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ABSTRACT

In this paper, we first survey prior work for computing exactly or approximately the
smallest enclosing balls of point or ball sets in Euclidean spaces. We classify previous work
into three categories: (1) purely combinatorial, (2) purely numerical, and (3) recent mixed
hybrid algorithms based on coresets. We then describe two novel tailored algorithms
for computing arbitrary close approximations of the smallest enclosing Euclidean ball of
balls. These deterministic heuristics are based on solving relaxed decision problems using
a primal-dual method. The primal-dual method is interpreted geometrically as solving
for a minimum covering set, or dually as seeking for a minimum piercing set. Finally,
we present some applications in machine learning of the exact and approximate smallest
enclosing ball procedure, and discuss about its extension to non-Euclidean information-
theoretic spaces.

Keywords: Smallest Euclidean enclosing ball; duality piercing/covering; coresets.

∗This article revises and extends in light of the recent research results the paper1 that first appeared
at the Computational Geometry and Applications (CGA) workshop of the 2004 International
Conference on Computational Science and Its Applications (ICCSA), Lecture Notes in Computer
Science series, Volume 3045, pp. 147–157, DOI 10.1007/b98053 (Springer-Verlag).
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1. Introduction

As far as one surveys the scientific literature, the smallest enclosing disk (SED for

short) problem is traditionally reported to date back to 1857 when J. J. Sylvester2,3,4

first asked for the smallest radius disk enclosing a given set of n points on the plane.

More formally, let xi(S) = si denote the i-th coordinate of point S = (s1, ..., sd)

(1 ≤ i ≤ d) of d-dimensional Euclidean space Ed, and denote by Ball(S, r) the

Euclidean ball of center S and radius r: Ball(S, r) = {X ∈ Ed ∣ ∣∣SX ∣∣ ≤ r}, where
∣∣ ⋅ ∣∣ denotes the Euclidean distance (L2-norm) ∣∣PQ∣∣ =

√

∑d

i=1(xi(P )− xi(Q))2

of Ed. Further, let ℬ = {B1, ..., Bn} be a set of n d-dimensional balls, such that

Bi = Ball(Si, ri) for i ∈ {1, ..., n}. Let S be the set of ball centers S = {S1, ..., Sn}.
Given a ball B, denote by r(B) its radius and C(B) its center so that C(Bi) = Si

and r(Bi) = ri for all i ∈ {1, ..., n}. The smallest enclosing ball (SEB) of ℬ is the

unique ball5,6, B∗ = SEB(ℬ) = Ball(C∗, r∗), fully enclosing ℬ (ℬ ⊆ Ball(C∗, r∗)) of
minimum radius r∗. Figure 1 depicts an example of a SEB of a planar ball set. A

point set can be viewed as a degenerated ball set by fixing all radii to zero. Finding

the center of the SEB of a ball set ℬ = {B1, ..., Bn} can be written mathematically

into the following minimax optimization problem:

r∗ = min
C∈Ed

n
max
i=1

(∣∣CSi∣∣+ ri), (1)

C∗ = argminC∈Ed

n
max
i=1

(∣∣CSi∣∣+ ri). (2)

Note that the result of this optimization problem generalizes to any strictly

monotonous function applied on ∣∣CSi∣∣+ri. That is, for a given strictly monotonous

function f , f(r∗) is the optimal solution of minC∈Ed maxni=1 f(∣∣CSi∣∣+ ri). In prac-

tice, when dealing with point sets (all ri’s set to zero), we purposely choose the

squared function ∣∣CSi∣∣2 to get rid off the unnecessary square root operations.

The smallest enclosing ball problem belongs to the family of minimum contain-

ment problems and is also referred in the literature under various terms such as the

minimum enclosing ball, minimum spanning ball, minimum covering sphere, Eu-

clidean 1-center, d-outer radius, minimum bounding sphere, or minimax problem in

facility locations, etc. The smallest enclosing ball is a fundamental primitive that

finds many applications in computer graphics (collision detection, visibility culling,

...), machine learning (support vector clustering, similarity search, ...), metrology

(roundness measurements, ...), facility locations (base station locations, ...), and

so on. Notice that in the aforementioned applications, approximate solutions are

often enough. A (1 + �)-approximation of the SEB is a ball Ball(S′, r′) such that

ℬ ⊂ Ball(S′, r′) with r′ ≤ (1 + �)r∗ for a prescribed threshold value � > 0.

The structure of the paper is as follows: we survey in the next section themain al-

gorithms for computing either exactly or approximately the smallest enclosing balls.
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ri

Bi = Ball(Si, ri)

B∗ = Ball(C∗, r∗)

Fig. 1. The smallest enclosing ball of a set of balls is unique and combinatorially induced by at
most d+ 1 balls tangent to its boundary.

We classify the rich literature of previous work according to three algorithmic

paradigms:

(1) Exact combinatorial algorithms,

(2) Approximate numerical algorithms,

(3) Approximate hybrid (semi-numerical) algorithms.

Section 3 describes a computational efficient filtering mechanism for calculating the

maximum distance of a point to a given point set. This general technique is then

used in section 4 to speed-up an implementation of the Bădoiu -Clarkson and

Panigrahy core-set approximation algorithms7,8. Section 5 presents a novel core-set

primal-dual tailored method based on solving relaxed decision problems geometri-

cally interpreted either as covering and piercing problems. Section 6 gives an alter-

native approach better suited for small dimensions and discusses on the algebraic

degree of predicates used in branching tests. Section 8 introduces the use of the

SEB primitive in computational machine learning. Finally, section 9 concludes the

paper by presenting a few selected open problems and venues for future research.

2. Previous Work

Although the SEB problem was first tackled in the 19th Century (as mentioned

previously in the Introduction), it is still nowadays surprisingly a very active and

challenging mainstream problem of computational geometry that attested major

developments during the past few years. It is beyond the scope of this paper to

extensively list historically and summarize all the papers dealing with the SEB. We

rather present below a classification of current SEB algorithms. The classification is

organized into three categories: combinatorial (section 2.1), numerical (section 2.2),

and hybrid algorithms (section 2.3).
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2.1. Combinatorial algorithms

The algorithmic complexity of SEB was only settled in 1984 by N. Megiddo’s first

linear-time prune-and-search algorithm9 for solving linear programs in fixed dimen-

sion. Later, the method was extended to the case of balls10,11. Since the smallest

enclosing ball is unique and defined by at most d + 1 support pointsa (or tangent

balls as depicted in Figure 1) in strictly convex position (implying being affinely in-

dependent as well), a brute-force näıve combinatorial algorithm requires Od(n
d+2)

timeb (with linear memory). Combinatorial SEB algorithms provide not only the

explicit SEB Ball(C∗, r∗) but also the support points which lead implicitly to it.

A major breakthrough was obtained by E. Welzl5 who described an elegant ran-

domized almost tight expected ⌊(e − 1)(d+ 1)!⌋n timec algorithm. The number of

expected basis computations of size j is shown to be Õ(logj n) (2 ≤ j ≤ d + 1), so

that most of the time of Welzl’s algorithm is spent by checking whether points/balls

are inside some candidate ball or not.d For point sets being vertices of a regular

simplex, the algorithm exhibits unfortunately the curse of dimensionality as it prov-

ably requires Ω(2d) recursive calls, thus limiting its tractability up to a few dozen

dimensions in practice (say, d ≃ 30). Recently, Chernoff-type tail bound has been

given for nondegenerate input data sets by B. Gärtner and E. Welzl12. Although

the Chernoff-type bound gives a better understanding of the power of randomiza-

tion, tight worst-case bound is still unknowne as is also the tail estimate in the

case of cospherical point sets. Subexponential running time was obtained by B.

