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We describe algorithms for creating, storing
and viewing high-resolution immersive sur-
round videos. Given a set of unit cameras
designed to be almost aligned at a common
nodal point, we first present a versatile pro-
cess for stitching seamlessly synchronized
streams of videos into a single surround
video corresponding to the video of the mul-
tihead camera. We devise a general registra-
tion process onto raymaps based on minimiz-
ing a tailored objective function. We review
and introduce new raymaps with good sam-
pling properties. We then give implementa-
tion details on the surround video viewer and
present experimental results on both real-
world acquired and computer-graphics ren-
dered full surround videos. We conclude by
mentioning potential applications and dis-
cuss ongoing related activities.
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Ever since ancient times, society has used images
as a rich communication medium to transmit knowl-
edge. Image depiction, the art of representing scenes,
is of primal importance to painters. Renaissance
painting is seen as a key period where many pro-
jection methods were discovered to allow artists to
simulate or construct the appearance of three dimen-
sional space on a two dimensional surface. Histori-
cally, painting wide views of landscapes and battle-
fields were already solicited by emperors and kings.
Depicting a surround image, later called a panorama,
was first popularized as an art form by Barker1 in
the mid-18th century. The word panorama stems
from the Greek word combination of pan, meaning
all, and horama, meaning sight. Although comput-
ers were already being used to stitch images into
seamless pictures in the mid 1970s (see [13]), it was
certainly Chen [5] who remarkably expanded their
widespread use in the commercial Apple Quick-
time VR player. Nowadays, spherical photo panora-
mas are commonplace on the Internet. In computer
graphics, digital panorama techniques were precur-
sors of the image-based rendering (IBR) field that
advocates warping source images to create com-
pelling virtual environments. IBR systems avoid
processing detailed geometric models by synthe-
sizing output images directly from real-world input
images, and thus provides fast photorealistic walk-
throughs [1]. However, IBR systems are often re-
stricted to static scenes and have limited exploration
abilities.
In this paper, we extend the still panorama workflow2

to that of producing high quality spherical movies
(say, on the order of a few million pixels at 60 frames
per second). We describe our system for captur-
ing, authoring, storing and viewing full (i.e., cov-
ering the complete3 field of view) spherical videos.
We particularly emphasize problems we faced in
an industrial context and how our approach (and
underlying algorithms) differs from previous tech-
niques. We propose several novel processes to stitch,
store and view immersive videos. Section 2 dis-
1 Robert Barker, an Irish painter and fine arts teacher was
granted a “panorama” patent in London for his painting method
in 1787. He reportedly invented the process while being jailed
for debt as he was struck by the light effect of his cell bars [2].
2 We recommend the panoramic vision book [3] for a survey of
major techniques related to this discipline.
3 That is 4π steradian in terms of solid angle. Also called
360◦ × 180◦ panoramas by reference to the latitude-longitude
mapping, or sometimes abusively called 360◦ × 360◦ mo-
saics [15].
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cusses the pros and cons of several camera systems
to image panoramic videos and details our built-
in-house multihead cameras. Section 3 describes
a generic algorithmic framework for stitching multi-
head camera videos into a seamless spherical video.
Section 4 gives detail on commonly used envi-
ronment maps, that we call raymaps, as well as
present new ones with good sampling properties.
In Sect. 5, we devise fast algorithms to synthesize
views from a virtual camera from surround videos
(environment maps). Finally, Sect. 6 concludes the
paper, mentions possible improvements, and dis-
cusses perspectives.
We believe that within a decade or so, surround
videos will successfully enter the mass-market as
high-fidelity interactive content will be broadcast to
digital settop boxes and next-generation game con-
soles.

