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Abstract—Bartlett et al. (2006) recently proved that a ground condition for surrogates, classification calibration, ties up their consistent

minimization to that of the classification risk, and left as an important problem the algorithmic questions about their minimization. In this

paper, we address this problem for a wide set which lies at the intersection of classification calibrated surrogates and those of Murata

et al. (2004). This set coincides with those satisfying three common assumptions about surrogates. Equivalent expressions for the

members—sometimes well known—follow for convex and concave surrogates, frequently used in the induction of linear separators

and decision trees. Most notably, they share remarkable algorithmic features: for each of these two types of classifiers, we give a

minimization algorithm provably converging to the minimum of any such surrogate. While seemingly different, we show that these

algorithms are offshoots of the same “master” algorithm. This provides a new and broad unified account of different popular algorithms,

including additive regression with the squared loss, the logistic loss, and the top-down induction performed in CART, C4.5. Moreover,

we show that the induction enjoys the most popular boosting features, regardless of the surrogate. Experiments are provided on

40 readily available domains.

Index Terms—Ensemble learning, boosting, Bregman divergences, linear separators, decision trees.

Ç

1 INTRODUCTION

SUPERVISED learning is the problem that consists of finding
a functional link between observations and classes that

takes the form of a classifier, on the sole basis of a random
set of examples that usually provides only few of these
links. A very active supervised learning trend has been
flourishing over the last decade: It studies functions known
as surrogates—upper bounds of the empirical risk, generally
with particular convexity properties—whose minimization
remarkably impacts on empirical/true risks minimization
[1], [2], [3]. Surrogates play fundamental roles in some of
the most successful supervised learning algorithms, includ-
ing AdaBoost, additive logistic regression, decision tree
induction, Support Vector Machines [4], [5], [3], [6]. As their
popularity has been rapidly spreading, authors have begun
to stress the need to set in order the huge set of surrogates,
and better understand their properties. Statistical consis-
tency properties have been shown for a wide set containing
most of the surrogates relevant to learning, classification
calibrated surrogates [1]; other important properties, like the
algorithmic questions about minimization, have been
explicitly left as important problems to settle [1]. A relevant
contribution on this side came earlier from Murata et al. [7],

who proved mild convergence results on an algorithm
inducing linear separators and working on a large class of
convex surrogates, not necessarily classification calibrated;
Murata et al. [7] also left as an important problem the
necessity to fully solve this algorithmic question, such as by
providing convergence rates.

In this paper, we address and solve this problem for all
surrogates that satisfy three of the most common assump-
tions about surrogates in supervised learning: lower
boundedness, symmetries in the cost matrix, and compli-
ance with proper scoring rules [8]. We define such
surrogates as permissible; the corresponding losses belong
to a subset of Bregman divergences that we fully character-
ize. This set resembles classical surrogates (convex or
concave), and provides a unified view of estimation and
confidence-rated prediction [5] via a particular link with the
exponential families of distributions. As we show, it is quite
remarkable that all satisfy the pointwise form of Fisher
consistency of classification calibrated surrogates [1] and
the convexity property of U-Boost surrogates [7] so that our
results are finally relevant to both sets of surrogates.

Our algorithmic contribution consists of providing two
provably universal minimization algorithms, for linear
separators and decision trees, that provably converge to
the optimum of any permissible surrogate. There is more, as
they enjoy popular features of boosting algorithms, includ-
ing guaranteed convergence rates under very weak as-
sumptions. Apart from being one more advocacy for the
computational supremacy of surrogates, these two algo-
rithms and their analysis manage to unite popular members
for the induction of linear separators and decision trees as
instances of the same “master” algorithm, thus capturing
the main features of both the surrogates and the classifiers.

Section 2 gives definitions and Section 3 presents
permissible surrogates and their properties. Section 4
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presents and proves the corresponding minimization
algorithms. Section 5 provides and discusses experiments,
and Section 6 concludes.

2 DEFINITIONS

Unless otherwise stated, bold-faced variables like ww denote

vectors (components are wi, i ¼ 1; 2; . . . ), calligraphic upper

cases like S denote sets, and blackboard faces like OO denote

subsets of IR, the set of real numbers. We let set O denote a

domain (IRn, ½0; 1�n, etc., where n is the number of

description variables), whose elements are observations. An

example is an ordered pair ðoo; cÞ 2 O � fc�; cþg, where

fc�; cþg denotes the set of classes (or labels) and cþ

(respectively, c�) is the positive class (respectively, negative

class). Classes can take on any values whose semantic is

related to the domain (e.g., good/bad, small/large, etc.).

Rather than leaving this set as is, people usually carry out

an abstraction of classes that fits to theoretical studies, by a

bijective mapping to one of two other sets:

c 2 fc�; cþg Ð y� 2 f�1;þ1g  y 2 f0; 1g:

The convention is cþ Ð þ1Ð 1 and c� Ð �1Ð 0. We thus

have three distinct notations for an example: ðoo; cÞ, ðoo; y�Þ,
ðoo; yÞ that shall be used without ambiguity. We suppose

given a set of m examples, S ¼ fðooi; ciÞ; i ¼ 1; 2; . . . ;mg.
Our objective is to build a classifier H, which can either be

a function H : O ! OO � IR (hereafter, OO is assumed to be

symmetric with respect to 0) or a function H : O ! ½0; 1�.
Following a convention of [9], we can compute to which

extent the outputs of H and the labels in S disagree, "ðS; HÞ,
by summing over all examples a loss ‘ which quantifies

pointwise disagreements:

"ðS; HÞ ¼�
X
i

‘ðci;HðooiÞÞ: ð1Þ

The smaller "ðS; HÞ, the better H. Wherever needed for a

clear distinction of the output of H, we put in index to ‘ and

" an indication of its image (IR, meaning it is actually some

OO � IR, or ½0; 1�). Sometimes, we also put in exponent an

indication of the loss name. For example, we let ‘0=1ðc;HÞ
denote the 0/1 loss, which may be defined in two ways

depending on imðHÞ:

‘
0=1
IR ðy�; HÞ ¼

�
1y� 6¼��H; if imðHÞ ¼ OO;

‘
0=1
½0;1�ðy;HÞ ¼

�
1y6¼��H; if imðHÞ ¼ ½0; 1�:

Here, 1� is the indicator variable that takes value 1 iff

predicate � is true, and 0 otherwise. Furthermore, � : IR!
f�1;þ1g is þ1 iff x 	 0, and �1 otherwise. Finally, � :

½0; 1� ! f0; 1g is 1 iff x 	 1=2 and 0 otherwise.

