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Recently, a large amount of work has been devoted to the study of spectral clustering—a powerful unsu-
pervised classification method. This paper brings contributions to both its foundations, and its applications
to text classification. Departing from the mainstream, concerned with hard membership, we study the
extension of spectral clustering to soft membership (probabilistic, EM style) assignments. One of its key
features is to avoid the complexity gap of hard membership. We apply this theory to a challenging prob-
lem, text clustering for languages having permeable borders, via a novel construction of Markov chains
from corpora. Experiments with a readily available code clearly display the potential of the method,
which brings a visually appealing soft distinction of languages that may define altogether a whole corpus.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is concerned with unsupervised learning, the task
that consists of assigning a set of objects to a set of q >1 so-called
clusters. One of its most prominent toolbox is spectral cluster-
ing, with such a success that its recent developments have been
qualified elsewhere as a “gold rush” in classification [1–9] (and
many others), pioneered by works ranging from spectral graph
theory [10] to image segmentation [11]. Roughly speaking, spectral
clustering consists of finding some principal axes of a similarity
matrix. The subspace they span, onto which the data are pro-
jected, may yield clusters optimizing a criterion that takes into
account both the maximization of the within-cluster similarity, and
the minimization of the between-clusters similarity. The papers
that have so far investigated spectral clustering have two com-
mon points. First, they consider a hard membership assignment
of data: the clusters induce a partition of the set of objects. It is
widely known that soft membership, that assigns a fraction of each
object to each cluster, is sometimes preferable to improve the so-
lution, or for the problem at hand. This is clearly the case of our
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text classification task (Section 6), as words may belong to more than
one language cluster. In fact, this is also the case for the probabilistic
(density estimation) approaches to clustering, pioneered by the pop-
ular expectation maximization method [12]. Their second common
point is linked to the first: the solution of clustering is obtained after
thresholding the spectral clustering output. This is crucial because
in most (if not all) cases, the optimization of the clustering quality
criterion is NP-Hard for the hard membership assignment [11]. To
be more precise, the principal axes yield the polynomial time opti-
mal solution to an optimization problem whose criterion is the same
as that of hard membership (modulo a constant factor), but whose
domain is unconstrained. Hard membership makes it necessary to
fit (threshold) this optimal solution to a constrained domain. Little
is known about the quality of this approximation [13], except for
the NP-hardness of the task. A recent paper has stressed the need
to extend the criteria used on spectral clustering to soft member-
ship [5]. The authors propose to extend the normalized cut criterion
from Ref. [11]. The extension they propose departs from mainstream
probabilistic interpretations of spectral clustering for two reasons.
The first is the criterion used: their criterion aggregates local con-
ductances between clusters, rather than global measures, as earlier
used in the Markov chain interpretation of normalized cuts [6], and
even earlier in the mixing properties of Markov chains [14]. Second,
their algorithm does not directly work on the criterion: it prefers
a relaxed (i.e., modified) criterion better suited to the optimization
technique chosen. Third and last, this technique is not spectral re-
laxation (eigen decomposition), but an iterative bound optimization
scheme, which usually converges to a local optimum.
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Our paper, which focuses on spectral clustering, departs from the
mainstream for the following reasons and contributions. First, we
introduce a new interpretation of spectral clustering for soft mem-
bership assignment, whose solution is spectral relaxation. In this ex-
tended framework, we prove that soft memberships still enjoy the
links with stochastic processes that were previously known for hard
membership [6], which brings a wealth of probabilistic justifications
to this method in terms of stability and conductance of the clus-
ters. The soft decomposition of clusters is located “on top” of those
usually obtained (through the correlations with the axes). Roughly
speaking, soft memberships are distributions that meet a particular
orthogonality condition, and this set of distributions puts emphasis
on two classical components of some (ergodic) Markov chain:

• percolation probabilities between clusters are encoded in its eigen-
values,

• the first cluster is always its stationary distribution.

Second, we provide an application of soft spectral clustering on a
particularly appropriate and challenging problem: cluster words on
corpora whose languages may have permeable borders, i.e., in which
each word may belong to more than one language. Among the very
few attempts to cast spectral clustering to text classification, one of
the first builds the similarity matrix via the computation of cosines
between vector-based representations of words, and then builds a
normalized graph Laplacian out of this matrix to find out the princi-
pal axes [2]. Motivated by the relationships between spectral clus-
tering and stochastic processes, we prefer possibly more natural ap-
proach that fits this matrix to a Markovian stochastic process follow-
ing a popular bigram model [15]. Our approach involves however a
novel construction of a maximum likelihood Markov chain that sat-
isfies two essential properties: it is always suited to spectral decom-
position (this is not the case for arbitrary Markov chains), while it
removes highly undesirable assumptions about the stochastic pro-
cess for our task at hand. Thus, the scope of this result goes beyond
the scope of this paper, as it may be useful for hard spectral cluster-
ing as well. Third and last, we provide experiments with a readily
available program, that clearly display the potential of this method
for visual data mining when speaking of text classification.

Independently of the interest in extending the scope of spectral
clustering, we feel that such results may be interesting because they
tackle the interpretation of the tractable part of spectral clustering,
avoiding the complexity gap that follows after hard membership.
Section 2 summarizes related works on hard spectral clustering; Sec-
tion 3 presents soft spectral clustering; Section 4 discusses the the-
ory; Section 5 gives the theory for its application to text classifica-
tion; Sections 6 and 7 describe experiments and give a final sum-
mary and conclusion. For the sake of readability of the paper, only
the proofs of the main results are in the paper's body. The remaining
ones have been postponed to Appendix A.