2 Acquiring panoramic videos

Imaging panoramic videos can be done in various
ways4 depending on the number of block cameras
and their attached lenses, and whether reflecting sur-
faces are used or not. A common approach is to use
catadioptric systems (i.e., using mirrors) to acquire
a large vertical field of view (VFOV) over a full 360-
degree horizontal field of view (HFOV) (See Fig. 1).
Although the monolithic recording system (only one
image sensor is used so that an off-the-shelf record-
ing pick-up system can be used) is convenient to
record videos, we noticed several undesirable draw-
backs such as blurred imagery, heterogeneous image
densities, and most importantly partial view acqui-
sition (that is, not full 4π steradian, but this can be
overcome by using two back-to-back devices). The-
oretically, even a single lens may capture close to full
4π angular view, but for practical reasons, it is not
used as image quality degrades significantly as the
FOV grows.
Multihead camera5 design is about combining a set
of block cameras, lenses, and eventually mirrors so
that the imaging units share, as closely as possi-
ble, the same nodal point. On one hand, using sev-
eral sensor devices allows the use of per-camera ex-
posure settings to capture well-balanced sceneries

4 Daniilidis maintains a Web page of main camera designs. See
http://www.cis.upenn.edu/˜kostas/omni.html.
5 Camera Dodeca, patented by US patent #6,141,034, from Im-
mersive Media Corp. is one of the first prototypes [8]. Swami-
nathan and Nayar [19] called them polycameras (1996).

Fig. 1. Top: A hyperbolic mirror (courtesy of Accowle Corpo-
ration) mounted on top of a high-definition camera. Bottom:
(Cropped) equirectangular map

(like sunsets, live concerts with strobe flashes, etc.)
and control the density of the imagery. But on the
other hand, it complicates the recording process as
we need to synchronize video streams and design
a specific recording unit. Moreover, since it is de-
sirable for cost reasons to minimize the number of
camera units, often lenses with inherent large dis-
tortions are used as we seek to minimize the over-
lapping areas of their individual video streams. This
implies in turn that the stitching process becomes
more delicate than in the still imaging case, where
pictures are obtained at different times from a sin-
gle digital camera precisely mounted at its nodal
point on a graduated pan head tripod. Because focal
planes are located in front of their respective sen-
sors, another drawback of full spherical multihead
cameras (see Fig. 2) is parallax6 phenomenon. Nev-
ertheless, parallax can be ignored, or ideally hidden,
during video shootings if objects are past a given
threshold distance to the camera, called parallax
clearance [19]. Using reflecting surfaces like mir-
rors come in handy as it allows one to simulate
a unique virtual nodal point (e.g., the non-parallax
camera design of Nalwa [14] patented by #5,793,527
and #5,745,305 US patents; see Fig. 2, right). Al-
though deghosting techniques [20] based on dispar-

6 The apparent displacement, or difference of position, of an
object, as seen from two different camera positions (points of
view).
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Fig. 2. Bottom: A 10 1-CCD multi-head camera and an 8 3-CCD multi-head camera using mirrors to align virtual nodal
points. Top: FOV graph. Each block camera is associated with a node and two nodes are linked with an edge if and only if
their respective fields of views overlap

ity maps have been proposed to compensate par-
allax effects, the results in practice are quite poor,
especially for videos that need to enforce time con-
sistencies. Therefore, we took special care at the
camera design level to minimize parallax problems
as much as possible. We opted for multihead cam-
era designs that have good flexibility in control-
ling the resolution of the imagery and good indi-
vidual exposure capabilities. Figure 2 shows two
built-in-house multihead cameras. The left 10 1-
CCD multihead camera fully covers the sphere but
exhibits some amount of parallax while the right 8 3-
CCD multihead camera delivers sharp high-quality
imagery with almost undistinguishable parallax for
most shootings. All block cameras are hardware gen-
locked and deliver RGB/SDI/NTSC signals (60 in-
terlaced frames per second) that we digitize offline
or directly record online onto hard disks at resolution
720×480@10-bit/channel.

3 Multihead camera

3.1 Preliminary notations

For a given camera model C, let �r(x, y) denotes the
geometric ray associated to a pixel of coordinates
(x, y). If the focal and iris settings are set up to re-
main unchanged during the video shooting, the ge-
ometric attributes of the ray does not change over
time (that is, say, only its incoming luminance Y and
chrominance UV vary). The relationship between r
and (x, y) is often modeled in computer vision for
a pinhole camera as follows:

(x, y) = RayToImage(r,C) = L(x̄, ȳ),

where (x̄ ȳ) ∼ K Rr, with K being a 3×3 matrix rep-
resenting the camera intrinsic parameters of C and
R the rotation matrix encoding for the extrinsic pa-
rameters: roll, pitch, and yaw of C. We use homo-
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geneous coordinates so that the operator ∼ means
(x y) = (x ′/w y′/w) ∼ (

x ′ y′ w
)
. K is treated as the

following 3×3 matrix:

K =
(

fx s px
0 fy py
0 0 1

)
,

where (px, py) is the camera principal point (usu-
ally the image center), and fx and fy = ay fx are the
x-focal and y-focal lengths, respectively (in pixel
units; obtained, respectively, from the horizontal and
vertical fields of view) and s is the skewness param-
eter (here, without loss of generality, we assume it
to be 0). Parameter ay represents the image aspect
ratio. L(·) is a bijective mapping function used to
go from the ideal pinhole to the original (after ap-
plying lens distortions) image. In other words, we
work in the x̄ space of ideal pinhole images and we
look up corresponding x pixels in the sensor image
via a lens distortion function L(·). A ray r can be
coded in various ways depending upon its process-
ing context. Conventional representations include
an anchor point O and either (1) a unit vector v,
(2) two spherical angles (θ, φ) coding for the di-

rection r =
(

sin θ cos φ
sin φ

cos θ cos φ

)
, or (3) a unit quaternion(

q1 q2 q3 q4
)
. Quaternions are well-suited for nu-

merical optimization [7] while the user can easily
understand and edit interactively Euler angles (i.e.,
roll, pitch, and yaw angular attributes) using a GUI.
We next introduce the notion of what we define
as raymap (popularly known as environment map
in computer graphics). Informally, raymaps store
the color attributes of the surrounding environment
given a fixed viewpoint. More precisely, a raymap
(environment map) is defined by a mapping func-
tion m(·, ·) that associates to each pixel coordinate
(x, y) (indexing for a ray) of a picture its spherical
coordinates (θ, φ) = m(x, y) (examples are given in
Sect. 4).

3.2 Versatile camera model

We introduce two abstract bijective mapping func-
tions that create the basis of our stitching algorithm.
Let RayToImage(θ, φ,C) denote the image Carte-
sian coordinates (x, y) of a ray with spherical direc-
tions (θ, φ) anchored at the origin O for a camera
model C. Reciprocally, let ImageToRay(x, y,C)
return the spherical direction (θ, φ) for the image co-

Fig. 3. The function ImageToRay(·) plotted for a fish-
eye lens (left) and for a wide-angle distortion lens (right)

ordinates (x, y) of a camera model C (See Fig. 3).
Below, we describe how to calculate those functions
for Tsai’s camera model [22], which only consid-
ers radial distortions. Using this generic framework,
we directly map pixels into ray elements (also called
raxels by Grossberg and Nayar [10]) and do not need
to undistort and therefore resample the input images
(which would introduce, in practice, a significant
loss of resolution). Also, we can handle several cam-
era models at the same time, making the stitching
system flexible.7 (Note that this unified framework
allows us to deal with nonpinhole camera models,
like fisheye cameras, having fields of view larger
than 180 degrees.) Here, to solidify these ideas, we
describe these mapping functions for Tsai’s radial
distortion lens camera model. For the sake of con-
ciseness, we only consider the simplest radial distor-
tion, lens center (cx, cy), which has only one radial
distortion coefficient parameter κ. In practice, it is
often required to take into account several coeffi-
cients κ1, κ2, ... (at least 2 or 3 coefficients depending
on the aberration of the lens [9]). We describe the
operation pipeline below:
ImageToRay(x, y,C):

1. Compute ideal pinhole coordinates:
x̄ = x + (x − cx)κr2,

ȳ = y + (y − cy)κr2,

where r2 = (x − cx)
2 + (y − cy)

2.

7 For example, we can stitch a configuration where we have
horizontally four wide-angle lens cameras and vertically two
fisheye lens cameras for the ground and sky parts.
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Fig. 4. Screen capture of the authoring and editing software. Left, right: project images displayed on the unit sphere. Middle: images
displayed from the nodal viewpoint. Radiometric corrections are not displayed

2. Obtain a 3d vector:

P =
(

PX
PY
PZ

)
= R−1 K−1

(
x̄
ȳ
1

)
.