Both losses ‘IR and ‘½0;1� are defined simultaneously via

popular matching transforms on H, such as the logit

transform [5]:

logitðpÞ ¼� log
p

1� p ; 8p 2 ½0; 1�: ð2Þ

We have indeed

‘
0=1
½0;1�ðy;HÞ ¼ ‘

0=1
IR ðy�; logitðHÞÞ;

‘
0=1
IR ðy�; HÞ ¼ ‘

0=1
½0;1�ðy; logit�1ðHÞÞ:

We have implicitly closed the domain of the logit, adding

two symbols 
1 to ensure that the eventual infinite values

for H can be scaled back to ½0; 1�.
The 0/1 loss plays a fundamental role in supervised

learning. The objective is to carry out the minimization of its

expectation in generalization, the so-called true risk. Very often,

however, this task can be relaxed to the minimization of the

empirical risk of H, which is just (1) with the 0/1 loss [9]:

"0=1ðS; HÞ ¼�
X
i

‘0=1ðci;HðooiÞÞ: ð3Þ

Over the last decade, researchers have found that (3) can be

computationally efficiently minimized if we, rather, focus

on the minimization of a surrogate risk (surrogate for short),

i.e., a function "ðS; HÞ ¼�
P

i ‘ðci;HðooiÞÞ with [1]:

"0=1ðS; HÞ � "ðS; HÞ:

There are numerous examples of surrogates, four of which

are particularly important in supervised learning. The

corresponding losses are

‘exp
IR ðy�; HÞ ¼

�
expð�y�HÞ; ð4Þ

‘log
IR ðy�; HÞ ¼

�
logð1þ expð�y�HÞÞ; ð5Þ

‘sqr
IR ðy�; HÞ ¼

� ð1� y�HÞ2; ð6Þ

‘hinge
IR ðy�; HÞ ¼� maxf0; 1� y�Hg: ð7Þ

Equation (4) is the exponential loss, (5) is the logistic loss, (6)

is the squared loss, and (7) is hinge loss. These losses play

fundamental roles in some of the most popular supervised

learning algorithms such as AdaBoost, [10], Additive

logistic regression [5], Support Vector Machines [6].

3 PERMISSIBLE SURROGATES

To question the existence of these surrogates and more

precisely the loss ‘, let us build it upon three assumptions

that underlie a majority of works in supervised learning.

These assumptions, stated for imðHÞ � ½0; 1� without loss of

generality, are

A1. The loss is lower bounded by 0. We have

‘ð:; :Þ 	 0:

A2. The loss is a proper scoring rule. Consider a singleton
domain O ¼ foog. Then, the best (constant) predic-
tion is

arg min
x2½0;1�

"½0;1�ðS; xÞ ¼ p ¼
�

P̂r½c ¼ cþjoo� 2 ½0; 1�;
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where p is the relative proportion of positive

examples with observation oo.
A3. The loss is symmetric in the following sense:

‘ðy;HÞ ¼ ‘ð1� y; 1�HÞ; 8y 2 f0; 1g; 8H 2 ½0; 1�:

Lower boundedness in A1 is standard. For A2, we can

equivalently write:

"½0;1�ðS; xÞ ¼ p‘½0;1�ð1; xÞ þ ð1� pÞ‘½0;1�ð0; xÞ;

which is just the expected loss of zero-sum games used in

[8, (8)] with Nature states reduced to the class labels. The

fact is that the minimum is achieved at x ¼ p makes the loss

a proper scoring rule. p also defines Bayes classifier, i.e., the

one which minimizes the 0/1 loss [11]. A3 implies

‘½0;1�ð1; 1Þ ¼ ‘½0;1�ð0; 0Þ, which is virtually assumed for any

domain; otherwise, it scales to H 2 ½0; 1�, a well-known

symmetry in the cost matrix that holds for domains without

class-dependent misclassification costs. This 2� 2 matrix, L,

gives lij ¼� ‘ði� 1; j� 1Þ for any values ði; jÞ 2 f1; 2g2.

Usually, it is admitted that ‘ð1; 1Þ ¼ ‘ð0; 0Þ, i.e., right

classification incurs the same loss regardless of the class.

Generally, this loss is zero. Problems without class-depen-

dent misclassification costs, on which focus the vast

majority of theoretical studies, also make the assumption

that ‘ð1; 0Þ ¼ ‘ð0; 1Þ. Assumption A3 scales theses two

properties to H 2 ½0; 1�.
To state our first result, we need few more definitions.

First, for any strictly convex function � : XX! IR defined

over an interval XX of IR, differentiable over the opened

interval, the Bregman Loss Function (BLF, [12]) D� with

generator � is

D�ðxkx0Þ ¼� �ðxÞ � �ðx0Þ � ðx� x0Þr�ðx0Þ; ð8Þ

where r� denotes the first derivative of �.
Second, we extend a terminology due to [3], and define a

function � : ½0; 1� ! IRþ to be permissible iff �� is differenti-

able on ð0; 1Þ, strictly concave, symmetric about x ¼ 1
2 , and

with��ð0Þ ¼ ��ð1Þ ¼� a� 	 0 (a� ¼ 0 for all popular permis-

sible � [3]). We let b� ¼� ��ð1=2Þ � a� > 0. Permissible

functions are a subset of the generalized entropies studied,

e.g., in [8]. Finally, we say that loss ‘½0;1� is properly defined iff

domð‘Þ ¼ ½0; 1�2, and it is twice differentiable on ð0; 1Þ2. This

last definition is only a technical convenience: even the 0/1

loss coincides on f0; 1g with properly defined losses. In

addition, the differentiability condition would be satisfied by

many popular surrogates. Hinge loss (7) is a notable

exception, yet it plays a key role in the properties of permissible

surrogates, for which the following lemma is central:

Lemma 1. Any loss ‘ð:; :Þ is properly defined and satisfies

assumptions A1, A2, and A3 if and only if ‘ðy;HÞ ¼
D�ðykHÞ for some permissible function �.

Proof. (( ) Assumption A3 follows from the strict concavity

and symmetry of ��. Assumptions A1 and A2 follow

from usual properties of BLFs [12]. () ) Without

assumption A3, ‘ðy;HÞ is a BLF [12], D�ðykHÞ for some

strictly convex function �, differentiable on ð0; 1Þ.
Modulo rearrangements in assumption A3, we obtain

r ~�ðHÞ ¼ ð ~�ðHÞ � ~�ðyÞÞ=ðH � yÞ; 8y;H 2 ½0; 1�;

with ~�ðxÞ ¼ ��ð1� xÞ þ �ðxÞ. We now have ~�ðxÞ ¼
axþ b for some a; b 2 IR. Since ~�ð1� xÞ ¼ � ~�ðxÞ, we

easily obtain a ¼ b ¼ 0, i.e., �ðxÞ ¼ �ð1� xÞ. Ultimately,

since a BLF D�ðykHÞ does not change by adding a

constant term to �, we can suppose without loss of

generality that �ð0Þ ¼ �ð1Þ ¼ �a� � 0, which makes that

� is permissible. tu
� is thus the “signature” of the loss. Notice that we could

have replaced A1 by a simple lower boundedness condition

without reference to zero, in which case from Lemma 1, the

loss would be a BLF plus a constant factor, without impact

on the structural or minimization properties that are to

come. Using Lemma 1, Fig. 1 depicts an example of ‘ðy;HÞ
for � as in (21).