2. Hard spectral clustering

This section provides a synthesis of related spectral clustering
works. First we give some definitions. In this paper, calligraphic faces
such asX denote sets and blackboard faces such as S denote subsets
of R, the set of real numbers; whenever applicable, indexed lower
cases such as xi (i = 1, 2, . . .) enumerate the elements of X. Upper
cases like M denote matrices, with mi,j ∈ R being the entry in row
i, column j of M; M� is the transpose of M, tr(M) the trace of M,
and diag(M) is the vector m of its diagonal elements. Boldfaces such
as x denote column vectors, with xi being the ith element of x, and
〈., .〉 denotes the inner product for real-valued vector spaces. We are
given a set V of size |V|=v (|.| denotes the cardinal), together with
a symmetric matrix Wv×v with wi,j�0. We define Dv×v the diagonal

matrix with di,i = di =∑
jwi,j. Fix q >1 some user-fixed integer that

represents the number of clusters to find. The ideal objective would
be to find a mapping Z : V → Sq, with S = {0, 1}, mapping that we
represent by a matrix Z = [z1, z2, . . . , zq] ∈ Sv×q.

Under appropriate constraints, the mapping should minimize a
multiway normalized cuts (MNC) criterion, that is a quantity repre-
senting the sum, for all clusters defined by the mapping Z, of some
ratio of cluster cohesion to cluster size. To define the MNC we make
use of the following symbols:

�k(Z) =
v∑

i,j=1

wi,j(zi,k − zj,k)
2 (1)

Here (1), �k(Z) measures the cut that Z defines betweenthe inside
and the outside of cluster k (the sum of the weight of the crossing
edges).

�k(Z) =
v∑

i=1

z2i,kdi (2)

Here (2), �k(Z) defines a measure of cluster size (the sum of the
weight of all edges outgoing from a point in the cluster).

With the following notations, we define the MNC as:

arg min
Z∈Sv×q

�(Z) =
q∑

k=1

�k(Z)/�k(Z)

s.t. Z�Z positive diagonal

s.t. tr(Z�Z) = v. (3)

Since this does not change the value of �(Z), we suppose without
loss of generality that wi,i = 0,∀1� i�v. The columns of Z are pair-
wise orthogonal, and Z defines a partition of V into q clusters Vk
(where 1�k�q). The clusters that follow from this hard member-
ship assignment are naturally

∀1�k�q, Vk = {vi: zi,k = 1}. (4)

There is at least one reason why clustering gets better as MNC in Eq.
(3) is minimized. Define Pv×v with

P = D−1W . (5)

Then P is row stochastic: pi,j�0(1� i, j�v) and
∑v

j=1pi,j=1(1� i�v).
We can define a (first order) Markov chain M, with state space V,
and transition probability matrix P. SupposeM is ergodic: regardless
of the initial distribution, M settles down over time to a single
stationary distribution p, the solution of P�p= p. Suppose we start
(at t = 0) a random walk with M, from distribution p. Let [Vk]t be
the event that the Markov chain is in cluster k at time t�1. We have
the following important theorem [6].

Theorem 1. We have �(Z) = 2
∑q

k=1Pr([Vk]t+1|[Vk]t) for the parti-
tion defined in Eq. (4).

(The paper [6] actually gives the proof for q=2, yet its extension
is immediate.) Thus, �(Z) sums the probabilities of escaping a cluster
given that the random walk is located inside the cluster: minimizing
�(Z) amounts to partitioning V into “stable” components with re-
spect to M. It is interesting to note here that the criterion proposed
by Dempster et al. to extend �(Z) to q >2 clusters is different, as it
is proportional to

∑
k
=k′Pr([Vk′ ]t+1|[Vk]t).

Unfortunately, theminimization ofMNC is NP-hard, alreadywhen
q= 2 [11]. To approximate this problem, one relaxes the output and
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rewrites the goal as seek [1]:

arg min
Y∈Rv×q

�(Y) =
q∑

k=1

�k(Y)

s.t. Y�DY = I (6)

We say that Y is clusterwise constant iff its rows come from a set of at
most q distinct row vectors. In this case, without loss of generality,
we suppose that identical row vectors in Y are contiguous. The fol-
lowing theorem says that minimizing (3) or (6) constrained to clus-
terwise constant matrices are equivalent. For a proof, we refer e.g., to
Refs. [1,9].

Theorem 2. For any clusterwise constant Y ∈ Rv×q satisfying the con-
straint of Eq. (6), there exists Z ∈ Sv×q satisfying the constraints of Eq.
(3) such that �(Z) = (1/2)�(Y), and reciprocally.

This theorem is important as it explains that the hard clustering
solution naturally arises from the rows of Y (hence our terminology).
In addition, it shows that solving (6) restricted to the subset of clus-
terwise constant matrices is NP-hard; fortunately, the unconstrained
problem (6) is tractable via the following spectral decomposition of
M [1–3,5,6,8,11]: Y is the set of the q column eigenvectors associ-
ated with the smallest eigenvalues of the generalized eigenproblem
(∀1�k�q):D − Wyk = �kDyk, and it follows that

�(Y) = 2
q∑

k=1

�k. (7)

If we suppose, without loss of generality, that eigenvalues are or-
dered, �1��2� · · · ��q, then it easily follows that �1 = 0, associ-
ated with a constant eigenvector y1. People usually discard this first
eigenvector, and keep the following ones to compute Z. The map Z
is obtained either by thresholding Y (sometimes, recursively), or by
running a hard membership clustering algorithm such as q-means
in a subspace spanned by columns of Y. The hope is obviously that
�(Z) is not too large compared to ( 12 )�(Y). The point is that spectral
relaxation finds Y in polynomial time, O(qv3) without algorithmic
sophistication. This is one advocacy for an alternative interpretation
of the output Y.

3. Soft spectral clustering

We now suppose that each object may belong to all clusters in
varying proportions. Define matrix Ỹ by

ỹi,k = diy2i,k. (8)

The following property is immediate: because of Eq. (6), each column
vector ỹk of Ỹ defines a probability distribution over V. Since ỹk is
associated with principal axis k, it seems natural to define it as the
probability to draw vi given that we are inVk, the cluster associated
with the axis. Following the notations of Theorem 1, we thus let

ỹi,k = Pr([vi]t|[Vk]t) (9)

be the probability to pick vi, given that we are in cluster k, at time
t. For all 1�k�q, define matrix P(k) by

p(k)i,j = (wi,jyj,k)/(diyi,k) (10)

Lemma 1. For all 1�k�q, we have Pyk = (1 − �k)yk, ỹ
�
k P

(k) = (1 −
�k)ỹ

�
k , and P(k)1 = (1 − �k)1.