Gärtner13 who described a general randomized algorithm for the class of so-called

abstract optimization problems (AOP). Focusing on small instances (i.e., n = O(d)),

B. Gärtner and E. Welzl14 presented a practical randomized approach for affinely

independent points using Õ(1.5n) basis computations. T. Szabo and E. Welzl15 fur-

ther improve the bound to Õ(1.47n) using the framework of unique sink orientations

of hypercubes. So far, B. Chazelle and J. Matous̆ek gave the current best O(dO(d)n)

deterministic time algorithm16.

From the pratical viewpoint, B. Gärtner17 updated the move-to-front heuristic

of E. Welzl5 by introducing a pivot mechanism and improving the numerical robust-

ness of basis computations. Furthermore, K. Fischer et al.18 describe a simplex-like

pivoting combinatorial algorithm with a Bland-type rule that guarantees termina-

tion based on the seminal idea of T. Hopp et C. Reeve19 of deflating an enclosing

sphere: They devise a dynamic data-structure for maintaining intermediate candi-

date balls and a robust floating-point implementation is tested with point sets up

aThe circumcenter falls necessarily inside the convex hull of the support points.11
bNotation Od(⋅) means that we hide all d terms in the multiplicative constants of functions of n.
For example, O(2dnd+2) = Od(n

d+2).
ce ≃ 2.71828182846... is the irrational number such that log e = 1.
dThis may explain why descriptions of computing the primitives and their time complexity were
omitted in5 since

∑d+1
i=2 (2 + lnn)i = od(n).

eThat is, to know the worst-case geometric configuration that implies a worst number of recursive
calls (i.e., geometric realization of permutations).
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to dimensionf d = 10000. Overall complexity is O(d3 + d2l), where l ≤
(

n
d+1

)

is a

finite number of iterations; In practice, although the algorithm requires algebraic

degree two on the rationals ℚ, they observe good experimental floating-point errors

of at most 104 times the machine precision. For ball sets, K. Fischer and B. Gärtner

show11 that E. Welzl’s MiniBall algorithm5 extends to balls provided that the ball

centers are affinely independent. Furthermore, they provide a linear programming

type (LP-type) algorithm which runs in expected Õ(2O(d)n)-time. The combina-

torial algorithms described so far compute the exact smallest enclosing ball (i.e.,

� = 0), report a support point/tangent ball set and look similar to those handling

linear programming. Notice that the smallest enclosing ball problem, as LP, is not

known to be strongly polynomial (see P. Gritzmann and V. Klee20 for a weakly

polynomial algorithm).

2.2. Numerical algorithms

Let d2(A,ℬ) denote the maximum distance between all pairs of point (A,B), with

A ∈ A and B ∈ ℬ. Consider without loss of generality point sets ℬ. Observe that

picking any point P ∈ ℬ gives a 2-approximate ball Ball(P, d2(P,ℬ)) (i.e., � = 1).

This allows to easily convert from relative to absolute (1+ �)-approximation values.

Motivated by computer graphics applications, J. Ritter21 proposed a simple and

fast constant approximation of the smallest enclosing ball that can be extended

straightforward for points/balls in arbitrary dimension. Tight worst-case approxi-

mation ratio was unknown until very recently22. It is easy to check that J. Ritter’s

heuristic can be as bad as 18.3 percents.h H. Zarrabi-Zadeh and T. Chan actually

proved that it yields in fact a 3
2 -approximation in arbitrary dimension.

It is quite natural to state the smallest enclosing ball problem as a mathematical

program. In facility locations, the smallest enclosing ball of a ball set ℬ is often

written as minC∈Ed Fℬ(C) where Fℬ(X) = d2(X,ℬ) = maxi∈{1,...,n} d2(X,Bi) is

the cost function. For ball sets, we have d2(X,Bi) = d2(X,Si) + ri. Since the min-

imum is unique, we obtain the circumcenter as C∗ = argminC∈EdFℬ(C). Observe

that the function FB(X) is not differentiable everywhere. Namely, the function is

differentiable everywhere except at the faces of the furthest Voronoi diagram of the

point/ball set, where the notion of furthest point is not uniquely defined. Figure 2

displays the discretization of the maximum distance field of a planar point set.

Observe that one can perceive the furthest Voronoi diagram inside this rasterized

distance field.

Using the ellipsoid method for solving approximately convex programs (CP), we

f In fact, T. Hopp and C. Reeve19 reported experimentally a time complexityg of Ō(d2.3n) for
uniform spherical data sets.
hE.g., considering a regular simplex in dimension 2. In the paper21, J. Ritter evaluates it to
”around” 10 percents (dixit). X. Wu.23 suggests a variant based on finding principal axis as a
preprocessing stage of J. Ritter’s greedy algorithm. It requires roughly twice more time and do
not guarantee to perform better. (Actually, we found it experimentally worse sometimes.)
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Fig. 2. Discretization of the maximum distance field for a set of sixteen (16) points on the plane.
The circumcenter of the smallest enclosing disk minimizes this maximum distance field function
and is highlighted using a large square lying on the furthest Voronoi diagram (plotted in dashed

style). In this case, the smallest enclosing circle passes through exactly three (3) points whose
intersection of furthest Voronoi bisectors yields the circumcenter.

get a (1 + �)-approximation in O(d3n log 1
�
) time24. B. Gärtner and S. Schönherr25

describe a generic quadratic programming (QP) solver tuned up for dense problems

with few variables, as it is the case for solving basic instances. The solver behaves

polynomially but requires arbitrary-precision linear algebra that limits its use to

a few hundred dimensions. Recently, another method which turns out to perform

so far best in practice, is the second-order cone programming26 (SOCP). SOCP

requires O(
√
n log 1

�
) iterations27 using interior-point methods. Each iteration can

be performed in O(d2(n + d)) time for the smallest enclosing ball. G. Zhou et

al.26 present another algorithm, based on providing a smooth approximation of the

nondifferentiable minimax function Fℬ(⋅) using so-called log-exponential aggregation

functions, that scale well with both terms: dn and 1
�
. For coarse � values, say � ∈

[0.001, 0.01], subgradient steepest-descent methods can be used as it first converges

fast before slowly zigzagging towards the optimum. These numerical techniques rely

on off-the-shelves optimization procedures that have benefited from extensive code

optimization along the years but seem not particularly tuned up for the specific

smallest enclosing ball problem.
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2.3. Hybrid algorithms

An �-core set (also written as core-set) of S is a subset C ⊆ S such that the smallest

enclosing ball of C expanded by a factor of 1 + � fully covers set S. Surprisingly, it
was shown by M. Bădoiu et al.28 that for any � > 0 there is a core set of size at most
1
�2
, independent of dimension d. The bound was later improved to the tight 1

�
value7.

Note that since the smallest enclosing ball is defined by at most d+1 points/balls, the

result is combinatorically meaningful for 1
�
≤ d+1. Besides, they also give a simple

iterative O(dn
�2
)-time algorithm (see procedure SimpleIterativeBall that we describe

next) to compute a (1+�)-approximation of the smallest enclosing ball, for any � > 0.