For any strictly convex function � : XX! IR defined over

an interval XX of IR, differentiable over the opened interval,

the Legendre conjugate �? of � is defined as

�?ðxÞ ¼� sup
x02intðXXÞ

fxx0 � �ðx0Þg: ð9Þ

Because of the strict convexity of �, the analytic expression

of the Legendre conjugate becomes:

�?ðxÞ ¼ xr�1
� ðxÞ � �

�
r�1
� ðxÞ

�
:

�? is also strictly convex and differentiable. Hereafter,

unless otherwise stated, � always denote a permissible

function. The following lemma is simple to prove, yet its

identities shall be central for the remaining of the paper. It is

stated for imðHÞ ¼ OO, without loss of generality.

Lemma 2. We have

D�

�
ykr�1

� ðHÞ
�
¼ �?ð�y�HÞ � a�; ð10Þ

¼ D�

�
0kr�1

� ð�y�HÞ
�
; ð11Þ

¼ D�

�
1kr�1

� ðy�HÞ
�
: ð12Þ

Proof. Direct derivations using A3, the possible values for

y; y�, and the fact that r�1
� ð�yÞ ¼ 1�r�1

� ðyÞ. tu
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There are three main consequences to Lemma 2 that are
reviewed afterward. The first is related to the definition of
permissible surrogates; the second is a link with exponential
families of distributions; the third is related to margins.

3.1 Permissible Surrogates

Throughout Lemma 1, Lemma 2 makes the link between any
loss that meets A1, A2, A3, and the Legendre conjugate of its
Bregman generator. �?ðxÞ is strictly convex and satisfies the
following three relationships that are easy to check:

�?ðxÞ ¼ �?ð�xÞ þ x; ð13Þ

�?ð0Þ ¼ ��ð1=2Þ; ð14Þ

lim
x!infimðr�Þ

�?ðxÞ ¼ a�: ð15Þ

Let

F�ðxÞ ¼� ð�?ð�xÞ � a�Þ=b�: ð16Þ

It follows that limx!supimðr�Þ F�ðxÞ ¼ 0 from (15) and
limx!infimðr�Þ F�ðxÞ ¼ �x=b� from (13). We get that the
asymptotes of all F� can be summarized as

~‘ðxÞ ¼ xð�ðxÞ � 1Þ=ð2b�Þ: ð17Þ

When b� ¼ 1, (17) is the linear hinge loss [13], a general-
ization of (7) for which x ¼� y�H � 1. Thus, while hinge loss
is not properly defined, it defines the limit behavior of all
F�. The reason why F� is important follows. F� is strictly
convex and F�ð0Þ ¼ 1 from (14). We easily get

‘
0=1
IR ðy�; HÞ � F�ðy�HÞ; ð18Þ

and we immediately get the statement of the following
lemma:

Lemma 3. "0=1ðS; HÞ � "�IRðS; HÞ ¼
� P

i F�ðy�i HðooiÞÞ.

It turns out that F� spans a wide subclass of the convex
surrogates that are common to the induction of linear
separators (LS) [2]. In this case, HðooÞ ¼�

P
t �thtðooÞ for

features ht with imðhtÞ � IR and leveraging coefficients
�t 2 IR.

Let us refer to any F� in (16) as a Permissible Convex Loss
(PCL) and "�IRðS; HÞ as the corresponding Permissible Convex
Surrogate (PCS). Remark that Adaboost’s exponential loss
(4) is not a PCL due to (13). In fact, it is well known that it is
an approximation to the logistic loss (5), and it turns out
that this loss is a PCL.

PCS has interesting relationships with respect to two
prominent previous approaches that seek general proper-
ties of surrogates [1], [7]. First, let F ðxÞ denote a general loss
and introduce the conditional F -risk:

"�IRðxÞ ¼
�
�F ðxÞ þ ð1� �ÞF ð�xÞ; 8� 2 ½0; 1�:

To understand the meaning of this risk, consider the setting
of assumption A2, in which all examples have the same
observation. Suppose that the two classes are in proportion
�, 1� �. Then, "�IRðxÞ is just the surrogate risk associated to
S if we plug in x ¼ H. Classification calibration requires
that, for any � 6¼ 1=2, the minimal risk is smaller than the

minimal risk in which we require x to be of a different sign
than 2� � 1. More precisely, F is classification calibrated iff

"þIRð�Þ < "�IRð�Þ; 8� 6¼ 1=2;

"þIRð�Þ ¼
�

inf
x2IR

"�IRðxÞ;

"�IRð�Þ ¼
�

inf
x2IR:xð2��1Þ�0

"�IRðxÞ:
ð19Þ

In our setting, quantity 2� � 1 2 ½�1; 1� is just another
matching transform, like (2). Furthermore, if we make
assumption A2, then �ð2� � 1Þ is the best possible real-
valued prediction for the classes, in the same way as
�ðlogitð�ÞÞ would be, for example. Thus, condition (19)
states that from the efficient minimization of the surrogate
risk necessarily follows the most accurate prediction of the
classes, for every observation. Failing to meet this weak
condition would severely undermine the usefulness of the
surrogate for classification purposes. It follows from [1,
Theorem 4], that any PCS is classification calibrated. PCS
also belongs to the U-Boost surrogates, which contains
every convex surrogate. This latter class is mainly built on
convenient assumptions for minimization purposes. It
does not have a classification rationale, and it is interesting
to notice that while not all classification calibrated
surrogates are convex, U-Boost surrogates are not all
classification calibrated so that PCS lies at the intersection
of both, sharing the classification rationale and convenient
technical properties.

Below are examples of permissible functions � that have
been arranged from the bottommost to the topmost function
(when scaled so that �ð1=2Þ ¼ �1).