(proof straightforward). Lemma 1 shows that P(k) is not so far
from the transition matrix of someMarkov chainM(k): the sum over

each row does not depend on the row and it is “almost” 1, and dis-
tribution ỹk is “almost” the stationary distribution for P(k). The gap
of �k to reach constraints satisfied by a Markov chain, and the fact
that the entries in P(k) are not all positive, indicate altogether that
P(k) may enclose a little bit more than the Markov chain itself. Let us
make the assumption that it encodes the difference between transi-

tion probabilities akin to those of Markov chains. Suppose that p(k)i,j
is the difference between the probabilities of reaching, respectively,
Vk and Vk in j, given that the random walk is located on i (∀t�0)

p(k)i,j = Pr([vj ∧Vk]t+1|[vi]t) − Pr([vj ∧Vk]t+1|[vi]t) (11)

We now make use of the following assumption, which we call (A),
which states that reaching an object outside cluster k at time t + 1
does not depend on the starting point at time t.

(A) For all 1� i, j�v,

Pr([vj ∧Vk]t+1|[vi ∧Vk]t) = Pr([vj ∧Vk]t+1|[vi]t) (12)

= Pr([vj ∧Vk]t+1|[Vk]t) (13)

We show that, under (A), the probabilistic interpretations given in
Eqs. (9) and (11) to the terms defined in Eqs. (8) and (10) (respec-
tively), allow to give a probabilistic interpretation to the function
�(Y) too. This extends the probabilistic result of Theorem 1 for �(Z)
under hard clustering to �(Y) for soft clustering as well.

Theorem 3. Eqs. (9) and (11) yield under (A): �(Y) = 4
∑q

k=1
Pr([Vk]t+1|[Vk]t).

Proof. For all 1�k�q, we first show that �k/2=Pr([Vk]t+1|[Vk]t).
Bayes rule yields Pr([Vk]t+1|[Vk]t)=Pr([Vk]t+1∧[Vk]t)/Pr([Vk]t).
Now, we have

Pr([Vk]t+1 ∧ [Vk]t) =
∑
i,j

Pr([vj ∧Vk]t+1 ∧ [vi ∧Vk]t)

=
∑
i,j

Pr([vj∧Vk]t+1|[vi∧Vk]t)Pr([vi∧Vk]t),

from which we get

Pr([Vk]t+1|[Vk]t) =
∑
i,j

Pr([vj ∧Vk]t+1|[vi ∧Vk]t)Pr([vi|Vk]t)

=
∑
i,j

Pr([vj ∧Vk]t+1|[vi]t)ỹi,k. (14)

Here, we have made use of Eq. (12) in (A). Now, the axiom of total
probabilities yields

pi,j = Pr([vj ∧Vk]t+1|[vi]t) + Pr([vj ∧Vk]t+1|[vi]t)

This, and Eq. (11), bring altogether Pr([vj∧Vk]t+1|[vi]t)=(1/2)(pi,j−
p(k)i,j ). Finally, we obtain

Pr([Vk]t+1|[Vk]t) = (1/2)
∑
i,j

diy2i,k

(
wi,j
di

−
wi,jyj,k
diyi,k

)

= (1/2)
∑
i,j

wi,jyi,k(yi,k − yj,k)

= (1/2)y�
k (D − W)yk = �k/2 (15)

There remains to sum for all k, and use Eq. (7) to get the statement
of the theorem. �
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An immediate corollary to the theorem is the following one.

Corollary 1. We have 1−�k=Pr([Vk]t+1|[Vk]t)−Pr([Vk]t+1|[Vk]t).

Proof. We use Eq. (15), and obtain 1−�k =1−2Pr([Vk]t+1|[Vk]t),
∀t�0. This brings the statement of the corollary. �

This is consistent with the fact that 1−�k ∈ [−1, 1] [6]. Lemma 1
still holds under Eqs. (8), (11) and Corollary 1. Theorem 3 allows us
to extend to soft membership the links between spectral clustering
and Markov chains that were coined in Ref. [6]: we seek soft clusters
having high stability (there is also a link with the conductance of
clusters, see Ref. [6]). Finally, we remark that the soft membership
solution is significantly different from the hardmembership solution,
as each cluster is now built from the columns of Ỹ , and not from the
rows of Y (Theorem 2).

4. Discussion

The case k = 1 is particular, not only because y1 is constant
[1,3,6,8,11]. It can also be shown from Lemma 1 that ỹ1 =�, the sta-
tionary distribution of an ergodic Markov chainMwhose transitions
aremodeled by Eq. (5).1 This is natural, as this distribution is the one
that best explains the data. On the other hand, there is no percolation
possible fromV1 toV1, which is explained by the fact that �1=0 in

Corollary 1, and by the fact that p(k)i,j =pi,j=Pr([vj∧Vk]t+1|[vi]t). We

call soft clusterV1 the stationary cluster, as it only carries the ergod-
icity information about M. In previous literature, Ref. [2] obtained
some spectral clustering results on distributions observed from a
text corpus; they made a 2D plot on the second and third principal
axes, after having made a prior selection of the most frequent words
to be plotted. Our results on k = 1bring a justification to this, as it
amounts to making a selection of words according to the first cluster
(principal axis). Furthermore, since the first axis encodes the word
frequencies, the next axes, that are 2-2 orthogonal, are not “affected”
anymore by these frequencies.