Combining the ellipsoid numerical approximation method with the combinatorial

core-set approach yields a O(dn
�

+ d
�4
)-time hybrid algorithm. P. Kumar et al.29

relies on the work of G. Zhou et al.26 to obtain a better O(dn
�

+ 1

�
9

2

log 1
�
)-timei

bound. S. Har-Peled mentioned an unpublished30 O(dn
�
+ 1

�2
log2 1

�
)-time algorithm,

so that the hybrid algorithm runs in O(dn
�
+ 1

�4
log2 n)-time. Although not explicitly

stated in the pioneer work of M. Bădoiu et al.28, the algorithms/bounds are still

valid for ball sets (also noticed by P. Kumar et al.29).

2.4. Summary of contributions

Although combinatorial algorithms are available nowadays for solving the SEB prob-

lem of points in very large dimensions (say, d ≃ 10000) that prove efficient in prac-

tice but lacks deterministic bound (i.e, tight worst-case analysis that guarantees

termination), we would like to emphasize on the merits of computing approximate

solutions:

∙ Guaranteed worst-case time dependent on 1
�
. That is, the less demanding, the

faster,

∙ Very short code: no code is required for computing the basis of at most d + 1

points/balls,

∙ No special care are required for handling degeneracies (i.e., cospherical or

affinely dependent subsets of points),

∙ Stable: use predicates of lower degrees (see section 6) for robust computations.

The contributions of our paper are summarized as follows:

∙ We show an efficient implementation of approximate enclosing balls of core-sets

(d ≃ 15000 and � ≃ 1%) based on distance filtering in large dimensions,

∙ We describe a new tailored core-set algorithm for dual covering/piercing deci-

sion problems,

∙ We propose an alternative effective algorithm for small dimensions,

∙ We review algorithm performances according to experiments obtained on a

common platform.

iMore precisely, O(dn
�

+ d2

�
3

2

( 1
�
+ d) log 1

�
)-time.
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The next section describes a simple and efficient approach to speed-up point-to-

point set distance queries. In the remainder, we use the notations summarized in

the following table.

Notations:

S : An arbitary point

S = {S1, ..., Sn} : A point set

Ball(S, r) : A ball with circumcenter S and radius r ≥ 0

ℬ = {B1, ..., Bn} : A ball set with Bi = Ball(Si, ri)

B∗ = Ball(C∗, r∗) : Smallest enclosing ball (SEB) with center C∗ and radius r∗

: B∗ is the SEB of either S or ℬ, depending on the context

Ci : Circumcenter approximation of C∗, at the ith iteration

C ⊆ S : A core-set (a subset of S or ℬ)
Bi(r) : A ball centered at C(Bi) = Si with radius r − ri
Ki : Smallest enclosing ball of core-set Ci

3. Farthest Point/Set Distance Queries

SEB algorithms often need to compute the distance, d2(P,ℬ), from a query point P

to a given point/ball set ℬ (with ∣ℬ∣ = n). A naive algorithm consists in computing

distance pairs d2(P,Bi) iteratively for i = 1, ..., n. This procedure requires O(dn)

time per query so that q farthest queries d2(⋅,ℬ) cost overall O(qdn) time. When

dimension d is large, say d ≥ 100, computing distances of query point/set using the

naive technique becomes in itself an expensive operation. We present below a simple

yet effective filtering technique to potentially skip computing a large proportion of

explicit distances. Observe that d2(X,Y ) = ∣∣X − Y ∣∣ =
√

∑d

i=1(Xi − Yi)2 can

be written as ∣∣X − Y ∣∣2 = ∣∣X ∣∣2 + ∣∣Y ∣∣2 − 2 < X, Y >, where <,> denotes the

vector inner product (dot product): < X, Y >=
∑d

i=1 XiYi = XTY . Using Cauchy-

Schwarz inequality, we have ∣ < X, Y > ∣ ≤ ∣∣X ∣∣ ∣∣Y ∣∣. Therefore, the distance of

X to Y is upper bounded by

√

∣∣X ∣∣2 + ∣∣Y ∣∣2 + 2
√

∣∣X ∣∣2∣∣Y ∣∣2 ≥ ∣∣X − Y ∣∣. (3)

Thus when answering q farthest queries, we can first build lookup tables of

∣∣Pi∣∣2 (Pi ∈ ℬ) in a preprocessing stage in O(dn) time and then use a simple

distance filtering mechanism. That is, when iteratively seeking for the maximum

distance given a query point X and set ℬ, we skip in O(1) time evaluating distance

d2(X,Pi) if the so far maximum distance is above the upper bound given by the

Cauchy-Schwarz inequality of Eq. 3. For sets drawn randomly from statistical dis-

tributions, let �̄ be the expected number of skipped distances, we answer q queries

in O(dn + q + q(1 − �̄)dn) time. For uniform d-dimensional cube distributions or
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normal distributions we observe experimentally �̄
n→ 1 (thus for n ≥ 1

�2
, the algo-

rithm converges towards optimal linear O(dn) time), for uniform distributions on

the d-dimensional sphere, we conversely observe �̄
n→ 0. This filtering technique

is further described with a C++ code snippet in the book31 (Chapter 8, pp. 461-

464). The methodology extends to ball sets as well but requires extra square-root

operations in order to handle ball radii. Interestingly, approximating efficiently the

Euclidean distance between two given points in ultra high-dimensional spaces can

be done using logarithmic space32 only. Sketching these distance computations is

a key primitive for data stream algorithms processing gigantic datasets not fitting

local memory (see section 9).

4. Approximating Smallest Enclosing Balls of Core-Sets

Although M. Bădoiu and K. Clarkson’s algorithm7 (procedure Bădoiu -Clarkson

below) extends to ball sets as well, for ease of description, we consider here point

sets S = {S1, ..., Sn}. Given a current circumcenter C, the procedure finds a farthest

point Sm of ℬ and moves C towards Sm in O(dn) time per iteration, thus bypassing

the costly O(d2n) time Jacobian matrix computation necessarily required in a typi-

cal steepest-descent numerical optimization scheme. The overall cost is O(dn
�2
) time

as we need to perform ⌊ 1
�2
⌋ iterations to ensure a (1 + �)-approximation algorithm.

Bădoiu -Clarkson(S, �);1

⊲ Compute a (1 + �)-approximation of the smallest enclosing ball ⊳2

⊲ Return the circumcenter of a small enclosing ball in O(dn
�2
) time ⊳3

C = S1 ;4

for i = 1 to ⌈ 1
�2
⌉ do

⊲ The core-set is the collection of furthest points ⊳5

⊲ Furthest point is Fi = Sj ⊳6

j = argmaxni=1∣∣CSi∣∣;7

C = C + 1
i+1CSj ;8

return C;9

Using this simple and elegant algorithm (renamed as proce-

dure SimpleIterativeBall below) and coupling it with approximations of smallest

enclosing balls of core-sets (see paper28), we obtain a O(dn
�

+ d
�4
)-time algorithm

(procedure ApproximateCoreSet). For 1
�
= O( 3

√
n), the bottleneck of the algorithm

is finding the core-set itself rather than the overall cost of simple loops.

Lemma 1 ( Bădoiu et al. 28). The approximation algorithm reported in pro-

cedure ApproximateCoreSet(S, �) delivers a (1 + �)-approximation of the smallest

enclosing ball of point set S (for 0 < � < 1).