3. Obtain the spherical coordinates:

θ = arctan
PX

PZ
,

φ = arctan
PY√

PX
2 + PZ

2
.

RayToImage(θ, φ,C):

1. Obtain a 3d point on the unit sphere (vector direc-
tion):

Pθ,φ =
(

sin θ cos φ
sin φ

cos θ cos φ

)
.

2. Get ideal Cartesian pinhole coordinates.(
x̄ ȳ

) � ( x
w

y
w

) = (
x y w

) = K RPθ,φ.

3. Compute radial distortions by letting r̄ =√
(x̄ − cx)

2 + (ȳ − cy)
2. Solve the polynomial

system κr3 +r − r̄ = 0 and choose the root solu-
tion r ′ that is the closest to r .

4. Obtain Cartesian image coordinates:

x = x̄ + cxκr ′2

1+κr ′2 ,

y = ȳ + cyκr ′2

1+κr ′2 .

For large field of view lenses (bigger than 90 de-
grees), tangential distortions (also called decenter-
ing distortions resulting from the nonorthogonality

of the lens and image sensor with respect to the opti-
cal axis) become quite noticeable. In that case, Con-
rady’s model [6] should be used (see [9] for a robust
estimation algorithm).
Using these abstract functions, we can easily add
new camera models in our stitching system without
changing the registration method. For fine precision
stitching, an engineering strategy consists in tabulat-
ing these functions using more precise optical simu-
lations delivered by optical design software (e.g., Ze-
max optical packages). This approach allows one to
take into account numerous physical aspects of light
propagations through the lens, like refractive, reflec-
tive, and diffractive surfaces, lens surface coatings,
etc. Another interesting feature of this generic frame-
work is that there is no more distinction between
camera images and environment maps.8 A camera
image being a (partial) set of rays parameterized by
intrinsic parameters while an environment map is an
absolute set of rays (with no intrinsic parameters).
Therefore, once an environment map is computed,
we can further register high-resolution still images
and output another environment map.

3.3 Initializing parameters

We first start by manually initializing the parame-
ters of each camera using our graphical user inter-
face (GUI) (that, is we explicitly give intrinsic and
rotational parameters obtained from the multihead
camera design; see Fig. 4 for several GUI snapshots).
Then, by selecting manually corresponding feature
points of overlapping image pairs (see the FOV
graph of Fig. 2), we coarsely refine those parameters

8 Recall that an environment map is an image representation of
a discretization of all rays surrounding a given viewpoint.
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using numerical optimization (e.g., gradient meth-
ods like steepest-descent or Newton–Raphson tech-
niques). Our objective function is then to minimize
the maximum difference of angles of corresponding
feature points. Say, in image I1, feature f1 = (x1, y1)
corresponds to feature f2 = (x2, y2) in image I2.
Their difference angle is computed as follows:
Let ri = ImageToRay(xi, yi,Ci) for i ∈ {1, 2}. Then,

α = arccos
r1 · r2

‖r1‖ ‖r2‖ ,

where · denotes the dot product. In practice, we in-
put for each edge of the overlapping image graph,
around ten feature pairs (see Fig. 2). We then refine
parameters using a fine (per-pixel) optimization.

3.4 Objective function

In this section, we explain the design of our objec-
tive function used to retrieve the block camera pa-
rameters by minimization. Intrinsic camera parame-
ters are first recovered on an individual basis using
image-based camera calibration techniques as de-
picted in Fig. 5. Then, registration is the process of
refining these intrinsic parameters and finding the
extrinsic rotational parameters (roll, pitch, and yaw
angular attributes) of each block camera so that all
camera rays emanating from a common9 nodal point
O match. For an n-head camera, we need to find n
unit orthogonal 3 × 3 matrices Ri so that for all di-
rections r, the luminance/chromacies of the rotated
rays match well. Our objective function differs from
previous approaches [7, 11, 20, 24] in two ways:
1. First, the atomic score of the matching of ray r

is defined according to the respective ray density
functions wi(·) (it is quite significant for wide-
angle/fisheye lenses that we use in our multihead
cameras; see Fig. 6). Denoted by li(r) is the lu-
minance attribute of a ray r captured from the ith
camera image. After registration of the camera
ray bundles, a ray r of the synthesized environ-
ment map is chosen as the sum of weighted at-
tributes of the corresponding camera image rays.