��ðxÞ ¼
� �ð�þ ð1� �Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
Þ; 8� 2 ð0; 1Þ; ð20Þ

�MðxÞ ¼� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
; ð21Þ

�QðxÞ ¼� x logxþ ð1� xÞ logð1� xÞ; ð22Þ

�BðxÞ ¼� �xð1� xÞ: ð23Þ

When scaled so that �ð1=2Þ ¼ �1, most confound with the
opposite of popular choices: Gini index for (23) [18], Bit-
entropy for (22) [19], and Matsushita’s error for (21) [3], [20].
Table 1 gives the expressions of F�, P̂r�½c ¼ cþjH; oo� along
with the right imðHÞ ¼ OO � IR for the permissible functions
in (20)-(23). Notice that the logistic loss (5) and the squared
loss (6) are PCLs and the logit is actually the matching real
prediction (26) for (22). It is well known that the direct
fitting of a LS with the squared loss is not a good idea [5];
the row for (23) in Table 1 corroborates this, as the PCL
regime restrains the output of H to be in ½�1; 1�. Fig. 2a
provides examples of plots for r� for the permissible
functions in (20)-(23). The sigmoid curve on the right,
indexed by variable 	, is for a permissible �	 as follows
(8	 2 IR�;�):

�	ðxÞ ¼
� � 2

	
log cosh

	

2
x� 1

2

� �� �
: ð24Þ

When properly scaled, this permissible function is located
in between 2�B in (23) and �minfx; 1� xg (and strictly in
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between for x 6¼ 0; 1=2; 1). Tuning 	 2 IR�;� makes the
function span all the available area. It was chosen to show
that there can be different concave/convex regimes for r�.
Since domðF�Þ ¼ imðr�Þ, there are also much different
domains for the PCLs.

3.2 Links with the Exponential Families
of Distributions

We have the remarkable property that the BLF for the
generator � equals that of the Legendre conjugate on
swapped gradient arguments:

D�ðykpÞ ¼ D�?ðr�ðpÞkr�ðyÞÞ: ð25Þ

This equality is important because it unifies ½0; 1� predictions
(left) and IReal (confidence-rated) predictions (right), and the
right-hand side spans a whole subclass of matching losses [14]
that are well known in online learning. Equation (10), and, so,
any PCL, makes the same tight connection between the two
predictions. Let this connection be more formal: The matching
½0; 1� prediction for some H with imðHÞ ¼ OO is

P̂r�½c ¼ cþjH; oo� ¼� r�1
� ðHðooÞÞ: ð26Þ

This quantity is < 1=2 iff H < 0, for any permissible �. In
the same way as we did for the logit, we implicitly close
imðr�Þ for (26), adding two symbols 
1 so that (26)
properly scales back to ½0; 1�. With the definition in (26),
illustrated in Table 1 (rightmost column), we can explicit the
true nature of the minimization of any PCS with real-valued
hypotheses like linear separators. Using the general bijec-
tion between BLFs and the exponential families of distribu-
tions [15], [8], there exists through (10) a bijection between

PCL and a subset of these exponential families whose
members’ pdfs may be written:

Pr�½yj
� ¼ exp
�
�D�ðykr�1

� ð
Þ
�
þ �ðyÞ � �ðyÞÞ;

where 
 2 IR denotes the natural parameter of the pdf, and
�ð:Þ is used for normalization. Plugging 
 ¼ HðooÞ, using (10)
and (26), we obtain that any PCS can be rewritten as

"�IRðS; HÞ ¼ uþ
X
i

�log P̂r�½yijHðooiÞ�;

where u does not play a role in the minimization of the PCS
with H. We obtain the following lemma, in which we
suppose again that imðHÞ ¼ OO:

Lemma 4. Minimizing any PCS with classifier H yields a
maximum likelihood estimation, for each observation oo, of the
natural parameter 
 ¼ HðooÞ of an exponential family defined
by signature �.

When minimizing any PCS, real-valued hypotheses like
linear separators may thus be viewed as estimating the
natural parameters; by duality, classifiers that are natu-
rally able to fit ½0; 1� values, such as decision trees, would
rather be considered estimating the expectation para-
meters of the corresponding exponential families, i.e.,
r�1
� ð
Þ (Section 4.2).
To end up, only one exponential family is in fact

concerned in our setting. Assuming y 2 f0; 1g, the pdf
simplifies and we end up with Pr�½yj
� ¼ 1=ð1þ expð�
ÞÞ,
the logistic prediction for a Bernoulli prior. To summarize,
minimizing any surrogate whose loss meets A1, A2, and A3
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TABLE 1
Correspondence between Permissible Functions, the Corresponding PCLs, and the Matching ½0; 1� Predictions
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(i.e., any PCS) amounts to the same ultimate goal. The crux of
the choice of the PCS mainly relies on algorithmic and data-
dependent considerations for its efficient minimization.

3.3 Margin Maximization

Researchers in machine learning have soon remarked that
the output of classifiers returning real values is useful
beyond its thresholding via functions � or � (Section 2). In
fact, we can also retrieve a measure of its “confidence”
[10]. For example, when imðHÞ ¼ OO, it can be its absolute
value [10]. Intuitively, learning should aim at providing
classifiers that decide right classes with large confidences.
Integrating both notions of class and confidence in criteria
to optimize was done via margins [16], [17]. Informally, the
(normalized) margin of H on example ðoo; y�Þ, �Hððoo; y�ÞÞ,
takes value in ½�1; 1�; it is positive only when the class
assigned by H is the right one and its absolute value
quantifies the confidence in the classification. Different
definitions of margins coexist, each of which tailored to a
particular kind of classifier, with a particular kind of
outputs: for example, in the case of linear separators, we
may have [10], [17]:

�Hððoo; y�ÞÞ ¼�
y�
P

t �thtðooÞP
t �t

:

Lemma 2 suggests a general and simple margin defini-
tion that we state for imðHÞ ¼ OO. Fix

�Hððoo; y�ÞÞ ¼� 2r�1
� ðy�HðooÞÞ � 1: ð27Þ

When � is chosen as in (22), (27) simplifies to the margin
adopted in [16] for linear separators. The fact that (27)
satisfies the classical properties of margins stated above
would not justify its use without a strong link to loss
minimization. Lemma 2 gives this link, as (12) states that the
minimization of any loss that meet A1, A2, A3 is strictly
equivalent to margin maximization. This justification to
margins is new. Since it does not depend on the type of
classifier induced, it represents a valuable companion to the
statistical rationale of margins provided for LS in [17].
Finally, since � is permissible, (26) yields

�Hððoo; y�ÞÞ ¼ y�ðP̂r�½c ¼ cþjH; oo� � P̂r�½c ¼ c�jH; oo�Þ
2 ½�1; 1�;

a quantity that does not depend on � outside the class
membership probability estimators, confined in ½0; 1�. This
is convenient for experiments as we can make fair
comparisons between margins for different �.