The proof is found in Bădoiu et al. 28 (Lemma 2.3 and Theorem 2.5), pages 3
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and 4. Further, additional breakthrough results on k-center and k-median clustering

problems with or without outliers are also reported. The smallest enclosing ball

problem is a particular case, namely the 1-center problem.

SimpleIterativeBall(S, �);1

⊲ S = {S1, ..., Sn} is a point set ⊳2

⊲ The algorithm generalizes straightforwardly to arbitrary radii ball sets ℬ ⊳3

Pick arbitrary C1 ∈ S;4

i← 1;5

a = ⌊ 1
�2
⌋;6

while i ≤ a do7

m = argmaxj ∣∣CiSj ∣∣;8

⊲ Distance filtering ⊳9

Ci+1 = Ci +
1

i+1 (Sm − Ci);10

i← i+ 1;11

ra = d2(Ca,S);12

return Ball(Ca, ra);13

ApproximateCoreSet(S, �);14

⊲ S = {S1, ..., Sn} is a point set ⊳15

⊲ The Ci’s are the collection of greedy core-sets ⊳16

⊲ Overall time complexity is O(dn
�
+ d

�4
) ⊳17


 = �
3 ;18

� = �
3 ;19

⊲ Guarantee (1 + �)(1 + 
) ≤ 1 + � for any � ≤ 1⊳20

C1 ← {B1};21

r1 = 0;22

i← 1;23

while d2(Ci,ℬ) ≥ (1 + �)ri do24

⊲ Distance filtering ⊳25

k = argmaxi d2(Ci,ℬ);26

Ci+1 ← Ci ∪ {Bk};27

Ki+1 ← SimpleIterativeBall(Ci+1, 
);28

Ci+1 ← C(Ki+1);29

ri+1 ← r(Ki+1);30

i← i+ 1;31

return Ball(Ci, ri);32

Plugging the distance filtering mechanism of section 3, for uniform distribution

of ball sets with d ≃ 10000, n = d+ 1, � ≃ 0.01, the algorithm requires experimen-
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tally a mere few seconds on current commodity PCs for a short 30-line C code.j

It performs better in practice than the steepest-descent method. The algorithm is

adaptive according to the core-set size, bounded by 6
�
, but not in the iteration pro-

cess of Bădoiu and Clarkson7 as we need to loop exactly ⌊ 9
�2
⌋ time.k Theoretically

speaking, this algorithm is only slightly outperformed by a SOCP solver, but its

extreme simplicity coupled with the distance filtering trick make it attractive for

machine learning applications as discussed in section 8. The filtering technique also

applies to the optimal core-set algorithm of Panigrahy8 that computes a (1 + �)-

approximation of the SEB in Θ(dn
�
) time using a two-level procedure that guesses

stepwise the range of the optimal radius r∗ (procedure PanigrahyCoreSet below).

Panigrahy’s approximation SEB algorithm successively increments the ball radius

starting from an initial lower bound radius guess r of the optimal radius r∗. The
heuristic always guarantees that r ≤ r∗ ≤ r + � and therefore terminates as soon

as � ≤ �, in at most O(1
�
) iterations (see Figure 3). Core-sets have proven to be an

important concept in many geometric approximate optimization tasks. We refer to

the survey30 of P. Agarwal et al. to see how geometric optimization problems have

been revisited under the auspices of core-sets.

The core-set algorithms generalize to ball sets easily as follows: For a current

circumcenter position C, we seek the farthest point F in the ball set ℬ = {B1 =

Ball(S1, r1), ..., Bn = Ball(Sn, rn)} by maximizing maxi∈{1,...,n} d2(C,Bi). Since

maxXi∈Bi
d2(C,Xi) = d2(C, Si) + ri, we deduce that maxi∈{1,...,n} d2(C,Bi) =

maxi∈{1,...,n}(d2(C, Si) + ri), and that F = (1 +
rf
df
)
−−→
CSf , where f =

argmaxmaxi∈{1,...,n} d2(C,Fi).

5. Core-sets for Decision Problems

Let B∗ = Ball(C∗, r∗) = SEB(ℬ) denote the smallest enclosing ball of a ball set

ℬ = {B1, ..., Bn} with Bi = Ball(Si, ri) for all 1 ≤ i ≤ n (see Figure 1 for such

an example). Our novel approximation algorithms proceed by solving dual pierc-

ing/covering decision problems as depicted in Figure 4 for finding dichotomically

a (1 + �)-approximation of the SEB by testing whether r ≥ r∗ or not (within a

tolerance precision factor �). The dual piercing problem is related to a geometric

covering/duality property of balls that we explain for the general case of balls with

arbitrary different radii. (Point sets are considered as degenerated ball sets with all

radii set to zero.) The covering/piercing duality relationship is stated as follows:

ℬ can be covered by a ball of radius r if and only if ∩ℬ(r) = ∩i∈{1,...,n}Bi(r) ∕= ∅,
where Bi(r) = Ball(Si, r − ri) for 1 ≤ i ≤ n. It follows a lower bound on r:

r ≥ maxi ri ≥ 0. Note that we can also subtract to both the query r and ball radii

the minimum radius mini ri without changing the equivalence covering↔piercing

jThe code is available online from the book31 at http://www.charlesriver.com/visualcomputing/
programs/SmallEnclosingBall.cpp There is also a JavaTM applet at http://www.sonycsl.co.jp/
person/nielsen/BregmanBall/BBC/
kIt is of practical interest to find a better stopping adaptive criterion.
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Fig. 3. Illustration of Panigrahy’s core-set algorithm on a point set randomly distributed in a
small-width annulus. Approximate Ball(C, r) and enclosing Ball(c, r + �) balls are displayed re-
spectively in red and orange. The approximate center and core-set are drawn in blue and magenta,
respectively. The farthest point from the current center position is indicated by the green segment.

PanigraℎyCoreSet(S, �);1

⊲ S = {S1, ..., Sn} is the input set of points ⊳2

Pick arbitrary C1 ∈ S;3

r = 1
2 maxi d2(C1,S);4

� = 1
2 maxi d2(C1,S);5

repeat6

for O(1
�
) iterations do7

m = argmaxi d2(C,S);8

Move Ball(C, r) until it touches Sm;9

s = maxi d2(C, Si)− r;10

if s ≤ 3�
4 then11

� = 3�
412

else13

r = r + �
4 ;14

� = 3�
4 ;15

until � ≤ � ;16

property. We prove the following stronger property for Euclidean balls by showing

that for r ≥ r∗ there exists a unique ball of radius r − r∗ fully contained into the

common intersection:

Lemma 2. For r ≥ r∗, there exists a ball B of radius r(B) = r − r∗ centered at

C(B) = C∗ fully contained inside the intersection ∩ℬ(r).