9 This is not true in the absolute because of camera misalign-
ments and complex optical lens systems made of several units
that create a caustic surface [10]. Also, because of the dual
wave/ray nature of light, diffraction occurs at the boundary of
the aperture and the light is spread all over the image. More-
over, refraction laws are defined given a refractive index, say the
air, that may change, for example, with different temperature
conditions, etc.

Fig. 5. Lens parameters of the 5th camera (from the 10-
head camera) obtained by calibration: center = (360.8, 224.6),
aspect ratio 1.083, radial coefficients (2.29 × 10−6, 1.65 ×
10−11). Left column depicts the sensor images. Right column
shows the undistorted pinhole images

Namely,

l̂(r) =
n∑

j=1

w j(r)l j(r), such that
n∑

j=1

w j(r) = 1.

We define the scoring atom function as below:

sr =
n∑

i=1

wi(r)|li(r)− l̂(r)|2. (1)

Loosely speaking, wi(·) denotes the reliability of
the ray r captured in the original camera images.
In the case of Tsai’s lens distortion model, wi(·)
is related to the density of the mapping Li(·) from
the ideal to original image (see Fig. 6). More
precisely, we define wi(r) as the inverse of the
solid angle spanned10 by the pixel (xi(r), yi(r)) of
camera image i. Notice that we need an interpola-
tion scheme for computing li(r) (see Sect. 5).

2. Second, since we store the result of the registra-
tion in a ray map R (environment map), we want
to obtain the less “visually” defective raymap
(when displayed later on in the viewer). There-
fore, we ask for the minimization of:

f =
∑

ri, j =m(i, j)|(i, j)∈R

Ωi, j sri, j ,

10 Images are considered as four-connected meshes on the unit
sphere. Solid angles can be approximated by A cos α, where A
is the surface area spanned by a “pixel” and α is the incidence
angle from O to the center of quadrilateral A.
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Fig. 6. Ray densities for an ideal pinhole camera (with 90◦
FOV) and for a wide-angle camera (FOV � 110◦). The brighter
the sampling, the better the sampling

where Ωi, j is the solid angle subtended by the
pixel with coordinates (i, j) of the raymap R.
For example, using a traditional cubic map,
it is known that maxi, j Ωi, j

mini, j Ωi, j
= 3

√
3. (For a dual

paraboloid it is 4 and for an equirectangular map
it tends to infinity.11) The bigger the solid angle,
the more important it is to pay attention to finely
optimizing this portion. Informally, this amount
gives mismatch penalties according to the local
resolution of the environment map. In practice,
from an engineering point of view, we also tabu-
late the wi(·) and Ω functions.

3.5 Local numerical optimization

Once all parameters have been properly initialized
either by calibration, bundle adjustment methods
on manually selected feature pairs, or by user input
(using the 3d GUI depicted in Fig. 4), we perform
per-pixel local numerical optimization to approach
the global optimum. (Unfortunately, because of the
high-dimensionality of the objective function, say
on the order of 100 variables, we likely obtain a lo-
cal optimum.) Loosely speaking, it is required to
compute Jacobians and Hessians. Those are ob-
tained from the derivatives of the objective function
f according to the parameters. Numerous numeri-
cal recipes have been proposed so far. Starting from