4 MINIMIZATION ALGORITHMS FOR ANY

PERMISSIBLE SURROGATE

4.1 Linear Separators

4.1.1 Definitions

Let H 2 LS, and suppose that the permissible function � is
such that imðr�Þ ¼ IR (see Table 1). We begin with few
more definitions. Because any BLF is strictly convex in its
first argument, we can compute its Legendre conjugate as in
(9). In fact, we shall essentially need the argument that

realizes the supremum, for any permissible �: For any
x 2 IR, for any p 2 ½0; 1�, we let

x � p ¼� arg
p02½0;1�

supfxp0 �D�ðp0kpÞg: ð28Þ

We do not make reference to � in the � notation as it shall be
clear from context. We name x � p the Legendre dual of the
ordered pair ðx; pÞ, closely following a notation by [9]. The
Legendre dual satisfies:

r�ðx � pÞ ¼ xþr�ðpÞ; ð29Þ

x � ðx0 � pÞ ¼ ðxþ x0Þ � p; 8x; x0 2 IR; 8p 2 ½0; 1�: ð30Þ

Because � is permissible, the Legendre dual is unique and it
is always in ½0; 1�: p0 is not chosen in the interior of ½0; 1� in
(28) to follow the same scaling issues as in (26). The formula
in (28) is not simple at first glance, but its construction can
be represented in a simple way, as explained in Fig. 3.

We follow the setting of [9] and suppose that we have
T features ht (t ¼ 1; 2; . . . ; T ) known in advance, the
problem thus reducing to the computation of the leveraging
coefficients. We define m� T matrix M with

mit ¼
� �y�i htðooiÞ: ð31Þ

Given leveraging coefficients vector �� 2 IRT , we thus get

�y�i HðooiÞ ¼ ðM��Þi: ð32Þ

We can easily specialize this setting to classical greedy
induction frameworks for LS: In classical boosting, at step j,
we would fit a single �t [9]; in totally corrective boosting,
we would rather fit f�t; 1 � t � jg [21]. The question is thus:
Given some PCS, how can we fit the leveraging coefficients
for its minimization? If an algorithm exists that provably
achieves the minimization of any given PCS, we say that
this algorithm is a Universal Minimization Algorithm.

4.1.2 ULS and its Convergence Properties

Fig. 4 provides such an algorithm. In the algorithm,
notations are vector based: the Legendre duals are
computed componentwise. Hereafter, to save space, we
also make use of a vector-based notation for BLFs and it
shall mean a componentwise sum of BLFs, such as
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D�ðaakbbÞ ¼
X
i

D�ðaikbiÞ: ð33Þ

The main component of the algorithm is a weight

distribution ww over the examples of S, initialized to 1=2

for each example, and updated in an iterative fashion. This

distribution serves to compute the leveraging coefficients of

the final linear separator.

Theorem 1. ULS is a Universal Minimization Algorithm.

Proof. In (34), (30) brings wwjþ1 ¼ ðM��jþ1Þ � ww0 ¼ ðM��jÞ � wwj.
Using notation (33), we thus have

D�ð00kwwjþ1Þ �D�ð00kwwjÞ ¼
� ½�ððM��jÞ � wwjÞ � �ðwwjÞ þ hwwj;r�ðwwjÞi�
þ hðM��jÞ � wwj;r�ððM��jÞ � wwjÞi:

ð36Þ

Vector notations in (36) are used to simplify notations so

that �ðwwjÞ represents a vector whose entries are �ðwj;iÞ
and r�ðwwjÞ represents the vector whose entries are

r�ðwj;iÞ, and so on; furthermore, h:; :i denotes the inner

product. Because of (29), the right inner product is just

(for short, r ¼� hðM��jÞ � wwj;r�ðwwjÞi):

hðM��jÞ � wwj;r�ððM��jÞ � wwjÞi
¼ rþ hðM��jÞ � wwj;M��ji

¼ r�
Xm
i¼1

y�i
XT
t¼1

�j;thtðooiÞððM��jÞ � wwjÞi

¼ r�
XT
t¼1

�j;t
Xm
i¼1

y�i htðooiÞððM��jÞ � wwjÞi

¼ rþ
XT
t¼1

�j;t
Xm
i¼1

mitððM��jÞ � wwjÞi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bt

¼ r:

ð37Þ

Equation (37) holds because �j;t ¼ 0, or bt ¼ 0 from the
choice of �j;t in (35). We obtain

D�ð00kwwjþ1Þ �D�ð00kwwjÞ ¼ �D�ðwwjþ1kwwjÞ: ð38Þ

Let A�ðwwjþ1; wwjÞ ¼� �D�ðwwjþ1kwwjÞ=b�, which is just, from
(38) and Lemma 2 (11), the difference between two
successive PCS. Suppose that ULS works in a classical
boosting scheme (T j is a singleton) and that we have
reached the stage on which for any choice of ht among
the T , wwjþ1 ¼ wwj (ULS has converged). In this case, ��j ¼ 00
and so 8t ¼ 1; 2; . . . ; T ,

Pm
i¼1 mitð00 � wwjÞi ¼

Pm
i¼1 mitwwj;i¼

0, i.e., ww>j M ¼ ww>jþ1M ¼ 00. Thus, wwj; wwjþ1 2 KerM>,
where KerN denotes the kernel of linear operator N :

KerN ¼� fxx 2 IRm : Nxx ¼ 00g:

This condition, along with the fact that A�ðwwjþ1; wwjÞ < 0
whenever wwjþ1 6¼ wwj, makes A�ðwwjþ1; wwjÞ an auxiliary
function for ULS, which is enough to prove the
convergence of ULS towards the optimum [9]. The case
of totally corrective boosting is simpler as, after the last
iteration, we would have wwJþ1 2 KerM>. tu

In practice, it may be a tedious task to satisfy exactly (38), in

particular for totally corrective boosting [21]. With respect

to previous approaches that have been built upon [22] (or

others [7]), ULS has two technical advantages. First, up to a

normalization coefficient, wwj is always a distribution

because � is permissible. We do not need explicit

constraints to keep nonnegative weights. Second, ULS is

always guaranteed to work, as now shown.

Lemma 5. Suppose that there does not exist some ht with all mit

of the same sign, 8i ¼ 1; 2; . . . ;m. Then, for any choice of T j
in ULS, (35) has always a finite solution.

Proof. Let

Z ¼� D�ð00kðM��jþ1Þ � ww0Þ: ð39Þ

We have Z ¼ �ma� þ
Pm

i¼1 �
?ððMð����j þ ��jÞÞiÞ (Lemma 2),

a function convex in all leveraging coefficients. Define

jT jj � jT jj matrix E with euv ¼� @2Z=ð@�j;u@�j;vÞ (for the

sake of simplicity, T j ¼ f1; 2; . . . ; jT jjg, where j:j denotes

the cardinal). We have euv ¼
Pm

i¼1 miumiv=’ðððM��jÞ �
wwjÞiÞ, with
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’ðxÞ ¼� d2�ðxÞ=dx2; ð40Þ

a function strictly positive in ð0; 1Þ since � is permissible.
Let qi;j ¼� 1=’ðððM��jÞ � wwjÞiÞ > 0. It is easy to show that

xx>Exx ¼
Xm
i¼1

qi;jhxx; ~mmii2 	 0; 8xx 2 IRjT jj; ð41Þ

with ~mmi 2 IRjT jj the vector containing the entries mit with
t 2 T j. Thus, E is positive semidefinite; as such (35),

which is the same as solving @Z=@�j;u ¼ 0, 8u 2 T j (i.e.,
minimizing Z), has always a solution. tu

The condition for the lemma to work is absolutely not

restrictive, as if such an ht were to exist, we would not need
to run ULS; indeed, we would have either "0=1ðS; htÞ ¼ 0 or

"0=1ðS;�htÞ ¼ 0.

