DIVERGENCES

2.1. A geometric definition

The skew Jensen divergence J ′α is defined as the “vertical”
distance between the interpolated point ((pq)α, (F (p)F (q))α)
lying on the line segment [(p, F (p)), (q, F (q))] and the point
((pq)α, F ((pq)α)) lying on the graph of the generator. This
measure is therefore dependent on the coordinate system
chosen for representing the space X since the notion of “ver-
ticality” depends on the coordinate system. To overcome this
limitation, we define the total Jensen divergence by choosing
the unique orthogonal projection of ((pq)α, F ((pq)α) onto
the line ((p, F (p)), (q, F (q))). Let us plot the epigraph of
function F restricted to the vertical plane passing through
distinct points p and q. Let ∆F = F (q) − F (p) ∈ R and
∆ = q − p ∈ X (for p 6= q). Consider the two right-
angle triangles ∆T1 and ∆T2 depicted in Figure 1. Since
Jensen divergence J and ∆F are vertical line segments in-
tersecting the line passing through point (p, F (p)) and point
(q, F (q)), we deduce that the angles b̂ are congruent. Thus
it follows that angles â are also congruent. Now, the cosine
of angle â measures the ratio of the adjacent side over the
hypotenuse of right-angle triangle 4T2. Therefore it follows
that: cos â = ‖∆‖√

〈∆,∆〉+∆2
F

=
√

1

1+
∆2
F

〈∆,∆〉

, where ‖ · ‖ denotes

the L2-norm. In right-triangle 4T1, we furthermore deduce
that tJ′Fα (p : q) = J ′Fα (p : q) cos â = ρF (p, q)J ′Fα (p : q).
Scaling by factor 1

α(1−α) , we end up with the following
theorem:

Theorem 1 The total Jensen divergence tJFα is invariant to
rotations of the coordinate system of X . The divergence is
mathematically expressed as a scaled skew Jensen diver-
gence tJFα (p : q) = ρF (p, q)JFα (p : q), where ρF (p, q) =√

1

1+
∆2
F

〈∆,∆〉

is symmetric and independent of the skew factor

α ∈ R.

Observe that the scaling factor ρF (p, q) is independent of
α, symmetric, and is always less or equal to 1. Furthermore,
observe that the scaling factor depending on both p and q
and is not separable: That is, ρF cannot be expressed as a
product of two terms, one depending only on p and the other
depending only on q: ρF (p, q) 6= ρ′F (p)ρ′F (q). We have
tJF1−α(p : q) = ρF (p, q)JF1−α(p : q) = ρF (p, q)JFα (q : p).
Because the conformal factor is independent of α, we have the



following asymmetric ratio equality: tJFα (p:q)

tJFα (q:p)
=

JFα (p:q)
JFα (q:p)

. By

rewriting ρF (p, q) =
√

1
1+s2 , we interpret the non-separable

conformal factor as a function of the square of the chord slope
s = ∆F

‖∆‖ . The Jensen-Shannon divergence [8] is a separa-
ble Jensen divergence for the Shannon information generator
F (x) = x log x − x: JS(p, q) = 1

2

∑d
i=1(pi log 2pi

pi+qi
+

1
2

∑d
i=1 qi log 2qi

pi+qi
) that is equivalent to JF

α= 1
2

(p : q) with

F (x) =
∑d
i=1 xi log xi. Let tJS denotes the total Jensen-

Shannon divergence. Although the Jensen-Shannon di-
vergence is symmetric, it is not a metric since it fails the
triangular inequality. However, its square root

√
JS(p, q)

is a metric [9]. But the square root of the total Jensen-
Shannon divergence is not a metric. It suffices to report a
counter-example as follows: Consider the three points of the
1-probability simplex p = (0.98, 0.02), q = (0.52, 0.48) and
r = (0.006, 0.994). We have d1 =

√
tJS(p, q) ' 0.351,

d2 =
√

tJS(q, r) ' 0.396 and d3 =
√

tJS(p, r) ' 0.790.
The triangular inequality fails because d1 + d2 < d3. The
triangular inequality deficiency is d3 − (d1 + d2) ' 0.042.

2.2. Total Jensen/Bregman divergences

Although the underlying rationale for deriving the total
Jensen divergences followed the same principle of the total
Bregman divergences (i.e., replacing the “vertical” projection
by an orthogonal projection), the total Jensen divergences
do not coincide with the total Bregman divergences in limit
cases: Indeed, in the limit cases α ∈ {0, 1}, we have:

lim
α→0

tJFα (p : q) = ρF (p, q)BF (p : q) 6= ρF (q)BF (p : q),

lim
α→1

tJFα (p : q) = ρF (p, q)BF (q : p) 6= ρF (p)BF (q : p),

since ρF (p, q) 6= ρF (q). Thus when p 6= q, the total
Jensen divergence does not tend in limit cases to the to-
tal Bregman divergences. However, by using a Taylor ex-
pansion with exact Lagrange remainder, we write F (q) =
F (p) + 〈q − p,∇F (ε)〉, with ε ∈ [p, q] (assuming wlog.
p < q). That is, ∆F = F (q) − F (p) = 〈∇F (ε),∆〉.
For univariate divergences, have the squared slope index:
s2 =

∆2
F

∆2 = (F ′(ε))2 since ∆F = ∆F ′(ε). For multi-
parameter divergences, 〈∆,∇F (ε)〉 = ‖∇F (ε)‖‖∆‖ cosφ
where φ denotes the angle between the vector ∆ and ∇F (ε),
and the slope is equal to ‖∇F (ε)‖2 cos2 φ.