So far, our probabilistic interpretation of spectral clustering,
which appears in Eq. (8), does not fully integrate the constraint of
Eq. (6), namely Y�DY = I. More precisely, diag(Y�DY)= 1 is a subset
of the constraint that makes it possible to define our distributions in
Eq. (8). The zero elements outside the diagonal also imply that the
distributions have “zero correlation”. This means that, if any two
distributions of the v dimensional probability simplex, say ỹ and ỹ′,
fit to the constraint, then there exists � ∈ {−1,+1}v×2 such that

v∑
i=1

√
ỹiỹ′

i	i,1	i,2 = 0. (16)

Clearly, this constraint does not enforce different distributions.
For example, consider q uniform distributions, and v a power of 2;
using for � any subset of q�v columns of an Hadamard matrix
easily yields zero correlation (16) among any two pairs of these
distributions. In practice of course, the numerical approximations in
computing the eigenvectors may yield non-zero correlations, so this
constraint actually does not really hold. However, for the sake of
completeness, we have wondered to what extent Eq. (16) is hard to
satisfy theoretically. Here is an answer.

1 Actually, when the data considered is a text corpus, this stationary distribution
is the overall frequency distribution of the vocabulary items in the corpus, i.e., the
word frequencies: in fact, since all yi,1 are constant in the first eigenvector of P, all
ỹi,1 are proportional to di (the number of occurrences of a word type 
i) with a
normalization factor. This point is developed later (Section 5).

Theorem 4. Let D be defined as in Section 2, and Y ∈ (R+)v×q such
that diag(Y�DY) = 1. Then, there exists � ∈ {−1,+1}v×q such that

∀1�k 
= l�q, |fk,l(�)|�2
√

〈ỹk, ỹl〉 log(2q2) (17)

with fk,l(�) =∑v
i=1

√
ỹi,kỹi,l	i,k	i,l.

(the proof is in Appendix A, Section A.1). This bound is better
when the inner product is small. Due to Eq. (6), the distributions in Ỹ
generally have very small inner products: either the distributions are
very different from each other, or they are not but in that case, they
are well spread over V (recall that ỹ1 = p). To see why the bound
is small in that latter case, consider two uniform distributions ỹk, ỹl:
we obtain |fk,l(�)| =O(

√
(log q)/v), a tiny real since in general q>v.

Finally, when k >1, there may be masking problems from our

analysis, as the estimators p(k)i,j are not necessarily confined to the in-

terval [−pi,j, pi,j]. Rather than a limit of spectral clustering, we think
that this either follows from the nature of the criterion optimized in
Eq. (6) which may bring such masking problems [16], or it accounts
for a deeper analysis of the problem. At least, our analysis demon-
strates that there is indeed something to drill down from classical
spectral clustering analyses, to bring a probabilistic account to the
tractable part of this powerful method. We note that these eventual
problems are purely theoretical, and have absolutely no experimen-
tal impact, as we do not depict the components of P(k), our repre-
sentations rely only on Ỹ .

5. Maximum likelihood ring text generation

We begin with more definitions. A corpus C is a set of texts,
{T1,T2, . . . ,Tm}, with m the length of the corpus. For all 1�k�m,
text Tk is a string of tokens (occurrences of words or punctuation
marks), Tk = 
k,1
k,2, . . . ,
k,|Tk|, of size/length |Tk|. The size of

the corpus, |C|=n, is the sum of the length of the texts: n=∑m
i=1|Ti|.

The size of a corpus is implicitly measured in words (number of word
occurrences), but it may contain punctuation marks as well. The
vocabulary of C,V, is the set of distinct linguistically relevant words
or punctuation marks, the tokens of which are contained in the texts
of C. The size of the vocabulary is denoted v= |V|. The elements of
V = {v1, v2, . . . , vv} are types: each one is unique and appears only
once in V. For all i, j ∈ {1, 2, . . . , v}, we let ni denote the number of
occurrences of type i in C, and ni,j denote the number of times a
word of type i immediately precedes (left) a word of type j in C.

Suppose that C is generated from a random walk of a Markov
chainM. Perhaps the most intuitive way to compute P is to perform
conventional maximum likelihood out of a popular bigram model
[15], which would yield pi,j = ni,j/ni (folklore). However, there are
at least two reasons not to remain as general. The first is technical:
the eigenvalues of the spectral decomposition of P may be complex,
preventing their soft spectral interpretation. The second is linguistic.
This computation of P is convenient if we make the assumption that
a text is written from the left to the right. This corresponds to our
a priori intuition of speakers of European languages, who have been
taught to read and write in languages where the graphical transcrip-
tion of the linearity of speech is done from left to right. However, a
more thorough reflection on the empirical nature of the problem has
led us to question this approach. Themethod being developed should
be able to work on any type of written language, making no assump-
tion on its transcription conventions. Some languages (including im-
portant literary languages like Hebrew or Arabic) have a tradition of
writing from right to left, and this sometimes goes down to having
the actual stream of bytes in the file also going “from right to left” (in
the file access sense). The new Unicode standard for specifying lan-
guage directionality circumvents this, by allowing the file to always
be coded in the logical order, and managing the visual rendering so
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�k, 1

�k, |Tk|

�k, |Tk|−1

�k, 2

Fig. 1. A “circular” generation of a text Tk makes it possible to eliminate both the
direction for writing C and the choice of the first word written.

that it suits the language conventions, even in the case of mixed-
language texts (i.e., English texts with Hebrew quotes); but large
corpora are still encoded in the old way, and the program should
not be sensitive to this, making no more postulates than necessary.

We have found a convenient approach to eliminate this direc-
tionality dependence. It also has the benefit of removing the depen-
dence in the choice of the first word to write down a text. What we
actually are considering is the likelihood of C as if all of its texts
were read and written in a direction-insensitive way. Let us illus-
trate this by supposing that any text observed in the corpus C can
be represented as a circular object (Fig. 1), where two contiguous
words in the text are represented by two contiguous points on the
circle, and the end of the text loops to the beginning. The unidi-
rectional reading process consists of walking around the circle in a
monotonous direction, starting from a given point (the first word);
its linear projection is the text that has actually been observed. A
direction-insensitive reading process consists of walking around the
circle, starting from any point, and then jumping at every step to a
contiguous point, but in an unspecified direction. Its linear projec-
tion may yield the text that actually was observed, but it also may
yield a great number of other possibilities. What we are doing is,
assuming that we are dealing with the second type of process, and
that the text we have observed is but one of the possible outputs of
a direction-insensitive random walk process.