4.1.3 Geometric Properties of ULS

The auxiliary function in the analysis of ULS shifts the
analysis of the learning problem on labels to that of a
geometric problem on weights. Its definition involves (38),
the generalized Pythagorean theorem [21], [7]. It is not the
purpose of our paper to further develop on this geometric
aspect of learning, which has already been explained earlier
in [7], as ULS exploits the same geometric flatness, the same
fibrations and foliations of the weight space as U-Boost to
progress towards better solutions [7]. Our setting is,
however, significantly different, resulting in different
algorithms. The multiclass framework of [7] makes them
work directly with linear combinations of indicator func-
tions—thus, mixing the real and the ½0; 1� predictions and
the matching real prediction they use to exemplify their
approach on two-class classification (their equation 3.35)
does not depend on any signature of the loss used, contrary
to ours in (26). Also, we do not need to integrate an
auxiliary function in selecting classifiers and updating
weights, resulting in different choices. One last, big
difference is that ULS works with simultaneous updates
of leveraging coefficients, guaranteeing a final solution
which is the same as the sequential update if the optimum
is achieved by a single classifier (modulo scaling factors).
This setting is only sketched in [7] and these guarantees are
not proven.

Keeping these differences in mind, it is interesting to

notice that our analysis is dramatically simplified com-
pared to the analysis which leads to the analogous of (38)
for U-Boost; we are also able to go further than the mild

convergence, and conclude to the convergence to the global

optimum of the PCS. This optimum is defined by the LS

with features in M that realizes the smallest PCS [9].

4.1.4 Decision Making with ULS

We can go further in parallel with game theory developed

above for A2: using notations in [8], the loss function of the
decision maker can be written "½0;1�ðS; xÞ ¼ D�ð1kqðXÞÞ. A3

makes it easy to recover losses like the log loss or the Brier
score [8], respectively ,from �Q and �B in (22) and (23). In
this sense, ULS is also a sound learner for decision making

in the zero-sum game of [8]. Notice, however, that, to work,
it requires that Nature has a restricted sample space size,

more precisely f0; 1g.

4.1.5 Boosting Features of ULS

ULS provides the scaling to the whole set of PCS of two
boosting properties [22], [21] that are easy to check. First,
the weight of an example decreases iff the example has been
given the right class by the classifier which updates the
current LS, Hj ¼

� P
t2T j �j;tht. To see this, we only have to

look at Fig. 3 and take x ¼ �y�i HjðooiÞ, which serves as the
update for the next weight of example ðooi; y�i Þ. Ignoring ties
where Hj ¼ 0, we obtain that �ðHjðooiÞÞ has the same sign as
y�i ; hence, the example is given the right class iff x < 0, i.e.,
the new weight is smaller than the former weight.

Second, (35) implies that this LS has zero edge on wwjþ1

[21]. In the particular case where each ht 2 f�1;þ1g, (35)
implies the so-called “error-rate property” proved in [7],
which makes that for each t 2 T j, ht has empirical risk 1=2
over the next distribution (wwjþ1). Along with a third one,
these two properties represent the most popular boosting
properties and the most intuitive rationales for the use of
boosting algorithms. An in-depth analysis reveals that ULS
also scales this third property.

This third property is the most important of all: the
guarantee on the convergence rate under very weak
assumptions. This paraphrases the so-called “Weak Learn-
ing Assumption” (WLA) [10]. To state the WLA, we plug
the iteration in the index of the distribution normalization
coefficient in (39), and define Zj ¼� kwwjk1 (k:kk denotes the
Lk norm). Suppose that, at any step j (and corresponding
subset T j of indices), the following holds:

9j > 0 :
1

jT jj
X
t2T j

1

Zj

Xm
i¼1

mitwj;i

������
������ 	 j: ð42Þ

The WLA in (42) tells that the (unleveraged) LS defined by
the set of features related to T j beats random by a
guaranteed—even if small—amount. A set of random
features would indeed yield j ¼ 0, so we only require the
set of features to define a classifier not completely “useless”
from the classification standpoint. The WLA in (42) is a
generalization of the usual WLA for boosting algorithms
that we obtain taking jT jj ¼ 1, ht 2 f�1;þ1g [16]. Few
boosting algorithms are known that formally boost weak
learning in the sense that requiring only the WLA implies
guaranteed rates for the loss minimization [10], [16]. We
show that ULS satisfies this property regardless of �.

To state and prove the property, we need few more
definitions. Let mmt denote the tth column vector of M,
amm ¼� maxtkmmtk2, and aZ ¼� minjZj. Let a denote the
average of j over all j, and a’ ¼� minx2ð0;1Þ’ðxÞ (’ is
defined in (40)).

Theorem 2. Provided the WLA holds, ULS reaches the minimum
of the PCS at hand in at most

J ¼ 4mb�a
2
mm

a’a2
Za

2


& ’
ð43Þ

steps.

Proof. We use Taylor expansions with Lagrange remainder
for �, and then the mean value theorem, and obtain that
8w;wþ� 2 ½0; 1�; 9w? 2 ½minfwþ�; wg;maxfwþ�; wg�
such that
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D�ðwþ�kwÞ ¼ �2’ðw?Þ
2

	 �2

2
a’ 	 0: ð44Þ

Cauchy-Schwartz inequality yields

8t 2 T j;
Xm
i¼1

m2
it

Xm
i¼1

ðwjþ1;i � wj;iÞ2

	
Xm
i¼1

mitðwjþ1;i � wj;iÞ
 !2

¼
Xm
i¼1

mitwj;i

 !2

;

ð45Þ

where (45) holds because of (35). There remains to use
m times (44) with w ¼ wj;i and � ¼ ðwjþ1;i � wj;iÞ, sum
the inequalities, combine with (45) over t 2 T j to obtain
(with the use of notation (33)):

D�ðwwjþ1kwwjÞ 	
a’

2jT jj
X
t2T j

Pm
i¼1 mitwj;i

� �2Pm
i¼1 m

2
it

¼ a’
2jT jj

X
t2T j

Xm
i¼1

mit

kmmtk2

wj;i

 !2

	
a’Z

2
j

2a2
mm

1

jT jj
X
t2T j

1

Zj

Xm
i¼1

mitwj;i

0
@

1
A2

ð46Þ

	 a’
aZj
2amm

� �2

: ð47Þ

Equation (46) follows from Jensen’s inequality. Calling
once again to notation (33), we also have