Proof. In order to ensure that C∗ is in each Bi(r), a sufficient condition is to
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B1

B2

B3

B1(r
∗)

B2(r
∗)

B3(r
∗)B1(r)

B2(r)

B3(r)

C∗

r − r∗

S1

S2

S3

B∗ = Ball(C∗, r∗)

r1

r3

r2

r∗

Fig. 4. Geometric covering/piercing duality. Given a prescribed r ≥ maxi ri value, balls B1, B2, B3

are associated to corresponding dashed balls B1(r), B2(r), B3(r) such that C(Bi(r)) = Si and
r(Bi(r)) = r−ri for i ∈ {1, 2, 3}. We have B1(r∗)∩B2(r∗)∩B3(r∗) = {C∗}. For r ≥ r∗, there exists
a unique ball of radius r−r∗ fully contained in (i.e., piercing) the intersection B1(r)∩B2(r)∩B3(r).

have r ≥ maxi{ri + d2(Si, C
∗)}. Since Bi ⊆ Ball(C∗, r∗), ∀i ∈ {1, 2, ..., n}, we have

max
i
{ri + d2(Si, C

∗)} ≤ r∗. (4)

Thus, provided r ≥ r∗, we have C∗ ∈ ∩ℬ(r). Now, notice that for all i ∈ {1, 2, ..., n}
and for any 0 ≤ r′ ≤ (r− ri)− d2(Si, C

∗), we have the property that Ball(C∗, r′) ⊆
Bi(r). Thus, if we ensure that r′ ≤ r −maxi(ri + d2(Si, C

∗)), then Ball(C∗, r′) ⊆
∩ℬ(r). From Ineq. 4, we choose r′ = r − r∗ and obtain the lemma (see Figure 4).

For r = r∗, the common intersection ∩ℬ(r) reduces to a single point, namely the

circumcenter of the SEB: C∗ = ∩ℬ(r∗).

For practical algorithmic considerations to be detailed in the complexity analysis

later on, we relax this 1-piercing point problem (a typical 0-transversal problem

in combinatorial geometry) to that of a common piercing �r∗-ball (i.e., a ball of

radius �r∗): Namely, report whether there exists a ball B = Ball(C, �r∗) such that

B ⊆ ∩ℬ(r) or not (see Figure 4).

The algorithm for answering whether such a ball set ℬ can be covered by a

ball of radius r or not within tolerance factor �r∗ (ie., the corresponding set of
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balls Bi(r) with radii r − ri can be pierced by an �r∗ ball) is reported in details in

procedure DecisionProblem. The algorithm builds a core-set (sets Ci’s) iteratively

for the decision problem by narrowing the feasible domain for circumcenter C∗. It
is a primal-dual method since solving the dual piercing problem requires to solve

for primal smallest enclosing balls of balls (a covering problem). The algorithm

proceeds by considering the set of 1D intervals obtained as the intersection of the

input balls with the vertical line passing through the circumcenter of the smallest

enclosing ball of the core-set at the current iteration. If that set of intervals is

complete (i.e., meaning all balls intersect the line) and admits a common piercing

pointl then obviously this piercing point also stabs the set of d-dimensional balls.

Otherwise, there are two cases: Either there is a single ball that is not intersected

by the current vertical line, or we know from Helly’s theoremm that there exists

two disjoint intervals that do not intersect. We add the at most two balls to the

current core-set, update the circumcenter of the SEB of the core-set, check whether

the radius of the core-set SEB is less than r (otherwise we can already conclude

that r∗ > r) and repeat the process until we find a piercing point or the absolute

difference of the core-set radius with the query radius falls below the prescrived

threshold �. The algorithm is summarized in procedure DecisionProblem(ℬ, r, �).
Let k denote the maximum number of iterations of the while loop. Clearly, we

have the size of the core-set at the i-th iteration that is upper bounded by 2i:

∣Ci∣ ≤ 2i. Moreover, since ∩Ci+1 ⊂ ∩Ci and because the smallest enclosing ball is

unique, we have ri+1 > ri.

Lemma 3. For any ball B already chosen in some core-set Ci, the ball is necessarily
pierced (i.e., contained) by circumcenter points C(Kj) of core-sets, for j ≥ i+ 1.

Proof. Since C(Ki) is the center of the smallest enclosing ball of the center

points of balls of radius r of Ci, and ri = r(Ki) ≤ r, we have d2(C(Ki), C(B)) ≤ r

for all B ∈ Ci.

Because the algorithm is greedy and add one or two new balls in the core-set

at each iteration, it produces always terminate and produce the correct result. We

now bound the maximum number of iterations of this primal-dual decision problem.

Theorem 1. Procedure DecisionProblem correctly reports whether a set of ball can

be pierced by an �r∗-ball or not. The number of iterations, k, required by algorithm

DecisionProblem is a function depending only on d and �, and is independent of n.

We have k = O(1
�
)d.

Proof. Let vd(r) denote the volume of a d-dimensional ball of radius r, and

lA simple task requiring to sort the 2n interval extremities and check that the maximum left
interval bracket is below the minimum right interval bracket. This requires O(n logn) time.
mIn convex geometry, Helly’s theorem states that a set of convex objects has a common intersection
if and only if every subset of d+ 1 members do.



August 21, 2009 20:27 WSPC/Guidelines
IJCGA-NielsenNock2008cameraready

Approximating Smallest Enclosing Balls with Applications to Machine Learning(revised manuscript) 15

Algorithm:DecisionProblem(ℬ, r, �)
⊲ Solve test r ≥ r∗ or not (with precision �) using �r∗-ball piercing decision problem ⊳1

⊲ ℬ = {B1, ..., Bn} is the ball set with Bi = Ball(Si, ri) and Bi(r) = Ball(Si, r − ri) ⊳2

⊲ 0 < � < 1 is the approximation factor ⊳3

Let rr ≤ 2r∗ be the radius obtained from the näıve 2-approx. algorithm;4

Choose arbitrary B1 ∈ ℬ;5

C1 ← {B1};6

r1 ← r(B1);7

i← 1;8

while r − ri ≥ � rr2 do9

⊲ Consider intersections with the “vertical” line passing through Si ⊳10

⊲ xd denote the unit vector of the d-th coordinate axis ⊳11

Let Li : Si + �xd;12

⊲ ℬLi
denote the 1D intervals of the subset of balls intersecting line Li ⊳13

ℬLi
(r) = {B(r) ∩ Li ∣ B ∈ ℬ};14

if ∩ℬLi
(r) ∕= ∅ then15

⊲ We found a piercing point, i.e. r ≥ r∗ ⊳1617

return Yes18

else

if ∃B(r)∣B(r) ∩ Li = ∅ then19

⊲ Add a single ball to the core-set ⊳

Ci+1 = Ci ∪ {B};20

else

⊲ Add two balls to the core-set ⊳21

⊲ At most two cases to consider from Helly theorem on 1D intervals ⊳22

Let Bk(r) and Bl(r) such that (Bk(r) ∩ Li) ∩ (Bl(r) ∩ Li) = ∅;23

⊲ Increase core-set greedily ⊳24

Ci+1 = Ci ∪ {Bk, Bl};25

⊲ Primal-dual piercing/covering method on core-sets ⊳26

i← i+ 1;27

Ki = SEB(Ci);28

if r(Ki) > r then29

⊲ We have obviously r∗ > r⊳30

return No31

Si = C(Ki);32

⊲ We have r − r∗ ≤ �r∗ ⊳33

⊲ We stop looking for a piercing point (radius falls within precision range) ⊳34

⊲ Otherwise, we may iterate too many times ⊳35

return MayBe ;36
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vol(A) the volume of an object A ∈ Ed. Clearly, we have ∩Ci+1 ⊂ ∩Ci for all i ≥ 1.