The following theorem gives the new max-likelihood transition
matrix P.

Theorem 5. With the circular writing approach, the maximum like-
lihood transition matrix P is defined by pi,j = (ni,j + nj,i)/(2ni), with
1� i, j�v.

(proof in Appendix A, Section A.2). Now, if we define Wv×v with
wi,j = (ni,j +nj,i)/2, and Dv×v the diagonal matrix with di,i =di =ni, it
follows that P is the product of these two symmetric matrices, and
it satisfies (5). Its spectral decomposition has only real eigenvalues,
and P fits well to spectral clustering. Furthermore, the circular way to
write down the texts of C has another advantage: M is irreducible.
Let us make the assumption that M is also aperiodic. This is a mild
assumption: our way to model the corpus implies that there exists
loops of length 2 for any type (since after any step leading fromword

i to word 
j, the process may go back to 
i). Assume that there
exists at least one type v� with two special occurrences separated
by an even number of other words in the text. This yields a direct
loop �� of odd length for v�. Now, for any other word 
, we can
generate a loop of odd length, by going from 
 to whichever special
occurrence of v�, then following ��, and finally returning to 
 by
the same path. Thus aperiodicity follows from a simple assumption
about one type, and it is all the more likely to happen as the corpus
is big. Taken together, irreducibility and aperiodicity now imply that
M is ergodic, and it is easy to check that its stationary distribution
satisfies �i = ni/n. Whenever the state space V of M comes from
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Fig. 2. A toy maximum likelihood Markov chain M for language “GABU”.
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Fig. 3. The two clusters induced by our spectral analysis of M in Fig. 2. Disks
display the relative proportions of words in each cluster, and arrows denote the
transition probabilities computed from Corollary 1. Note that transitions confirm
the ergodicity of M.

more than a single language, soft spectral clustering may provide a
basis for their smooth discrimination.

Before embarking into experiments displaying how this discrim-
ination occurs, the theory developed here for text generation may
be used to obtain an appealing interpretation of the material of
Section 3.

Consider a simple toy language, called “GABU”, with vocabulary
V = {GA, BU}, whose transition matrix P is parameterized by a real
“temperature” parameter � ∈ R+:

P =

⎡⎢⎣
1
2

+ 1
2 + �

1
2

− 1
2 + �

1
2

− 1
2 + �

1
2

+ 1
2 + �

⎤⎥⎦ . (18)

Fig. 2 displays the associated Markov chainM. We assume the same
number of GA's and BU's inT, so that D=(n/2)I. One can check that:

y1 = [1/
√
n, 1/

√
n]�, �1 = 0, (19)

y2 = [1/
√
n,−1/

√
n]�, �2 = 1 − 2/(2 + �) (20)

Corollary 1 tells us from Eq. (20) that

Pr([V2]t+1|[V2]t) = 1
2

+ 1
2 + �

, (21)

and Eqs. (19)–(20) yield ỹ1 = ỹ2 = [ 12 ,
1
2 ]

�, i.e., points are equally dis-
tributed inside each cluster, which is not surprising because of the
tiny vocabulary size, the even distribution of GA's and BU's in D, and
the fact that P is symmetric (P is doubly stochastic). As a simple mat-
ter of fact, because of our way to write a text, P is always symmetric
when there are only two types in the vocabulary, but this is not the
case for larger vocabularies. The fact that distributions are identi-
cal in our toy example is also a consequence of thevocabulary size.
Words in natural language tend to follow a Zipf-Mandelbrot distri-
bution.In a real-world corpus, such a highly non-uniform distribu-
tion in ỹ1 would hardly spread to other clusters: the orthogonality
constraint in Eq. (6) would necessitate to have distinct subsets with
identical sum of square-root of probabilities.

Fig. 3 presents these two clusters. As seen from this figure, pa-
rameter � controls the percolation from cluster 2 to the stationary
cluster—because of the ergodicity of M, it can only be one-way.
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Fig. 4. The specialized index table format developed for this application. At the center, the table of token occurrences (used to compute matrix W by moving a contextual
window). At the left, a trie (lexical tree) indexing the words of the vocabulary. The table may also be used for tagging, hence the use of the “etiquette” labels and of the second
trie on the right (useful to index the tags of the tagset). The figure exemplifies the result of indexing a text containing the words “pomme poire pomme pomme poivron”.

When � → 0, the two clusters are well separated, which goes along
with the fact that M is not connected anymore. As � increases, the
transitions become uniform on M and the chances to hop onto the
stationary cluster increase.

6. Experiments

6.1. Implementation of the system

A computer program (MOTS2) has been developed in C on an
Intel computer running a Debian GNU/Linux operating system. The
program makes use of various functions of the GNU C library (glibc).
For the algebraic computing, it relies on the ATLAS optimization
system for BLAS (basic linear algebra subprograms);3 and for solving
eigensystems, on the LAPACK library,4 written in FORTRAN. Overall,
MOTS contains 16,000 lines of code; when statically linked, it yields
a 1.2MB executable file.

The program takes a text of arbitrarily long size as input.5 The
main processing chain of the program works in five steps:

1 it automatically detects the text format and encoding, and converts
everything to raw text encoded in Unicode UTF-8,

2 Our system is available from the URL: http://www.univ-ag.fr/∼pvaillan/mots/.
3 ATLAS was developed and made available to the community by R. Clint

Whaley, University of Texas at San Antonio; ATLAS web page: http://math-atlas.
sourceforge.net/.

4 LAPACK was developed over years by a team of researchers, mainly located
at the University of Tennessee at Knoxville; LAPACK web page: http://www.
netlib.org/lapack/.

5 There actually is a practical limit, which is caused by the 2GB (232 bytes) file
size limit that the system imposes on the file storing the matrix of floating numbers!

2 it performs a stage of tokenization, i.e., it segments the raw stream
of bytes into tokens of words, figures or typographical signs.

