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ABSTRACT

Mixture models are a crucial statistical modeling tool at the
heart of many challenging applications in computer vision,
machine learning, and text classification among others. In
this paper, we describe a novel and efficient algorithm for
simplifying Gaussian mixture models using a generalization
of the celebrated k-means quantization algorithm tailored to
relative entropy in statistical distribution spaces. Our algo-
rithm extends easily to arbitrary mixture of exponential fam-
ilies. The proposed method is shown to compare favourably
well with the state-of-the-art unscented transform clustering
algorithm both in terms of time and quality performances.

1. INTRODUCTION AND PRIOR WORK

A mixture model provides a powerful framework to estimate
a probability density function of a random variable using
a mixture distribution. For instance, the Gaussian mixture
models (GMMs for short) – also known as mixture of Gaus-
sians (MoGs) – have been widely used in many different area
domains such as image processing, finance, etc.
The density of a mixture model f evaluated at point x ∈ Rd

is given by

f (x) =
n

∑
i=1

αi fi(x) (1)

where αi ≥ 0 denotes the weight of each component of the
mixture, with ∑

n
i=1 αi = 1. If f is a Gaussian mixture model,

each function fi is a multivariate Gaussian function

fi(x) =
1

(2π)d/2|Σi|1/2 exp

(
−

(x−µi)T Σ
−1
i (x−µi)

2

)
(2)

parametrized by its mean µi ∈ Rd and its covariance sym-
metric positive-definite matrix Σi � 0. It is common to es-
timate model parameters from independent and identically-
distributed observations using expectation-maximization
(EM) local optimization algorithm [3].
A typical operation on mixture models is the estimation
of statistical measures such as Shannon entropy or the
Kullback-Leibler divergence. With large number of com-
ponents in the mixture model (e.g. arising from a kernel-
based Parzen density estimation [11]), the estimation of these
measures can be a bottleneck in terms of computation time.
The computational requirements can be strongly decreased
by reducing the number of components in the mixture model.
Given a mixture model f containing n components (see
Eq. (1)), the problem of mixture model simplification con-

sists in computing a simpler mixture model g

g(x) =
m

∑
j=1

α
′
jg j(x) (3)

with m components (1 ≤ m < n) such as g is the “best”
approximation of f with respect to a similarity measure.
Another way to obtain a compact representation of f is
to re-learn the mixture model directly from the source
dataset. However, depending on the application, this may
not be applicable [5]. Indeed, the estimation of a mixture
model is computationally expensive with large datasets,
or sometimes, the initial dataset is not anymore available.
Reducing the initial mixture model is then the only way.

Some methods of mixture model simplification have
been proposed in the last decade. Zhang and Kwok [12] have
proposed to simplify a GMM by first grouping similar com-
ponents together and then performing local fitting through
function approximation. By using the squared loss to mea-
sure the distance between mixture models, their algorithm
naturally combines the two different tasks of component
clustering and model simplification. Goldberger et al. [5]
have proposed a fast GMM simplification algorithm named
UTAC (Unscented Transform Approximation Clustering)
based on the Unscented Transform (UT) method [4, 8].
The UTAC algorithm proceeds by maximizing the UTA
(Unscented Transform Approximation of the negative
cross-entropy) criterion computed between the two GMMs,
f and g. The authors show that the UTA criterion can be
maximized with a standard EM-like algorithm. Davis and
Dhillon [2] have proposed a hard clustering algorithm based
on the decomposition of the relative entropy as the sum
of a Burg matrix divergence with a Mahalanobis distance
parametrized by the covariance matrices. Goldberger and
Roweis [6] have proposed a GMM simplification algorithm
based on the k-means hard clustering. A common drawback
of these methods is that they only consider the problem of
GMM simplification. However, other kind of mixture mod-
els have been successfully used in different applications such
as multinomial mixture models in text classification [10].
Proposing a simplification algorithm working not only on
GMMs but on a generic wider class of mixture models,
called exponential families, is necessary.

In this paper, we describe a novel and efficient algo-
rithm for simplifying Gaussian mixture models using a gen-
eralization of the celebrated k-means quantization algorithm
tailored to relative entropy. Our algorithm extends easily
to arbitrary mixture of exponential families. The proposed
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method is shown to compare favourably well with the state-
of-the-art UTAC algorithm both in terms of time and quality
performances.