Let Ki be the unique maximal ball contained in ∩Ci (obtained from the smallest

enclosing ball of the centers of balls contained in Ci). If C(Ki), the center of ball

Ki, does not fully pierce ℬ, then there exists either one ball Mi or two balls Mi

and Ni such that their intersection Ai (either Ai = Mi or Ai = Mi ∩ Ni) does

not contain C(Ki). Since Ai is convex, this means that there exists an hyperplane

Hi separating Ai from C(Ki). Let H
′
i be an hyperplane parallel to Hi and passing

through C(Ki), H
′+
i be the halfspace not containing Ai. Since ∩Ci+1 ⊂ ∩Ci, we

have vol(Ci+1) ≤ vol(Ci) − 1
2vd(r(Ki)). Since r(Ki) ≥ �r∗ and vol(C1) ≤ vd(2r

∗),
we get a sloppy upperbound k = O(1

�
)d (equivalently, k = O(1)d 1

�d
). In a good

scenario, where we split in half the volume of ∩Ci, we get k = O(d log2
1
�
).

By using these relaxed decision problems, we build an effective dichotomic al-

gorithm for finding a (1 + �)-approximation of the SEB (section 6 describes this

stage). Overall, this yields an O(d2n log2
1
�
) +Od,�(1) timen algorithm (improve by

a factor O(d) over the ellipsoid method). We observe experimentally that k tends

indeed to behave as in the good scenario (i.e., Od(log
1
�
)) and that the core-set sizes

are similar to the ones obtained by M. Bădoiu and K. Clarkson’s algorithm. By

solving O(log 1
�
) decision problems, we thus obtain a (1 + �)-approximation of the

smallest enclosing ball.

6. Small Dimensions Revisited

For small dimensions, we propose another efficient approach for solving planar de-

cision problems that relies on the same covering/piercing geometry property of

Lemma 2. We consider without loss of generality the planar case. Let x(P ) =

x1(P ) = xP denote the x-abscissa of a 2D point P = (xP , yP ). Let [n] = {1, ..., n}
and [xm, xM ] be an interval on the x-axis where an �r∗-disk center might be lo-

cated if it exists. (That is x(C) ∈ [xm, xM ] if it exists.) We initialize xm, xM as the

x-abscissae extrema: xm = maxi∈[n](xi) − r, xM = mini∈[n](xi) + r. If xM < xm

then clearly vertical line L : x = xm+xM

2 separates two extremum disks (those

whose corresponding centers give rise to xm and xM ) and therefore ℬ(r) is not 1-

pierceable (therefore not �r∗-ball pierceable). Otherwise, the algorithm proceeds by

dichotomy. Let e = xm+xM

2 and let L denotes the vertical line L : x = e. Denote by

ℬL = {Bi∩L∣i ∈ [n]} the set of n y-intervals obtained as the intersection of the disks

of ℬ with line L (see Figure 5). We check whether ℬL = {Bi ∩ L = [ai, bi]∣i ∈ [n]}
is 1-pierceable or not. Since ℬL is a set of n y-intervals, we just need to check

whether mini∈[n] bi ≥ maxi∈[n] ai or not. If ∩ℬL ∕= ∅, then we have found a point

(e,mini∈[n] bi) in the intersection of all balls of ℬ and we stop recursing. (In fact we

found a (x = e, y = [ym = maxi ai, yM = mini bi]) vertical piercing segment.) Oth-

erwise, we have ∩ℬL = ∅ and need to choose on which side of L to recurse. W.l.o.g.,

nThe Od,�(1) term denotes a function of d and � that is independent of n.
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xm xMe

Ly

x

L(xM )
L(xm)

xB1B2

B1

B2

Fig. 5. A recursion step: Median line L : x = e intersecs all disks. However, two y-intervals do not
intersect on L. Recursion is performed on x-range [e, xM ].

let B1 and B2 denote the two disks whose corresponding y-intervals on L are dis-

joint. We choose to recurse on the side where B1 ∩B2 is located (if the intersection

is empty then we stop by reporting the two non intersecting balls B1 and B2). Oth-

erwise, B1 ∩ B2 ∕= ∅ and we branch on the side where xB1B2
= x(C(B1))+x(C(B2))

2

lies in.

At each stage of the dichotomic process, we halve the x-axis range where the

solution is to be located (if it exists). We stop the recursion as soon as xM − xm <

� r2 . Indeed, if xM − xm < � r2 then we know that no center of a ball of radius

�r is contained in ∩ℬ. (Indeed if such a ball exists then both ∩ℬL(xm) ∕= ∅ and

∩ℬL(xM) ∕= ∅.) Overall, we recurse at most 3 + ⌈log2 1
�
⌉ times since the initial

interval width xM − xm is less than 2r∗ and we consider r ≥ r∗

2 .

Thus, by solving O(log2
1
�
) decision problems (dichotomy search), we obtain

a O(n log22
1
�
)-time deterministic (1 + �)-approximation algorithm. We bootstrap

this algorithm in order to get a O(n log2
1
�
)-time algorithm. The key idea is to

shrink potential range [a, b] of r∗ by selecting iteratively different approximation

ratios �i until we ensure that, at kth stage, �k ≤ � . Let Ball(C, r) be a (1 +

�)-approximation enclosing ball. Observe that ∣x(C) − x(C∗)∣ ≤ �r∗. We update

the x-range [xm, xM ] according to the current piercing point abcissae x(C) and

current approximation factor. We start by solving the approximation of the smallest

enclosing ball for �1 = 1
2 . It costs O(n log2

1
�1
) = O(n). Using the final output

range [a, b], we now have b − a ≤ �1r
∗. Consider �2 = �1

2 and reiterate until �l ≤
�. The overall cost of the procedure is

∑⌈log
2

1

�
⌉

i=0 O(n log2 2) = O(n log2
1
�
). This

dichotomic approximation algorithm is summarized in the pseudo-code procedure

DichotomicApproximationSED below. Note that the method extends to disks as



August 21, 2009 20:27 WSPC/Guidelines
IJCGA-NielsenNock2008cameraready

18 Frank Nielsen and Richard Nock

Method/Distribution □ max
⊙

max □ avg
⊙

avg

D. E. Eberly (� = 10−5) 0.7056 0.6374 0.1955 0.2767

J. Ritter (� ≤ 0.5) 0.0070 0.0069 0.0049 0.0049

2nd Method (� = 10−2) 0.0343 0.0338 0.0205 0.0286

2nd Method (� = 10−3) 0.0515 0.0444 0.0284 0.0405

2nd Method (� = 10−5) 0.0719 0.0726 0.0473 0.0527

Table 1. Benchmarking our approximation algorithms with respect to J. Ritter 21 and D. E.
Eberly’s implementation of MiniBall

5 for point sets drawn either from the uniform square dis-
tribution (□) or inside a small-width annulus (

⊙
).

well. We report on timings obtained from experimentso done on 1000 trials for

uniformly distributed 100000-point sets in a unit ring of width 2� (
⊙

) or unit

square (□). See Table 1. Maximum (max.) and average (avg.) running times are in

fractions of a second obtained by a 30-line C code on an Intel 1.6 GHz processor.

See the public code of D. E. Eberlyp for a randomized implementation.