D�ð00kwwJþ1Þ=b� ¼
1

b�
D�ð00kww1Þ

þ 1

b�

XJ
j¼1

D�ð00kwwjþ1Þ �D�ð00kwwjÞ
� �

¼ m� 1

b�

XJ
j¼1

D�ðwwjþ1kwwjÞ:

ð48Þ

Equation (48) follows from (38) and the fact is that ww1 ¼
ww0 in ULS. Equation (11) in Lemma 2, together with the
definition of wwj in (34), yields D�ð0kwJþ1;iÞ=b� ¼
F�ðy�i HðooiÞÞ, 8i ¼ 1; 2; . . . ;m. We have F�ð:Þ 	 0 and
(47) gives the minimal quantity by which the PCS is
guaranteed to decrease under the WLA (48). Thus, ULS
must have stopped when the right-hand side of (48)
becomes negative. Combining with (47) and one more
use of Jensen’s inequality yields the statement of
the theorem. tu

The bound in (43) is mainly useful to prove that the WLA
guarantees a convergence rate of order Oðm=a2

Þ for ULS,
thereby providing an answer to [7] for a learning algorithm
relying on a geometrical content close to that of U-Boost. It
is much less useful to provide the best possible bound as it
is in fact far from being optimal [21], but it seems that
specializing this bound as a function of � would require
analysis on a case-by-case basis, such as in [3], [23]. The
bound in (43) is inversely proportional to the minimum
value of the second derivative of �. Thus, to make the
bound smaller, we can pick permissible functions with a
stronger concave regime: This observation closely matches

one that was given, in the same context, for decision tree
induction [3].

4.2 Decision Trees

A DT H is a classifier shaped as a rooted directed tree, with
internal nodes and leaves. Leaves are labeled by values that
are either in ½0; 1�, or in IR, and used to decide the classes as
shown in Section 2. Without loss of generality, we suppose
that O ¼ f0; 1gn, i.e., all description variables are Boolean.
The left part of Fig. 5 presents an example of a DT, where v1

and v2 denote description variables. Each internal node is
labeled by an observation variable and has outdegree 2,
each outgoing arc being labeled by a distinct Boolean test
over the node’s variable. The classification of some
observation starts from the root. For each internal node
visited, the observation follows the arc that corresponds to
the Boolean test on the variable that it satisfies, until it
reaches a leaf which gives its prediction for the class. For
example, in Fig. 5, an observation with v1 ¼ 1 and v2 ¼ 0
would be classified by the center leaf labeled “�1”.

A DT H induces a partition of S according to subsets Sk,
where k 2 LðHÞ  IN�, and LðHÞ is a subset of natural
integers in bijection with the set of leaves of the DT (see Fig. 5).
We let Sþk ¼

� fðoo; cþÞ 2 Skg denote the subset of positive
examples that fall on leaf k. To decide a class, we can label
leaves using real values to make predictions, following the
convention of linear separators (used in Fig. 5). There is,
however, a more convenient labeling, which exploits the fact
that each leaf makes a constant prediction for a subset of S.
Using assumption A2, we get the best constant prediction for
leaf k:

P̂r½c ¼ cþjH; oo reaches leaf k� ¼ jS
þ
k j
jSkj
2 ½0; 1�:

The most popular DT induction algorithms integrate a
stage in which a large DT is induced in a top-down
fashion, the so-called TDIDT scheme (Top-Down Induction
of DT). This scheme consists, after having initialized the
DT to a single leaf, in repeatedly replacing a leaf by a
subtree with two leaves (a stump) [18], [3], [19]. For this
reason, it is convenient to define, for any k 2 LðHÞ and any
Boolean description variable v, Hjk!v to be the DT built
from H after having replaced leaf k by the subtree of two
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nodes (circles); (b) an equivalent linearized decision tree, for the proof of

Theorem 3.
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leaves rooted at v. The TDIDT scheme can be conveniently
abstracted as displayed in Fig. 6. In UDT, � is the free
parameter which is instantiated with different choices to
yield all popular schemes: (23) is chosen in [18], (22) is
chosen in [19], and (21) is chosen in [3]. In fact, it is the
opposite of the permissible function which is used (see (49)
in ULS), but we keep � in order not to laden our notations.
All popular TDIDT schemes would also normalize A�

(division by m), but this does not change the choices made
for k0 and v as, after having picked k0, they all pick the best
stump, i.e., the one that minimizes (49). It is not hard to
prove that UDT is a Universal Minimization Algorithm
because of the choice of A�. The proof of the following
theorem shows much more: While bitterly different from
each other on paper, UDT and ULS are offshoots of the
same algorithm, thereby generalizing an observation of
[24] to the whole family of losses that meet assumptions
A1, A2, and A3.

Theorem 3. UDT is a Universal Minimization Algorithm.

Proof. The proof makes use of linearized decision trees
(LDT) of [24]. An LDT has the same graph shape as a DT,
but real values are put on every node (not just on leaves).
The classification of some observation sums these real
values over the whole path that it follows, from the root
to a leaf. To each path from the root to a leaf can thus be
associated a constant LS that sums these real values. The
right part of Fig. 5 presents how to generate the
equivalent LDT from the DT given on the left. We can
indeed check that �1h1 þ �2h2 þ �5h5 ¼ �1 for the center
leaf, and so on for the other leaves.

Thus, we can use ULS to build each of these LS: Each
feature ht is constant and put on some tree node, ULS is
run on the subset of S that reaches the node, in order to
compute the leveraging coefficient �t. The splits are
computed after a further minimization of the given PCS.

Suppose that the current LDT H has T nodes, and we
wish to compute �k for some hk located at leaf node
index k. To do so, we number the internal nodes using
natural integers, excluding from the choices the integers
chosen for the leaves. Let }ðkÞ be the set of indices

corresponding to the path from the root to leaf k. The
solution of (35) can be computed exactly and yields

�k ¼
1

hk
r�

jSþk j
jSkj

� �
�

X
t2}ðkÞnfkg

�tht

0
@

1
A:

Thus, for any observation oo that reaches leaf k, we get

HðooÞ ¼ r�
jSþk j
jSkj

� �
; ð50Þ

the inverse of (26). Finally, the PCS of H simplifies as

"�IRðS; HÞ ¼
� X

i

F�ðy�i HðooiÞÞ ¼
1

b�

X
i

D�ðyikr�1
� ðHðooiÞÞÞ

¼ 1

b�

X
k2LðHÞ

X
ðoo;yÞ2Sk

D� y
			 jSþk jjSkj

� �

¼ 1

b�

X
k2LðHÞ

jSkj �
jSþ
k
j

jSkj D� 1
			 jSþk jjSkj
 �

þ 1� jS
þ
k
j

jSkj


 �
D� 0

			 jSþk jjSkj
 �
8><
>:

¼ �ma�
b�
þ
X

k2LðHÞ

jSkj
b�

�� jS
þ
k j
jSkj

� �� �
:

It is straightforward to check from this last equality and

Lemma 2 that the auxiliary function of ULS becomes

exactly (49) in UDT. The LDT obtained is equivalent [24]

(see also Fig. 5) to a twin DT in which we put at leaf k

either jSþk j=jSkj 2 ½0; 1� or r�ðjSþk j=jSkjÞ 2 imðr�Þ � IR,

and we finally end up with UDT. tu
From (50), we note that the ½0; 1� value put at leaf k

satisfies jSþk j=jSkj ¼ r�1
� ðHðooÞÞ, with oo any observation that

reaches leaf k. From Section 3.2 and Lemma 4, we note that

the leaf value is also r�1
� ð
Þ and, so, fitting a DT to the

minimization of a PCS yields local (leaves-based) maximum

likelihood estimators of the expectation parameter of the

exponential family defined by signature �.
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Fig. 6. Algorithm UDT.
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5 EXPERIMENTS

We have compared three flavors of ULS (for �M; �Q; ��¼:99)
on 40 domains, mostly coming from the UCI repository of
ML databases [25], via a stratified 10-fold cross validation
to estimate both the error and margin distributions in
generalization, where margins are computed as in (27). In
domains with more than two classes, we predicted class 1
against all others.

The cumulative margin distribution (CMD) of H is the
curve that gives, 8
 2 ½�1; 1�, the proportion of examples
whose margin does not exceed 
. Its intersection with line

 ¼ 0 is approximately the estimated true risk. Features
have the form:

If Monomial then Class ¼ 
1 else Class ¼ �1:

Monomials (Boolean rules) have at most l (fixed) variables.
Monomials are induced following TDIDT (UDT) for the
repetitive minimization of (48). Leveraging coefficients (35)
are approximated up to 10�10 precision on the classical
boosting scheme. We have run three sets of experiments. In
the first, J ¼ 50 and l ¼ 1: Everything is as if we had inM all
size-1 rules (� stumps). In the other two, J ¼ 10, l ¼ 2 and
J ¼ 20, l ¼ 10: The main difference with the first is that we
cannot systematically hope UDT to find the best monomial
of size � l because of its greedy nature.

Beyond testing the new PCS defined by (21) (hereafter
called Matsushita’s PCS) against the popular logistic
surrogate, we wanted to address two objectives. First, if
we follow [3] and Theorem 3 that binds ULS and UDT,
stronger convexity on � might bring a faster decrease of the
PCS during the early rounds. The three sets of experiments
should provide further hints on this important property, at
both levels of ULS (outer level) and UDT (inner level).
Second, we wanted to have more hints between the quality
of estimation (26) and generalization abilities. This is
important because there are also links between estimation
and statistical consistency [2]. For example, as �! 1 in (20),
Table 1 shows that there should be a dilation of the
estimations (26) around p ¼ 1=2 (they ! 0 or 1), margins
should get dilated around 
 ¼ 0 (they ! 
1), the CMD
should gradually become piecewise constant, and perfor-
mances on testing should be worse than for Mastushita’s
PCS (�M ¼ ��¼0).

Fig. 7 displays the results obtained. The left scatterplot
tends to display the ability of Matsushita’s PCS (� in (21)) to
provide better results than the logistic surrogate (� in (22))
at the early rounds. A Student paired test over the 40
domains confirms this tendency with a P value � 0:07 for
rejecting the identity hypothesis. The linear regression gives
y � 0:97xþ 0:09, indicating that the tendency is more
pronounced for harder data sets. Increasing both l and J
(l ¼ 10; J ¼ 20) accentuates the pattern (y � 0:95xþ 0:35),
even when larger deviations between the algorithms increase
the P value (� 0:26). This phenomenon, which was pre-
viously underlined from the theory standpoint for decision
tree induction in [3], is actually predicted up to some extent by
Theorem 2, as the bound on J is inversely proportional to the
minimum of the second derivative of � (40).

This phenomenon becomes predictably dampened as
classifiers become large: running ULS for a larger number
of iterations and smaller sizes (l ¼ 1; J ¼ 50) considerably
dampens the differences. The linear regression gives now y �
0:99x� 0:08 and Student paired test’s P value � 0:17: We
cannot conclude for a difference on testing. The comparison
with �� (20) is also very informative. The scatterplots against
Matsushita’s PCS (not shown) gives a very clear winning to
Matsushita’s PCS, with a P value� 10�4 in both cases. The
CMDs (Fig. 8) give an indication of the reason why this
happens. As J increases, a majority (� 66 percent) of the
CMDs approach piecewise constancy for �� with respect to
�M, like in heart-cleve. Those for which �� yields a true
risk smaller than the other two PCSs (like heart-cleve)
are few (� 10 percent), indicating that the tendency to
overfit the estimation (26) damages, in most cases, the true
risk. Even when the stair shape is less visible (Fig. 8,
glass), �� is generally beaten.

6 CONCLUSION

Bartlett et al. [1] solve an important statistical issue about
convex surrogates. They prove that if it meets a technical
condition known as “classification calibration,” then any
consistent minimization procedure for the surrogate also
meets Bayes consistency, i.e., it enjoys efficient true risk
minimization as the sample size m increases. Our results
show that there exists a subclass of classification calibrated
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Fig. 7. (a) Error scatterplot ULS(:; �M) versus ULS(:; �Q), for l ¼ 2; J ¼ 10; lines are y ¼ x (plain) and linear regression’s (dotted); point below y ¼ x
are domains on which ULS(:; �M) performs better. (b) Idem for l ¼ 10; J ¼ 20. (c) Idem for l ¼ 1; J ¼ 50.
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losses, PCS, that exhibits strong algorithmic minimization
properties for the empirical risk, an issue that was left open
in [1] (in which the connection to Bregman divergences was
also not made). The induction of linear separators for the
minimization of any PCS follows a geometrical approach
previously presented in [7], and we show that this class of
geometric approaches yield interesting convergence rates
under weak assumptions, an issue also left open in [7].

One issue for future work is to go deeper and finely tune
the convergence rate to the surrogate to exhibit a ranking of
permissible surrogates in terms of both upper and lower
bounds. This might be a tedious task, as the state of the art
involves case-by-case studies and was developed only for
three of them [3], [23].
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Fig. 8. (a) CMDs over UCI domain glass for ULS (:; �M) (dotted blue),

ULS (:; �Q) (red), and ULS(:; ��¼:99) (green) when l ¼ 2; J ¼ 10. (b) Idem

for l ¼ 1; J ¼ 50 and UCI domain heart-cleve.
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