3 it builds an index table suited for fast access to word type infor-
mation (designed on the lexical tree, or trie, model). Fig. 4 gives a
schema of the index table format that has been implemented.

4 it computes the bigram transition matrix P = D−1W , by moving a
contextual window along the tokens put in their text order, and
incrementing ni,j for every seen occurrence of a transition (
i,
j),
where 
i and 
j are two given words.

5 it calls SGEEV, a function of the LAPACK library, to compute the
eigenvalues and eigenvectors of the matrix.

The time-consuming step is (5), which relies on a non-optimized
FORTRAN reference implementation. For a corpus with a vocabulary
of 13,000 distinct words, the system (an average 2005 Pentium chip
running at 2GHz) stayed more than 24h in the SGEEV function.
Probable improvements would be gained by working with a more
performant workstation, but time is not a very critical factor for our
purpose.

6.2. Data sources

Experiments were made on several examples of multilingual cor-
pora. We have used different sources of publicly available texts, such
as online digital libraries projects (like the Project Gutenberg, the
Wikisource online library, Projekt Gutenberg-DE for German texts,
ABU Association des Bibliophiles Universels for French texts . . . );
online text repositories supported by established institutions (like
the Gallica digital library of the Bibliothèque Nationale de France,
the Runeberg project at the University of Linköping, the Etext cen-
ter at the University of Virginia, or the ATHENA site at the Univer-
sity of Geneva. . . ); sources of legal texts or international treaties and

http://www.univ-ag.fr/~pvaillan/mots/
http://math-atlas.sourceforge.net/
http://math-atlas.sourceforge.net/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
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c̃i,k = Pr ([Vk]t|[vi]t)

ỹi,k = Pr ([vi]t|[Vk]t)

yi,k

Fig. 5. Experiments on multilingual passages of Cinderella. Each row crops a borderline between two languages (from the top to the bottom): French/German, German/Spanish,
Spanish/English. Bottom row = quantities that are represented by RGB colors in each column; each color level is associated with a principal axis k ∈ 2, 3, 4 (see text).

conventions (like EUR-Lex, the multilingual legal website of the Eu-
ropean Union); or various other sources, such as movie transcripts
databases. For texts in Creole languages (see below, p. 18), the re-
sources are scarcer. However, for French-based Creoles, some col-
lections of short digital texts are available from a few websites:
Potomitan,6 Krakemanto,7 or M.-C. Hazaël-Massieux's Creole stud-
ies website at the Université de Provence.8

6.3. RGB representation

Plotting a text according to the soft spectral clustering interpre-
tation described above is quite simple. We can represent each word
with a RGB color, where each color level is associated with some
principal axis k, and scales the component of the plotted vector,say
u, for each word. More precisely, we display � = 5 different color
levels on each axis, and fit each level to contain approximately the
same number of points (≈ v/5). The � corresponding intervals of val-
ues of u do not necessarily have the same width, but we have maxi-
mal visual contrast. There are actually three kinds of u that we plot.
The first two are naturally yk and ỹk. But the most interesting plot
to make is perhaps not Pr([vi]t|[Vk]t) = ỹi,k. Since we plot colors

6 Potomitan collection of tales: http://www.potomitan.info/atelier/contes/;
other texts in various Creole languages (mainly Martinique and Guadeloupe) avail-
able from other sections of the website.

7 Krakémantò tales of French Guiana: http://www.krakemanto.gf/.
8 M.-C. Hazaël-Massieux's creole website: http://creoles.free.fr/Cours/.

for each word, it is much more interesting to plot the probability of
being in a cluster given that we observe some word, i.e.,

Pr([Vk]t|[vi]t) = c̃i,k = Pr([vi]t|[Vk]t)Pr([Vk]t)/Pr([vi]t), (22)

and we let C̃ denote the matrix containing the c̃k as column vectors
(while Ỹ is column stochastic, C̃ is row stochastic). Since we have
Pr([vi]t) = di/d, the only unknown to compute this probability is
Pr([Vk]t) (noted p�k for short); given any i = 1, 2, . . . , v, summing

Bayes rules over k=1, 2, . . . , v yields
∑v

k=1Pr([vi]t|[Vk]t)Pr([Vk]t)=
Pr([vi]t), i.e. p� satisfies:

p� = Ỹ−1� (23)

Solutions to Eq. (23) exist only when Ỹ is invertible, which necessi-
tates that clusters be distinct from each other. As discussed in Sec-
tion 5, such situations typically arise for tiny vocabularies, such as
for our toy GABU example. In practice, our vocabularies and corpora
were far large enough to prevent such a situation, and we never met
inversion problems.

Fig. 5 presents such an experiment on a 1Mb text, containing four
versions of the same tale (Cinderella, from the Grimm Brothers), in
four languages: French, German, Spanish, and English. While we can
remark that the plot of C̃ displays perhaps the sharpest distinction
between the languages, it also “orders” them in some sense. From
the average color levels of each language, we can say that Red is prin-
cipally German, Green is principally English, and Blue is principally
Spanish. French is somewhere in between all of them. It is interest-
ing to notice that the results are in accordance with what we know

http://www.potomitan.info/atelier/contes/
http://www.krakemanto.gf/
http://creoles.free.fr/Cours/
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c̃i,k = Pr ([Vk]t|[vi]t)

yi,k

ỹi,k = Pr ([vi]t|[Vk]t)

Fig. 6. More experiments (four languages compilation of the Maastricht treaty).
Conventions follow Fig. 5.

about the genetic roots of these four languages, a fact which is of
course unknown to the computer program. Similar conclusions were
borne out from experiments on these four languages for the Maas-
tricht treaty (see Fig. 6). Moreover, results of the treaty make the
names of each country's plenipotentiaries appear (Fig. 6 displays the
English crop for this part); it was quite surprising to see that, while
Y gives uniform results by language, C̃ clearly makes those names
appear (mostly dark green over dark blue for English).