Therefore, in 1D, when p ' q, we have ρF (p, q) ' ρF (q),
and the total Jensen divergence tends to the total Bregman
divergence for any value of α. Indeed, in that case, the
1D Bregman/Jensen conformal factors match: ρF (p, q) =

1√
1+(F ′(ε))2

= ρF (ε), for ε ∈ [p, q]. We find explicitly the

value of ε: ε = (F ′)−1
(

∆F

∆

)
= (F ∗)′

(
∆F

∆

)
, where F ∗

is the Legendre convex conjugate, see [2]. This is the ex-
pression of a Stolarsky mean [10] of p and q for the strictly

monotonous function F ′. Therefore when p → q, we have
limp→q

∆F

∆ = F ′(q) and the total Jensen divergence con-
verges to the total Bregman divergence.

The total Jensen divergence tJFα (p : q) is equivalent
to a Jensen divergence for the convex generator G(x) =

ρF (p, q)F (x): tJFα (p : q) = J
ρJ (p,q)F
α (p : q).

3. CENTROIDS AND ROBUSTNESS ANALYSIS

3.1. Total Jensen centroids

Thanks to the invariance to rotations, total Bregman diver-
gences proved highly useful in applications (see [1, 7]) due
to the statistical robustness of their centroids. The confor-
mal factors play the role of regularizers. Robustness of the
centroid, defined as a notion of centrality robust to “noisy”
perturbations, is studied using the framework of the influence
function [11]. Similarly, the total skew Jensen (right-sided)
centroid cα is defined for a finite weighted point set as the
minimizer of the following loss function:

Lα(x;w) =

n∑
i=1

witJ
F
α (pi : x), cα = arg min

x∈X
Lα(x;w),

where wi ≥ 0 are the normalized point weights (with∑n
i=1 wi = 1). The left-sided centroids c′α are obtained

by minimizing the equivalent right-sided centroids for α′ =
1 − α: c′α = c1−α (recall that the conformal factor does
not depend on α). Therefore, we consider the right-sided
centroids in the remainder. We consider c(t) (initialized
with the barycenter c(0) =

∑
i wipi) given. This allows

us to consider the following simpler minimization prob-
lem: c = arg minx∈X

∑n
i=1 wi × ρF (pi, c

(t))JFα (pi : x).

Let w(t)
i = wi×ρF (pi,c

(t))∑
j wj×ρF (pj ,c(t))

, be the updated renormalized
weights at stage t. We minimize:

c = arg min
x∈X

n∑
i=1

w
(t)
i JFα (pi : x).

This is a convex-concave minimization procedure [12] (CCCP)
that can be solved iteratively until it reaches convergence [2]
at c(t+1) (in practice, we need to implement a threshold).
That is, we iterate the following formula [2] a given number
of times k:

c
(t+1)
l+1 ← (∇F )−1

(
n∑
i=1

w
(t)
i ∇F ((1− α)c

(t+1)
l + αpi)

)
,

with c
(t+1)
0 = c(t). We repeat the (1) reweighting and

(2) CCCP iterations until the loss function improvement
Lα(x;w) goes below a prescribed threshold. Although the
CCCP algorithm is guaranteed to converge monotonically to
a local optimum, the two steps weight update/CCCP does not
provide anymore the monotonous convergence as we have
attested in practice.



3.2. Jensen centroids: Robustness analysis

The centroids defined with respect to the total Bregman di-
vergences have been shown to be robust to outliers what-
ever the chosen generator [1]. We first analyze the robust-
ness for the symmetric Jensen divergence (for α = 1

2 ). We
investigate the influence function [11] i(y) on the centroid
when adding an outlier point y with prescribed weight ε > 0.
Without loss of generality, it is enough to consider only two
points: One outlier with ε mass and one inlier with the re-
maining mass. Let us add an outlier point y with weight ε
onto an inliner point p. Let x̄ = p and x̃ = p + εz de-
note the centroids before adding y and after adding y. z =
z(y) denotes the influence function. For sake of simplic-
ity, we drop in the remainder the F notations in divergences.
The Jensen centroid minimizes (we can ignore dividing by
the renormalizing total weight inlier+outlier: 1