11 Oversampling at the poles.

the early work of McMillan and Bishop [12], and
Szeleski and Shum [20] (see also [24]), to the more
recent work of Corg and Teller [7], which appropri-
ately uses quaternions for handling rotations in the
registration process. Our registration is not absolute
and contrasts with the aforementioned approaches.
Key differences with those methods are that: (1) each
camera possibly has different parameters and, most
importantly, (2) our atomic score is weighted accord-
ing to both ray densities (wi(·)) and the density of
the output raymap (function Ω(·)). This means that
the parameter results of the registrations are slightly
different according to the chosen raymaps (environ-
ment maps). We do not take into account radiometric
correction at this level (for example, Turkowski and
Xiong [24] considered linear intensity correction
inside the registration process) because we found
that this should be done offline using imaging tools.
Camera engineers are familiar with robust camera
color matching techniques to analyze and set the so-
called camera shadings.
We locally optimize the objective function f us-
ing a standard Levenberg–Marquardt process since
its use of second derivatives accelerates the conver-
gence rate (i.e., a small number of iterations; the
steepest-descent algorithm, although simple to im-
plement, converges too slowly). The gradient G and
Hessian H are computed by summing over all pix-
els of the raymap. Then, the optimization loop starts
from an estimate P of the parameters (in a vector
column) and update incrementally the solution as
P ← P +∆P, where ∆P = −(H +λI)−1G (I de-
notes the identity matrix). We set λ (the stabilization
parameter) initially at 10−4 and update it according
to the variations of ∆P (we keep the parameters P
that have so far yielded the best result in memory).
Since we need to compute (H +λI)−1, we encounter
unstable numerical matrix inverts. Therefore, we use
singular value decompositions12 (SVD) or pseudo-
inverse matrices. Once registered, we compute the
raymap R by blending the pixels according to their
weight function wi(·). Notice that during the regis-
tration process, pixel intensity/color channel value
is computed at noninteger positions. This requires
one to implement interpolants. Figure 7 shows our
raymaps obtained from several optimizations (differ-
ent Ω(·) functions).

12 The invert of an SVD is easy to obtain by transpose and diag-
onal matrix invert operations.
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Fig. 7. Optimization results for various environment maps (from top left to bottom right): Equirectangular, front and back
dual paraboloid, spherical, cubic, and rearranged cubic maps. Red borders are delimiting the respective fields of view of the
camera units of the 10-head camera (see Fig. 2)

4 Environment maps

Raymaps (say, of size W × H) store the color at-
tributes of the surrounding environment in an image
array. A raymap (environment map) is defined by
a mapping function m(·, ·) that associates with each
pixel coordinate (x, y) (indexing for a ray) a pic-
ture of its spherical coordinates (θ, φ) = m(x, y).
Conventional raymaps include equirectangular (also
known as latitude-longitude), cubical, cylindrical,
and dual paraboloidal maps (see Fig. 7). We present
alternatives below that are particularly well suited
to the case of immersive videos where bandwidth,
and not so much image size, is the limiting factor.
We detail sampling properties of those conventional
environments as well as our proposed ones in Ta-
ble 1. Raymaps can be interpreted as a special case
of UV-texture maps, where the texture coordinates
have spherical coordinate meanings. In cartography,
unflattening the Earth has a long history [21] that has
yielded to numerous map drawings with character-
istics such as conformity, equal area, equidistance,
etc. However, in our surround video setting, we do

Table 1. Sampling properties of some environment maps. Dis-

crepancy is defined as
maxi, j Ωi, j
mini, j Ωi, j

Raymap Aspect % Pixels Discrepancy

Lat.-long. 2:1 100% ∞
Sinusoidal 2:1 200

π
% ∼ 63.7%

Cube 3:2 100% 3
√

3
Paraboloid 2:1 25π% ∼ 78.5% 4
Mirror ball 1:1 25π% ∞
Angular 1:1 25π%
Hammersley Any 100% � 1

not need the map to be interpreted visually by hu-
mans but rather be efficiently processed by comput-
ers. Mappings are discrete (that is, stored as an image
array) and possibly dynamic (that is, they change
with time).

Raymesh. The raymesh format is a 3d mesh, where
each vertex has five components: (ρ, θ, φ) its
spherical coordinates13 and (tx, ty), the corre-

13 For viewers standing at the nodal point, we set ρ = 1.



100 F. Nielsen: Surround video: a multihead camera approach

8 9

Fig. 8. Left: 10 000 points statistically uniformly distributed on the sphere using pseudo-random generators. Right: first
10 000 points of the incremental Hammersley sequence
Fig. 9. Raymesh: radial envelope S and its corresponding raymap R

sponding texture coordinates, inside the raymap
(see Fig. 9).
For example, to obtain a simple polygonal ap-
proximation of the sphere, we use an icosahe-
dron or a surface refinement of it. Fuller’s map
(also called Dymaxion) is a special unfolding
of an icosahedron onto a raymap and can be
considered as a raymesh (see Fig. 10, right).
Given the geometry of our sensors, we can de-
fine a raymesh that preserves as much as pos-
sible the original quality of the multihead im-
agery. This polygon encoding can easily include
picture-in-picture mechanisms and can be used
with legacy audio and video codec systems such
as MPEG-2/4 (see also the 3D MPEG standard-
ization document [18]).