2. ENTROPIC QUANTIZATION OF GMMS

2.1 Relative entropy and Bregman divergence
The fundamental measure between statistical distributions is
the relative entropy, also called the Kullback-Leibler diver-
gence (denoted by KLD). For fi and f j two distributions, the
KLD is an oriented distance (asymmetric) and is defined as

KLD( fi|| f j) =
∫

fi(x) log
fi(x)
f j(x)

dx. (4)

This fastidious integral computation yields for multivariate
normals

KLD( fi|| f j) =
1
2

log
(

detΣ j

detΣi

)
+

1
2

tr
(

Σ
−1
j Σi

)
+

1
2
(µ j−µi)T

Σ
−1
j (µ j−µi)−

d
2

(5)

where tr(Σ) is the matrix trace operator, i.e. the sum of its
diagonal elements.
It turns out that we can bypass the integral computa-
tion using the canonical form of exponential families [1]
exp
{
< Θ̃, t(x) >−F(Θ̃)+C(x)

}
where Θ̃ are the natural

parameters associated with the sufficient statistics t(x). The
log normalizer F(Θ̃) is a strictly convex and differentiable
function that specifies uniquely the exponential family, and
the function C(x) is the carrier measure (e.g., Lebesgue or
counting measures). The relative entropy between two dis-
tribution members of the same exponential family is equal to
the Bregman divergence defined for the log normalizer F on
the natural parameter space:

KLD( fi|| f j) = DF(Θ̃ j||Θ̃i) (6)

where

DF(Θ̃ j||Θ̃i) = F(Θ̃ j)−F(Θ̃i)−< Θ̃ j−Θ̃i,∇F(Θ̃i) > . (7)

The < ·, · > denotes the inner product < p,q >= pT q and
∇F is the gradient operator. For multivariate normals, we
consider mixed-type vector/matrix parameters. The suffi-
cient statistics is stacked onto a two-part d-dimensional vec-
tor/matrix entity x̃ = (x,− 1

2 xxT ) associated with the natural
parameter Θ̃ = (θ ,Θ) = (Σ−1µ, 1

2 Σ−1). The log normalizer
specifying the exponential family is [9]

F(Θ̃) =
1
4

tr(Θ−1
θθ

T )− 1
2

logdetΘ+
d
2

log2π.

The inner product < Θ̃p,Θ̃q > becomes a composite inner
product obtained as the sum of two inner products of vectors
and matrices: < Θ̃p,Θ̃q >=< Θp,Θq > + < θp,θq >. For
matrices, the inner product < Θp,Θq > is defined by the trace
of the matrix product ΘpΘT

q : < Θp,Θq >= tr(ΘpΘT
q ). The

gradient ∇F is given in mixed vector-matrix type by

∇F(Θ̃) =
( 1

2 Θ−1θ

− 1
2 Θ−1− 1

4 (Θ−1θ)(Θ−1θ)T

)
.

2.2 Bregman k-means
Banerjee et al. [1] extended Lloyd’s k-means algorithm to
the class of Bregman divergences, generalizing also the for-
mer Linde-Buzo-Gray and information-theoretic clusterings.
They proved that the simple Lloyd’s iterative algorithm min-
imizes monotonically the Bregman (right-sided) loss func-
tion:

LossFunctionF({x1, ...,xn};k) = min
c1,...,ck

∑
k

∑
i

DF(xi|| ck ).

where xi are the source point sets and ck the respective clus-
ter centroids. Thus a right-sided Bregman k-means is a left-
sided differential entropic (i.e. KLD) clustering, and vice-
versa. In this paper, we propose a GMM simplification al-
gorithm based on Bregman k-means. The k-means algorithm
is the repetition until convergence of two steps: first calcu-
late membership in clusters (repartition step), and second re-
compute the centroids. The algorithms 1 and 2 respectively
present the right-sided and the left-sided Bregman k-means
clustering algorithms (noted BKMC).
Figure 1 shows the left-sided (blue) and right-sided (red) en-
tropic centroids of a set of five bivariate normals.

Figure 1: Screenshot of the left-sided (blue) and right-sided
(red) entropic centroid of bivariate normals. Each normal is
represented by a point in dimension 5 and rasterized on the
canvas as a centered ellipse.