An even more interesting experiment consisted of trying the pro-
gram on texts where languages are more intricately mixed. This
is quite typically so in literature from multilingual regions, like in
the case of the Creole-speaking communities throughout the wide
Caribbean area and USA. In at least some cases, the Creole language
has remained in contact with its “lexifier” European language (none
of those has in the meantime become extinct), in sociolinguistic
situations which have sometimes been coined as “diglossic”: this
has especially been the case for English-based Creoles like Jamaican
or Gullah spoken in the states of South Carolina and Georgia, and
French-based Creoles spoken in the territories of Haiti, Guadeloupe,
Martinique and French Guiana. In a diglossic situation, the European
language is still in use as the official and prestige language, while the
Creole language is the vernacular. This leads to very frequent code-
switching and intermingling of languages in several domains. This
is clearly an extreme situation of choice for soft clustering. We have
processed a 200kb extract (12,200 occurrences of 2,400 vocabulary
items) of a French-Martinican Creole bilingual novel, Lavwa egal by
Térèz Léotin,9 where segments in French and Creole are strongly
intertwined. While both languages share many words, the results
display quite surprising contrasts, and these are actually sharper for
C̃. Fig. 7 displays a crop in which the program has even managed

9 Térèz Léotin, Lavwa egal—La voix égale, published by Ibis Rouge, French Guiana,
2003.

c̃i,k = Pr ([Vk]t|[vi]t)

yi,k

Fig. 7. Crop of an extract of Lavwa egal, where French and Creole are intertwined.
Conventions follow Fig. 5.
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Fig. 8. Plot of c̃3(y) as a function of c̃2(x) for the significant words of Lavwa egal
(see text for details).

to extract a short French sentence (quel malheur, quel grand malheur
pour nous) out of a Creole segment.

6.4. Representation using C̃

The most conventional plot for spectral clustering results would
consists of projecting the words on two selected eigenvectors. We
have carried out such a representation for our experiments on the
Maastricht treaty and Lavwa egal, but for matrix C̃ instead of Y, to
further test its ability for smooth separation of languages.

Fig. 8 displays a two-dimensional distribution of the most signifi-
cant units in the “Lavwa egal” corpus on the plane defined by c̃3 and
c̃2. The probability is shown on logarithmic scale (numbers appear-
ing on the axes are powers of 10). By “significant words” we mean
words occurring more than four times in the corpus—16% of the
word types in this particular corpus. Note that including all words
does not change the overall shape of the data cloud, but tends to
scale down the most significant part of the diagram, by including
outlying points. Only a few labels have been shown (20 out of 660)
for the sake of readability, but they are consistent with the global
distribution.

Fig. 9 shows the same data projected on the plane defined by c̃4
and c̃3, respectively. It resembles a plot one would obtain by folding
Fig. 8 around a separating axis for French and Creole, and axis that
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would be roughly parallel to the y axis. Since separation is very
smooth between languages, we have chosen not to sketch the axis
in the figure but it is quite intuitive.

A look at the two diagrams shows that units clearly tend to clus-
ter along lines that significantly form in the 2:3:4 eigenvector space.
In Fig. 8, Creole words are grouped on the left of the diagram, and
French words on the right. In Fig. 9, the clusters are even more vis-
ible. Interestingly, this shows that on non-trivially small vocabular-
ies (i.e. when the number of distinct words exceeds few units—see
discussion in Section 5 about the toy GABU example), the informa-
tion necessary for a soft distinction between language clusters can
be nicely retrieved from row-stochastic matrix C̃, and not only on
the signed coordinates of the direct solution to spectral decomposi-
tion, i.e., matrix Y. As witnessed by our experiments in Section 6.3,
sometimes, it is also sharper.

Figs. 10 and 11 show comparable results on a four-language
corpus, consisting of versions of the European treaty of Maastricht
in German, French, Spanish and English. The three angles of the plot
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Fig. 9. Plot of c̃3(y) as a function of c̃2(x) for the significant words of Lavwa egal
(see text for details).

Maastricht treaty point set projected on plane 2:3

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−18

protocols

längere

foreign

ont

justicia
applicables

mehrheit

définition

acuerdo

questions protocoles

efficacité
membres

accordance

commonwealth
guimarães

helsinki

votes

procedure

such

monetarycharged

agreed

artikels
framework

rights
ellemann

effectiveness

republic
conventions
préjudice

condiciones
respectivas

dispositions
travaux instruments

vertrag
verwirklichung ausgaben

verfassungsrechtlichen
vorgehen

sozialen

sicherheitspolitik

und
stahl

grundfreiheiten

scale

through

implementation

genscher

bérégovoy

rasmussen

necesario

competencias
artículos

−4−6−8−10−12−14−16

Fig. 10. Plot of c̃3(y) as a function of c̃2(x) for the significant words of the Maastricht treaty (see text for details).

in Fig. 10 roughly cluster the languages as follows: mostly German
(upper right), French + Spanish (left) and English (bottom). But the
most striking phenomenon does not arise from these two Figures se.
A comparison with the results of Lavwa egal in Figs. 8 and 9 displays
surprising similar structures if we take figures two by two. Indeed,
Fig. 10 relies on the same structure as Fig. 8: a dense point cloud
on the top, elongated along c̃2, with virtually the same shape on the
two plots. In Fig. 8, this axis is separating French from Creole. The
discrimination in Fig. 10 is slightly more complicated as it involves
three languages (German, Spanish, French), certainly because there
are more distinct languages to cluster. In Fig. 10, English plays the
role of the language that creates a less dense cloud on the bottom
of the figure, a cluster that would probably have appeared for Lavwa
egal should it have mixed another language (e.g., Haitian Creole).

The situation is similar if we compare Figs. 9 and 11. The bend
that appears in Fig. 9 with a clear boundary line also appears in
Fig. 11. In the same way as it involves a distinction between French
and Creole in Fig. 9, it makes a distinction between German and
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Fig. 11. Plot of c̃3(y) as a function of c̃4(x) for the significant words of the Maastricht
treaty (see text for details about the red dashed line).
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(French + Spanish) in Fig. 11 (the red dashed line). Again, English
plays the role of the “extra” language, in the same sense as it does
for Figs. 8 and 10, since it fills in Fig. 11 the space occupied by very
few words in Fig. 9 (plat, mal, parité, égal, danounou).