Compressed spherical. One drawback of the equi-
rectangular map is the nonuniformity of the sam-
pling. Indeed, at the equator, we have for each
pixel an increment of ∆θ = 2π

W . But at height h,

it becomes ∆θ = 2π
√

1−( 2h−H
H )2

W . We can partially
overcome this over amount of information at the
poles by sampling proportionally the latitude cir-
cles. Let φh = π h

H , then the width at row h is
w(h) = W sin(φh), and we sample proportionally
at row h by ∆θh = 2π

w(h)
increments. Doing so,

we reorganize the standard equirectangular map
without loosing quality. We save a factor14 of 1−
2
π

� 0.36.

14 In practice this means that we obtain better image quality
from the video at a given image size for a fixed bit rate.

Also, we keep the advantage that pixels are stored
in a lexicographic order so that ray interpolation and
texture operations can be used without any indexing
problem (See Fig. 10, middle). In cartography, this
is known as the sinusoidal equal area map. How-
ever, a difference here is that we do not require the
maps to be readable by humans, but rather seek for
efficient encoding/decoding computer processes. For
example, by aligning to the left the sinusoidal map,
we halved the number of filled macroblocks cut in an
MPEG-2/4 encoding.

Hammersley sequence. This is a deterministic se-
quence of points distributed on the sphere with
low discrepancy [23]. It has been used mainly in
computer graphics for Monte Carlo algorithms.
We use the Hammersley sequence with basis p =
2 (i.e., the so-called Van Der Corput sequence).
One inconvenience is that we do not have a easy
2d lexicographically indexing order of the rays
anymore (see Fig. 10, left). However, there are
several possibilities for implementing those point
sequence maps efficiently when computing the
views of a virtual camera (see Sect. 5). Since the
construction is incremental, we can increase the
resolution progressively by streaming point-by-
point (see Fig. 10, top left).

We implemented these formats as well as tradi-
tional ones used in cartography in a ray tracing
software15 to compare on a ground truth basis those

15 We modified the Povray software package (http://www.
povray.org) because of the wide availability of public do-
main script animations (e.g., http://www.irtc.org).
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Fig. 10. (From left to right) Hammersley’s, compressed spherical, and Fuller’s maps
Fig. 11. Front paraboloidal map rendered by ray tracing
Fig. 12. A 360-degree fisheye view synthesized directly from a raymap

representations (that is, without taking into account
stitching defects such as parallax or blending arti-
facts). Figure 11 shows a front paraboloidal map of
a computer graphics animation. In practice, from an
engineering perspective, we opted for the raymesh
to be able to control the density into interesting
areas (like people’s faces). For still imagery, Ham-
mersley’s maps guarantee evenly distributed sur-
round imagery but make the viewer algorithm more
cumbersome since we need to initially triangulate
points on a unit sphere. Our current video encod-
ing is based on the legacy MPEG-2/4 framework.
Since vector quantization and entropy coding are
general purpose compression schemes, the maps
can be encoded as is. (For example, using a cube
as a raymesh is a simple and convenient solution
since each of the six faces of the cube can be seen
as an ideal pinhole camera with a field of view 90
degrees.)

5 Viewer

We describe in this section the implementation of
our viewer. We consider two methods to synthesize
novel views of a virtual camera: (1) the per-pixel
method and (2) the per-triangle (texture mapping)
method. On one hand, per-pixel drawing allows us to
precisely control the rendering pipeline like the in-
terpolation scheme, but rendering is fully handled by
software and is therefore quite CPU demanding. On
the other hand, texture mapping allows us to reduce
the processor load by delegating triangle rasteriza-
tion to the graphic processor unit (GPU). In this case,
filtering operations are often limited (often, at best a
linear interpolation) and fixed in the Large Scale In-
tegration circuitry. We implemented both methods,
described below, on Windows/Linux/PlayStation 2
platforms. Surround videos are encoded in MPEG-
2/4 at 13 Mbps and burned onto DVDs. Some ad-
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ditional XML tags containing information related to
the videos are added (e.g., song titles, places, dura-
tions, suggested viewing angles, etc.) Users interact
with surround videos either by using a joystick or by
wearing a head-mounted display equipped with a gy-
roscope for retrieving gazing directions.