Algorithm 1 BKMC right-sided( f ,m)
1: Initialize the GMM g.
2: repeat
3: Compute the cluster C. The Gaussian fi belongs to

cluster C j if and only if

DF(Θ̃i‖Θ̃′j) < DF(Θ̃i‖Θ̃′l), ∀l ∈ [1,m]\{ j} (8)

4: Compute the centroids. The natural parameters of the
j-th centroid (i.e. Gaussian g j) are given by:

α
′
j = ∑

i
αi, θ

′
j = ∑i αiθi

∑i αi
, Θ

′
j = ∑i αiΘi

∑i αi
(9)

The sum ∑i is performed on i ∈ [1,m]/ fi ∈C j.
5: until the cluster does not change between two iterations.

2.3 Symmetric Bregman k-means
For some applications (e.g. content-based image retrieval),
the use of a symmetric similarity measure is required. The
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Algorithm 2 BKMC left-sided( f ,m)
1: Initialize the GMM g.
2: repeat
3: Compute the cluster C. The Gaussian fi belongs to

cluster C j if and only if

DF(Θ̃′j‖Θ̃i) < DF(Θ̃′l‖Θ̃i), ∀l ∈ [1,m]\{ j}

4: Compute the centroids. The natural parameters of the
j-th centroid (i.e. Gaussian g j) are given by:

α
′
j = ∑

i
αi, Θ̃

′
j = ∇F−1

(
∑

i

αi

α ′j
∇F
(
Θ̃i
))

(10)

where

∇F−1(Θ̃) =

(
−
(
Θ+θθ T

)−1
θ

− 1
2

(
Θ+θθ T

)−1

)
(11)

5: until the cluster does not change between two iterations.

BKMC algorithm can be adapted to satisfy this condition by
using the symmetrized Bregman divergence. Previously, the
repartition step used the right-sided or the left-sided Breg-
man divergence to gather the Gaussians of f into a cluster.
Instead, we propose to use the symmetric Bregman diver-
gence noted SDF . Given two Gaussians Θ̃p and Θ̃q (natural
parameters), SDF is the mean of the right-sided and left-sided
Bregman divergence:

SDF(Θ̃p,Θ̃q) =
DF(Θ̃q||Θ̃p)+DF(Θ̃p||Θ̃q)

2
(12)

The centroid step consists first in computing the right-sided
and left-sided centroids (respectively noted cr and cl) as ex-
plained in algorithms 1 and 2. The symmetric centroid c be-
longs to the geodesic link between cr and cl . A point on this
link is given by

cλ = ∇F−1 (λ∇F(cr)+(1−λ )∇F(cl)) (13)

where λ ∈ [0,1]. The symmetric centroid c = cλ verifies

SDF(cλ ,cr) = SDF(cλ ,cl). (14)

A standard dichotomy search on λ allows to quickly find the
symmetric centroid c for a given precision.

3. EXPERIMENTS

3.1 Bregman k-means clustering
In this section, we apply the BKMC algorithm for simpli-
fying Gaussian mixture models. We compare the influence
of the Bregman divergence type (right-sided, left-sided, or
symmetrized) on the quality of the simplified GMM g. This
quality is usually evaluated through the standard right-sided
KLD between f and g. The KLD is estimated with a clas-
sical Monte-Carlo algorithm [7] since it does not admit any
closed-form solution.
For this experiment, the initial GMM f is composed of 32

Gaussians and is computed from the image Baboon (see fig-
ure 4): first we perform a standard k-means algorithm to
gather RGB pixels in 32 classes, second we compute f with a
standard Expectation-Maximization algorithm (EM). The di-
mension of the Gaussians is 3 (components RGB: red, green,
blue).
The figure 2 shows the evolution of the KLD as a function of
m (number of the Gaussians in the simplified GMM) for the
different Bregman divergence types (right-sided, left-sided,
or symmetric) used in the BKMC algorithms. First, the KLD
decreases with m as expected whatever the Bregman diver-
gence type used. Indeed, the quality of the approximation of
the initial GMM f increases with the number of Gaussians in
the simplified model g. Second, the left-sided Bregman di-
vergence gives the best results and the right-sided the worst.
The measure used to evaluate the quality of the simplifica-
tion is the right-sided KLD. The left-sided Bregman cluster-
ing on natural parameters amounts to compute a right-sided
KLD clustering on corresponding probability measures [9],
and vice-versa. Obtaining the best approximation with the
left-sided BKMC is then the expected behaviour. The sym-
metric centroid, being computed from right and left cen-
troids, provides better results than right-sided divergence but
worse than left-sided divergence. It turns out that the differ-
ential entropic clustering method of Davis and Dhillon [2]
is a right-sided Bregman clustering presented as a left-sided
KLD entropic clustering. In the paper remainder, we will use
the left-sided BKMC.