7. Predicate Degree

Predicates are the basic computational atoms of algorithms that are related to

their numerical stabilities. D. E. Eberly uses the InCircle containment predicate

of algebraic degree 4 on integers (d + 2 in dimension d for integer arithmetic. The

degree drops to 2 if we consider rational arithmetic11). We show how to replace

the predicates of algebraic degree 4 by predicates of degree 2 for integers: ”Given a

disk center (xi, yi) and a radius ri, determine whether a point (x, y) is inside, on or

outside the disk”. It boils down to compute the sign of (x − xi)
2 + (y − yi)

2 − r2i .

This can be achieved using another dichotomy search on line L : x = l. We need

to ensure that if ym > yM , then there do exist two disjoint disks Bm and BM . We

regularly sample line L such that if ym > yM , then there exists a sampling point in

[yM , ym] that does not belong to both disks Bm and BM . In order to guarantee that

setting, we need to ensure some fatness of the intersection of ∩ℬ(r)∩L by recursing

on the x-axis until we have xM − xm ≤ �√
2
. In that case, we know that if there was

a common �r∗-ball intersection, then its center x-coordinate is inside [xm, xM ]: this

means that on L, the width of the intersection is at least �√
2
. Therefore, a regular

sampling on vertical line L with step width �√
2
guarantees to find a common piercing

point if it exists. A straightforward implementation would yield a time complexity

O(n
�
log2

1
�
). However, it is sufficient for each of the n disks, to find the upper most

and bottom most lattice point in O(log2
1
�
)-time using the floor function. Using the

bootstrapping method, we obtain a O(n log2
1
�
) time using integer arithmetic with

algebraic predicates InCircle of degree 2. In dimension 3 and higher, the dimension

oSource code is available at http://www.sonycsl.co.jp/person/nielsen/PT/seb/sebdisk.html
phttp://www.magic-software.com
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DicℎotomicApproximationSED(S = {(xi, yi)}i, �);1

xmin = mini∈{1,...,n} xi; xmax = maxi∈{1,...,n} xi;2

d1 = maxi∈{1,...,n} ∣∣Si − S1∣∣;3

b = d1; a = d1

2 ; �← 1
4 (b − a)�;4

pierceable = false; qdisjoint = false;5

while b− a > � do6

r = a+b
2 ;7

xM = xmin + r;8

xm = xmax− r;9

pierceable = false;10

while xM − xm ≥ � and ¬pierceable and ¬qdisjoint do11

l = xM+xm

2 ;12

ym = maxi∈{1,...,n} yi −
√

r2 − (l − xi)2;13

m = argmaxi∈{1,...,n}yi −
√

r2 − (l − xi)2;14

yM = mini∈{1,...,n} yi +
√

r2 − (l − xi)2;15

M = argmini∈{1,...,n}yi +
√

r2 − (l − xi)2;16

if yM ≥ ym then17

x = l;18

y = ym+yM

2 ;19

pierceable = true;20

else

// m and M are arg indices of ym and yM ;21

if ∣∣Sm − SM ∣∣ > 2(r − �) then22

qdisjoint = true;

else

if xm+xM

2 > l then23

xm = l;24

else

xM = l;25

if pierceable then26

b = r;27

else

if qdisjoint then28

a = ∣∣Sm−SM ∣∣
2 + � ;29

else

a = r;30

reduction algorithm extends with a running time Od(n log2
1
�
). As a side-effect, we

improve the result of D. Avis and M. E. Houle33 for the following problem: Given

a set ℬ of n d-dimensional balls of Ed, we can find whether ∩ℬ = ∅ or report a

common intersection point in ∩ℬ in deterministic Od(n
d logn) time and Od(n

d)
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space.

8. Applications of SEBs in Machine Learning

The computational machine learning community investigates algorithms that im-

prove their performances by their experience. Classification generally follows three

paradigms: it is unsupervised when the goal is to discover the structure of data

sets, it is supervised when the goal is to infer a link between this structure and the

prediction of a class, and it is partially supervised when both aspects are mixed

(equivalently, class information is available only for a subset of the data). We refer

to the textbook of T. Hastie et al.34 for an overview of the statistical approachq

of machine learning. Statistical learning is the branch of machine learning (mostly

classification) that burgeons in statistical issues, such as consistency and general-

ization.

We describe concisely below how the use of approximate SEB algorithms was

recently used to extend a popular classification technique, called support vector

machines35,36 (SVMs), for state-of-the-art performance in real-world applications. It

is actually not surprising to find applications of computational geometry in machine

learning as data sets can be geometrically interpreted as point sets lying in some

information space and classifiers visualized as geometric separators.

8.1. From support vector machines to ball vector machines

The basic underlying principle of SVMs for 2-class classification task was

first reported by V. Vapnik and A. Lerner in their 1963 paper.37 Let D =

{(x1, y1), ..., (xn, yn)} be a training set of data, where xi ∈ ℝd denotes the d-

dimensional feature vector and yi ∈ {−1,+1} its booleanr class. Suppose the two

classes +1 and −1 are linearly separable. This means that there exists a hyperplane

H :< W,X > +b = 0 that splits the training vectors so that all the +1 features

are located, say, on the upper half-space H+ :< W,X > +b > 0 (and all −1 fea-

tures are in H− :< W,X > +b < 0). The (linear) support vector machine simply

choose the unique separating hyperplane H∗ that maximizes the margin, i.e. the

minimum distance of +1/−1 features to the hyperplane. The optimal separating

hyperplane H∗ and the bounding feature vectors are found by solving a simple

quadratic minimization program38: minW
1
2 < W,W > (provided the hyperplane

equation is written in the usual canonical way36). Since most data sets in practice

are unfortunately not linearly separable, we need do adapt the linear SVM tech-

nique by introducing a trade-off between correctly and incorrectly classified vectors.

Typically, a penalty function is introduced in the quadratic program to determine

the soft margin. Soft margin linear SVM yet does not allow to consider 2-class sets

qStatistical learning assumes that data sets are randomly drawn from any kind but fixed statistical
distributions.
rExtension to multi-class34,36 is easy from the 2-class setting.
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of concentric data. This was tackled later on, in 1992, by B. Boser et al.35 by intro-

ducing kernel SVM. The kernel “trick” that works for any non-linearly separable

data sets consists in mapping the feature vectors xi into higher-dimensional vec-

tors k(xi) so that the lifted training data becomes linearly separable. It is always

possible to find such a kernel k : ℝd → ℝD by augmenting the dimension D. The

beauty of kernel SVMs is that we do not manipulate explicitly higher-dimensional

feature vectors but rather uses some inner product property induced by the kernel

to find the optimal separating hyperplane of ℝD that yields a (non-linear) separator

in ℝd with potentially several connected components. Kernel SVMs have obtained

outstanding practical performance and is acclaimed as one of the crowns of machine

learning. The computational bottleneck of (kernel) SVM is the quadratic program-

ming (QP) optimization stage. A naive QP solver requires O(n3) time using O(n2)

space. Tsang et al.39 proposed in 2005 the Core Vector Machine (CVM) which

combines the principle of SVM training with the SEB and allows one thus to scale

up kernel methods. Informally speaking, the QP solver in SVM is replaced by a

SEB problem for which an efficient (1+ �)-approximation is obtained (see section 4)

yielding to close-to-optimal solution. Note that hyperplanes can be interpreted as

infinite-radius balls, and thus CVMs nicely generalizes the principle of geometric

containment classifier. An important trick of CVM is to map the SVM problem

into a SEB problem in which the class information is melted into the structure of

data. Although the CVMs have experimentally proved efficient for classification,

regression and semi-supervised learning, it was further made simple by Tsang et

al.40 in their recent paper on Ball Vector Machines (BVMs) by considering fixed ra-

dius balls in the core-set optimization process (see Panigrahy’s core-set8 algorithm

described in section 4).