5.1 Per-texture method

Nowadays, widely available hardware capabilities
allow us to render views of a virtual camera us-
ing 2d textured triangles rasterized on the GPU. For
each triangle t = {p1, p2, p3} with pi associated to
its spherical coordinates (θi, φi) of the raymap, we
compute the position of the corresponding triangle
in the 2d XY-screen as xi ∼ K Rrθi,φi . Using matrix
formulations, we intersect a unit sphere with a line
(instead of a ray), so that we remove the ambiguity
(that is to eliminate the antipodal point) by checking
whether rθi,φi = r′ or not, where r′ ∼ (K R)−1xi .
We can choose to view the map not through an
ideal pinhole camera but from any kind of cam-
era (e.g., wide-angle or fish-eye lenses). We sim-
ply need to define a camera model C and the
RayToImage(θ, φ,C) function that, given spherical
coordinates (θ, φ), returns the position, if it exists,
on the XY-screen (see Sect. 3.2 for more details).
For example, RayToImage(θ, φ,CF) can be written
as (x, y) = r(φ)(cos θ, sin θ), where r(φ) = f1φ +
f2φ

2 + ... for a fisheye camera CF using the equidis-
tance projection model (see Fig. 12).
Using the GPU allows us to rasterize views from
a virtual camera fast but lacks flexibility since in-
terpolation and filtering operations are fixed in the
hardware. Since the algorithm is forward-mapping
(that is from the θφ-texture coordinates to the XY-
screen coordinates), we can split the raymap into
several independent textures and send them one-by-
one to the GPU (multipass rendering). This is spe-
cially useful for game consoles or set top boxes that
have a small memory footprint.16 Some examples of
polygonal approximations of the sphere related to
surround video quality are detailed in the 3D MPEG
document [18].a

5.2 Per-pixel method

Per-pixel drawing executes all operations on the
CPU and is therefore computationally heavier than

16 Sony PlayStation 2 has only 4 MB of embedded RAM.

its per-texture element counterpart. But we can freely
choose the interpolation (for example, a sinc in-
terpolant) and filtering algorithms. The rendering
algorithm is backward-mapping, that is, from the
XY-screen to the θφ-texture map. We compute an im-
age that we directly blit to the XY-screen. For each
integer pixel coordinates xi of the virtual camera
image, we first compute the real-valued spherical co-
ordinates of the corresponding ray as X = (K R)−1xi .
We then transform the Cartesian coordinates of X
to its spherical coordinates. Since the spherical co-
ordinates may have noninteger values, we interpo-
late the color from neighbor rays (i.e., neighbor
pixels in the environment map). For Hammersley
raymaps that do not exhibit an implicit triangula-
tion defining neighborhood, we initially build a tri-
angulation of points on the unit sphere and call
more sophisticated localization and interpolation
procedures based on spherical barycentric coordi-
nates [4].

6 Conclusion and perspectives

In this paper, we described algorithms for stitch-
ing, representing, and viewing high-quality surround
videos obtained from built-in-house multihead cam-
eras. We presented algorithms for stitching, repre-
senting, and viewing full spherical videos. Our im-
mersive video system is currently in use in an indus-
trial setting and opens up new content creation possi-
bilities (e.g., real-time interactive theater play broad-
casted on Internet). We believe that within a decade
or so, cost-reduction will eventually make affordable
the use of surround videos to both the consumer and
professional markets.
Full surround video, as a primary imagery input, is
also interesting for new computer vision techniques.
Indeed, since the imagery has no intrinsic parame-
ters, more robust or efficient algorithms are expected
for core vision problems, such as structure-from-
motion [16] or long video sequence tracking.
Moreover, interactive image-based rendering pho-
torealistic walkthroughs can be obtained by mas-
sively acquiring high-resolution still panoramas
from a moving panoramic head [1, 17] in a static en-
vironment. We expect this line of work to extend the
panorama technologies to a new digital media: inter-
active 3d picture.
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