Figure 2: Evolution of the (right-sided) KLD as a function
of m for algorithms right-sided, left-sided, and symmetric
BKMC. The left-sided BKMC provides the best approxima-
tion of the initial GMM.

3.2 BKMC versus UTAC

The figure 3 shows the evolution of the KLD as a function of
m (number of classes for the simplified GMM) for algorithms
UTAC and BKMC (left-sided). Both algorithms are writ-
ten in Java. The initial GMM is computed as in section 3.1.
With the two methods, the KLD decreases with m. BKMC
provides the best results and is faster than UTAC algorithm:
for m = 16, the clustering process is performed in 20 mil-
liseconds for BKMC and 900 milliseconds for UTAC on a
Dell Precision M6400 laptop (Intel Core 2 duo @ 2.53GHz,
4Go DDR2 memory, Windows Vista 64 bits, Java 1.6). In-
deed, BKMC is based on a k-means algorithm which gener-
ally quickly converges. UTAC uses a EM method known to
converge slowly (i.e. within a threshold after large number
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of iterations). We automatically stop the UTAC process after
30 iterations if the process has not converged.

Figure 3: Evolution of the Kullback-Leibler divergence as a
function of m for algorithms BKMC (proposed method) and
UTAC.

3.3 Clustering-based image segmentation
In this section, we apply the GMM simplification methods in
the context of clustering-based image segmentation problem.
Given a color image, a pixel x can be considered as a point
in R3. Given a GMM f of n Gaussians, the segmentation
is performed by affecting each pixel x to the most probable
class Ci:

fi(x) > f j(x) ∀ j ∈ [1,n]\{i}
The segmentation is then illustrated by assigning the value of
the class representative µi to the pixel x.
For this experiment (see figure 4), we first consider an im-
age (first column) and we compute an initial GMM f of 32
components as described in section 3.1. From this GMM,
we compute the image segmentation (second column). f is
then simplified into a 16 components GMM with algorithms
UTAC and BKMC providing two different image segmenta-
tions (respectively third and fourth columns of the figure 4).
The images used for the experiment are Baboon, Lena, Col-
ormap, and Shantytown. The figure 4 also shows the value
of the KLD (right-sided) between f and g.
With all images tested, the algorithm BKMC provides the
best results (in terms of KLD value). The visual segmen-
tation seems to be better with BKMC (closer to the initial
segmentation). However, it is difficult to objectively judge
the quality of the simplified GMM. Only a similarity mea-
sure such as Kullback-Leibler allows to compare both ap-
proaches.

4. CONCLUDING REMARKS

We have described a novel algorithm (BKMC) for simplify-
ing Gaussian models based on a powerful generalization of
Lloyd’s celebrated k-means algorithm to entropic Bregman
divergences [1]. Our algorithm extends easily to arbitrary
mixture of exponential families. Interestingly, BKMC by-
passes the problem of solving costly eigenvalue problems to
find out the sigma points required by the state-of-the-art un-
scented transform clustering algorithm [5] (UTAC). We thus
obtain faster simplification processing times as the dimen-
sion increase. Experiments corroborate that BKMC yields

better results in shorter computational time.
Quantizing GMM by k-means amounts to locally minimize
the loss function defined as the Bregman information of all
Gaussians minus the Bregman information of the codebook.
Our method is thus related to rate distortion and information
bottleneck theory as explained in [1]. As a future work, we
are considering learning automatically the most appropriate
number of components m in a simplified model. A Java ap-
plet illustrating the BKMC quantization algorithm is avail-
able on-line at:
http://www.sonycsl.co.jp/person/nielsen/KMj/
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Lena Initial GMM UTAC ; KLD = 0.92 BKMC ; KLD = 0.13

Baboon Initial GMM UTAC ; KLD = 0.39 BKMC ; KLD = 0.07

Colormap Initial GMM UTAC ; KLD = 1.37 BKMC ; KLD = 0.58

Colormap Initial GMM UTAC ; KLD = 1.37 BKMC ; KLD = 0.58

Figure 4: Application of GMM simplification algorithms for clustering-based image segmentation. The first and second
columns show respectively the input image and the segmentation computed from the initial GMM f composed of 32 Gaus-
sians. The third and fourth columns show the segmentations respectively computed after the simplification of f with the
algorithms UTAC and BKMC. The BKMC algorithm provides the best results according to the KLD value. The images tested
are (from left to right) Baboon, Lena, Colormap, and Shantytown.
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