1+ε ): L(x) ≡
J(p, x) + εJ(x, y). The derivative of this energy is D(x) =
L′(x) = J ′(p, x) + εJ ′(y, x). The derivative of the Jensen
divergence is given by (not necessarily a convex distance):
J ′(h, x) = 1

2f
′(x) − 1

2f
′ (x+h

2

)
, where f is the univariate

convex generator and f ′ its derivative. For the optimal value
of the centroid x̃, we haveD(x̃) = 0, yielding: (1+ε)f ′(x̃)−(
f ′
(
x̃+p

2

)
+ εf ′

(
x̃+y

2

))
= 0. Using Taylor expansions

on x̃ = p + εz (where z = z(y) is the influence function)
on the derivative f ′, we get f ′(x̃) ' f ′(p) + εzf ′′(p) and
(1+ε)(f ′(p)+εzf ′′(p))−

(
f ′(p) + 1

2εzf
′′(p) + εf ′

(
p+y

2

))
(ignoring the term in ε2 for small constant ε > 0 in the Taylor
expansion term of εf ′.) Thus we get the following mathe-
matical equality: z((1 + ε)εf ′′(p) − εz/2f ′′(p)) = f ′(p) +
εf ′
(
p+y

2

)
− (1 + ε)f ′(p). Finally, we get the expression of

the influence function z = z(y) = 2
f ′( p+y

2 )−f ′(p)

f ′′(p) , for small
prescribed ε > 0.

Theorem 2 The Jensen centroid is robust for a strictly con-
vex and smooth generator f if |f ′(p+y2 )| is bounded on the
domain X for any prescribed p.

To illustrate this theorem, consider the Jensen-Shannon with
X = R+, f(x) = x log x − x, f ′(x) = log(x), f ′′(x) =
1/x. We check that |f ′(p+y2 )| = | log p+y

2 | is unbounded
when y → +∞. The influence function z(y) = 2p log p+y

2p
is unbounded when y →∞, and therefore the centroid is not
robust to outliers. Now, consider the Jensen-Burg: X = R+,
f(x) = − log x, f ′(x) = −1/x, f ′′(x) = 1

x2 : We check
that |f ′(p+y2 )| = | 2

p+y | is always bounded for y ∈ (0,+∞):

z(y) = 2p2
(

1
p − 2

p+y

)
When y → ∞, we have |z(y)| →

2p < ∞. The influence function is bounded and the centroid
is robust. We can extend to multi-parameter separable Jensen
divergences.

3.3. Clustering: No closed-form centroid, no cry!

The most famous clustering algorithm is k-means [13] that
consists in first initializing k distinct seeds and then iteratively
assign the points to their closest center, and update the cluster
centers by taking the centroids of the clusters. A breakthrough
was achieved by proving that a randomized seed selection,
k-means++ [14], guarantees probabilistically a constant ap-
proximation factor to the optimal loss. The k-means++ ini-
tialization may be interpreted as a discrete k-means where the
k cluster centers are choosen among the input. This yields(
n
k

)
combinatorial seed sets. Note that k-means is NP-hard

when k = 2 and the dimension is not fixed, but not discrete
k-means [15]. Thus we do not need to compute centroids
to cluster with respect to total Jensen divergences. Skew
Jensen centroids can be approximated arbitrarily finely us-
ing the concave-convex procedure, as reported in [2]. On a
compact domain X , we have ρminJ(p : q) ≤ tJ(p : q) ≤
ρmaxJ(p : q), with ρmin = minx∈X

1√
1+〈∇F (x),∇F (x)〉

and ρmax = maxx∈X
1√

1+〈∇F (x),∇F (x)〉
. We are given a

set S of points that we wish to cluster in k clusters, fol-
lowing a hard clustering assignment. We let tJα(A : y) =∑
x∈A tJα(x : y) for any A ⊆ S. The optimal total hard

clustering Jensen potential is tJopt
α = minC⊆S:|C|=k tJα(C),

where tJα(C) =
∑
x∈S minc∈C tJα(x : c). Finally, the con-

tribution of some A ⊆ S to the optimal total Jensen potential
having centers C is tJopt,α(A) =

∑
x∈A minc∈C tJα(x : c).

Total Jensen seeding picks randomly without replacement
an element x in S with probability proportional to tJα(C),
where C is the current set of centers. When C = ∅, the dis-
tribution is uniform.

Theorem 3 The average potential of total Jensen seed-
ing with k clusters satisfies E[tJα] ≤ 2U2(1 + V )(2 +
log k)tJopt,α, where tJopt,α is the minimal total Jensen
potential achieved by a clustering in k clusters, for some
constants U and V .

Proof is reported in [18].

4. CONCLUSION

We described a novel family of divergences that are invari-
ant by rotations: total skew Jensen divergences. Those di-
vergences scale the ordinary Jensen divergences by a non-
separable conformal factor [5] independent of the skew pa-
rameter, and extend naturally the underlying principle of the
total Bregman divergences [7].
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