The fact that the same structures—with the same role, the same
interpretation—appear in the plots of two extremely different cor-
pora tends to make us think that they are not fortuitous. Drilling
down in their properties is the matter of making more tests on more
languages, and this shall be the subject of future works.

7. Summary and conclusion

We have described a soft clustering method for sets of elements
that can be interpreted as states of a Markov chain, and an example
application of the method to a problem in information extraction:
identifying different languages in multilingual corpora, when those
languages are not known in advance, and when their properties
are not defined a priori. In such a setting, states are words, which
can belong in any proportion to distinct languages, and transition
probabilities are modeled from some maximum likelihood writing
of texts in any direction.

More precisely, our technique draws its roots in the early inter-
pretations of spectral cut methods in terms of Markov chains and
the conductance of their clusters [6]. We fundamentally depart from
these works in the clustering problem addressed: where the usual
spectral approaches seek the approximation of a hard clustering, our
spectral approach is the solution of the sofft clustering problem.

We propose a relaxation of the constraints used to define classic
“hard” clustering (Eq. (6) and following text). This allows us to find
solutions which are computationally tractable, while keeping valid
the framework that explains clustering in terms of clusters' con-
ductance in Markov chains. This was an important objective, as this
framework is of probabilistic nature, and is thus a good candidate
for a natural explanation of soft clustering. Our solution yields the
probabilistic memberships of points in clusters Section 3.

The domain to which we have applied this technique, with a
readily available code, is particularly challenging: the classification
of words in multilingual corpora, in the case where (1) the language
models are not given a priori; and (2) the different languages present
in the corpora share a number of common words or word sequences.
Ourmethod allows us to point to homogeneous portions of texts, and
tomixed portions of texts. In the case of codemixing between related
languages, it also allows us to find the words belonging clearly to
one language or the other, and to find the words which may belong
to both, to a mixed degree.

The main advantage of the method we propose is that it gives an
easy way to compute interpretation of the cluster structure informa-
tion inherently contained in the distribution of data. It can be used
in cases where the data can be viewed as the result of a stochastic
process, and when a soft clustering is more meaningful than a hard
clustering.
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Appendix A.

A.1. Proof of Theorem 4

We use the probabilistic method. Fix k, l such that 1�k 
= l�q.
Suppose � ∈ {−1,+1}v×q given, and �′ ∈ {−1,+1}v×q which differs
from � by a single 	i,l 
= 	′

i,l. One obtains

|fk,l(�) − fk,l(�
′)|�2

√
ỹi,kỹi,l, (24)

and the same would hold whether the modification was made on
column k. Now, provided � is picked uniformly at random, we have

E�(fk,l(�)) = 0 (25)

Together with Eqs. (24) and (25), the independent bounded differ-
ence inequality [17] on the random choices of � brings ∀tk,l�0:

Pr(|fk,l(�)|� tk,l)�2 exp

⎛⎝−
t2k,l

4〈ỹk, ỹl〉

⎞⎠ (26)

Fixing tk,l = 2
√

〈ỹk, ỹl〉 log(2q2) yields the upperbound 1/q2 on the
probability. Thus, the probability that some couple among the q(q −
1)/2 violates (26) is no more than (q − 1)/(2q) <1/2. Finally, with
probability >1/2 over the random choice of �, all possible couples
(k, l) get concentrated following (26), and this brings the statement
of the Theorem.

A.2. Proof of Theorem 5

For all 1�k�m, the circular likelihood of a text Tk of C is the
following, under a bigram model:

�(Tk) =
|Tk|∑
j=1

Pr(
k,j)
|Tk|−1∏

l=1

(Pr(
k,l+1|
k,l) × Pr(
k,l|
k,l+1)),

notice that the product does not depend on j since the circularwriting
of the text is made in the same way regardless of the first word
chosen. The likelihood of C is

�(C) =
m∏

k=1

�(Tk) = z ×
∏
i,j

(pi,j)
ni,j+nj,i , (27)

where z=∏m
k=1

∑|Tk|
j=1 Pr(
k,j) does not depend on P. The maximiza-

tion of �(C) under the v constraints
∑v

j=1pi,j =1 (with 1� i�v) may
be obtained via the Lagrangian:

l

⎛⎝C,
c⋃

i=1

�i

⎞⎠= �(C) +
c∑

i=1

�i

⎛⎝1 −
c∑

j=1

pi,j

⎞⎠ .

Fix 1� i�v. Differentiating the Lagrangianwith respect to pi,j and us-
ing Eq. (27), yields the following stationarity conditions (∀1� j�v):

�l
(
C,
⋃v

i=1 �i
)

�pi,j
= zsi,j(ni,j + nj,i)(pi,j)

ni,j+nj,i−1 − �i

= 0, (28)

with si,j = ∏
(k,l)
=(i,j)(pk,l)

nk,l+nl,k . Eq. (28) yields v expressions for
�i, and if we equate two of them for 1� j 
= j′ �v, we obtain
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zsi,j(ni,j + nj,i)(pi,j)
ni,j+nj,i−1 = zsi,j′ (ni,j′ + nj′ ,i)(pi,j′ )

ni,j′+nj′ ,i−1, which,
after simplification of si,., yields

(pi,j′ )
ni,j′+nj′ ,i (ni,j + nj,i)(pi,j)

ni,j+nj,i−1

= (pi,j)
ni,j+nj,i (ni,j′ + nj′ ,i)(pi,j′ )

ni,j′+nj′ ,i−1,

that is

pi,j′ = pi,j(ni,j′ + nj′ ,i)/(ni,j + nj,i). (29)

Summing for j′ 
= j yields 1 − pi,j = pi,j(2ni − ni,j − nj,i)/(ni,j + nj,i),
i.e., pi,j = (ni,j + nj,i)/(2ni). It is easy to check that the station-
ary point found is the global maximum of the likelihood, as
claimed.
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