8.2. From Euclidean balls to information-theoretic balls

Feature vectors F in machine learning are conveniently interpreted as geometric

points in an underlying feature space F. In practice, real-world data sets to process

are highly heterogeneous. That is, feature vectors are assembled from homogeneous

vectors by stacking successively their components on top of each other. Thus feature

space F is rather seen as a heterogeneous feature space obtained as the Cartesian

product of k elementary spaces: F = F1× ...×Fk. Homogeneous spaces can either be

quantitative (values obtained from measurements), qualitative (descriptive tags) or

ordered categorical (such as small<medium<large). Therefore the distance between

any two feature points is likely not to be the usual Euclidean distance, and special

care need to be made for defining appropriately the equivalent meaning of “maxi-

mum” margin or balls. This is all the more important as distances measuring the

(dis)similarity may be asymmetric and not any more satisfying the triangle inequal-
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ity. We have showns in subsequent papers6,41,42 that both Welzl’s exact randomized

linear time SEB algorithm and Bădoiu and Clarkson’s core-set approximation SEB

algorithm generalizet nicely to a broader class of information-theoretic divergences

called Bregman divergences. Bregman divergences are motivated by an axiomatic

characteristic of a least squares “projection” optimization problem.43 They are use-

ful from the practitioner standpoint as they ease the construction of appropriate

distances for heterogeneous spaces (modularity) and encapsulate conveniently the

traditional (squared) Euclidean distance with various entropic functions like the

relative entropy (also known as Kullback-Leibler or Information divergence). More-

over, it was proved44 that the Vapnik-Chervonenkis dimension of Bregman ballsu

of ℝd is d+ 1, namely identical to the case of Euclidean balls. This invariant prop-

erty of the VC-dimension is all the more important for characterizing the capacity

and accuracy34 of learning methods that should not overfit training data sets. Fur-

ther applications of information-theoretic SEBs are therefore expected in machine

learning. Note that the geometric duality of covering and piercing problems de-

scribed in Lemma 2 does not apply anymore “as is” in those information-theoretic

spaces. (Lemma 2 only holds for symmetric Bregman divergences: namely, general-

ized quadratic distances.44)

9. Conclusion

In this paper, we have first concisely surveyed and categorized major methods for

computing exactly or approximately the smallest enclosing ball of a given set of

points/balls in arbitrary dimension. We have then described a novel primal-dual

core-set approximation algorithm for fitting the smallest enclosing ball that relies

on the geometric duality of piercing/covering balls by balls. We have refined the ap-

proximation algorithm for small dimensions, and reported on implementation exper-

iments. Finally, we have presented state-of-the-art machine learning algorithms for

classification problems that rely on effective computations of exact or approximate

SEBs, and discussed about the generalizations of the SEB in information-theoretic

spaces: information-theoretic Bregman SEBs.

We conclude by mentioning a few research avenues for future work on the SEB

problem:

∙ Consider the SEB problem under the data stream model of computation that

assumes only sublinear memory (typically polylogarithmic space O(logO(1) n)).

Data sets are potentially allowed to be streamed several times for comput-

ing the solution using multi-pass algorithms. H. Zarrabi-Zadeh and T. Chan22

sApplets online at http://www.sonycsl.co.jp/person/nielsen/BregmanBall/BBC/ and http://

www.sonycsl.co.jp/person/nielsen/BregmanBall/MINIBALL/
tPanigrahy’s core-set algorithm8 also generalizes to the case of Bregman divergences by sliding
the ball circumcenter on the geodesic linking it to the farthest point F until it touches F .
uBregman balls may not be necessarily convex. That makes them even more attractive to use as
geometric classifiers.
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proved that the simple heuristic of J. Ritter21 yields a 3/2-approximation al-

gorithm in arbitrary dimension using minimum space and a single pass. The

query point/set distance filtering mechanism presented in section 3 can further

be adapted into that setting using the interpoint distance approximation al-

gorithm of N. Alon et al.32 for ultra high dimensions. See also extensions and

negative results concerning information-theoretic distances.45

∙ We have assumed (uniform constant) Euclidean distance function for writing

down the circumcenter as a minimax optimization problem (see Equation 1).

Namely, the SEB in Euclidean space. Consider now a tensor metric G that

allows to compute the distance between any two points as the integral of the

Riemannian metric along the geodesic path Γ(P,Q) linking these points (dt =

Gdx):

dG(P,Q) =

∫

Γ(P,Q)

√

Gij

dxi
dt

dxj
dt

dt. (5)

The Riemannian SEB generalizes the Euclidean SEB by taking G = I, the iden-

tity matrix. The hyperbolic geometric (and hyperbolic SEB) is characterized by

choosing tensor dt2 = 4
∑

i
dx2

i

1−∑
i
x2

i

2

. Preliminary result for the special case where

dG(P,Q) = dP (Q) is described in the thesis of Zürcher46. See also the notions

of bags of Bregman divergences44 and farthest Bregman Voronoi diagrams from

which the circumcenter can be efficiently retrieved47 from.

∙ The SEB problem is one of the simplest form of geometric containment para-

metric optimization problems. Consider more challenging shapes like the small-

est enclosing ellipsoid of ellipsoids48, smallest enclosing annulus of balls49 with

SVM-like applications in machine learning. See the recent work of Brandenberg

and Roth presenting50 a cutting plane algorithm for homothetic containment

problems and that of K. Clarkson51 reinterpreting and strenghtening core-set

bound results of computational geometry under the framework of the Frank-

Wolfe algorithm38 for convex programming.

∙ Consider several statistical distributions (eg., uniform, normal, Poisson, etc.)

and analyze the expected combinatorial size complexity of the support

point/ball basis of the SEB. Devise efficient SEB algorithms according to those

statistical properties.
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13. B. Gärtner. A subexponential algorithm for abstract optimization problems. SIAM
Journal of Computing, 24(5):1018–1035, 1995.
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18. K. Fischer, B. Gärtner, and M. Kutz. Fast smallest-enclosing-ball computation in high
dimensions. In 11th Annual European Symposium, pages 630–641, 2003.

19. T. Hopp and C. Reeve. An algorithm for computing the minimum covering sphere in
any dimension, 1996. NISTIR 5831.

20. P. Gritzmann and V. Klee. Computational complexity of inner and outer j-
radii of polytopes in finite-dimensional normed spaces. Mathematical Programming,
59(2):163–213, 1993.

21. J. Ritter. An efficient bounding sphere. In Graphics gems, pages 301–303. Academic
Press Professional, Inc., 1990.

22. H. Zarrabi-Zadeh and T. Chan. A simple streaming algorithm for minimum enclosing
balls. In Proceedings 18th Canadian Conference on Computational Geometry, pages
139–142, 2006.



August 21, 2009 20:27 WSPC/Guidelines
IJCGA-NielsenNock2008cameraready

Approximating Smallest Enclosing Balls with Applications to Machine Learning(revised manuscript) 25

23. X. Wu. A linear-time simple bounding volume algorithms. In Graphics gems III, pages
301–306. Academic Press, 1992.

24. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization, volume 2. Springer, second corrected edition edition, 1993.
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