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Abstract

We describe a simple and fast/dog, %)-time algorithm for finding &1 + ¢)-approximation of the smallest enclosing disk
of a planar set ofi points or disks. Experimental results of a readily available implementation are presented.
00 2004 Elsevier B.V. All rights reserved.
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1. Introduction and do not perform so well in practice. In this note,
we concentrate exclusively on the planar case ap-
The smallest enclosing disk (SED for short) prob- proximation, and we refer readers to the papers [1,3]
lem dates back to 1857 when Sylvester [5] first asked for experimental comparisons of recently designed al-
for the smallest disk enclosing points on the plane.  gorithms that either solve the exact or approximate
Although Qnlogn)-time algorithms were designed smallest enclosing ball problemsunbounded dimen-
for the planar case in the early 1970s, its complex- sion Computing smallest enclosing disks are useful
ity was only settled in 1984 with Megiddo’s first lin-  for metrology, machine learning and computer graph-
ear time algorithm [2] for solving linear programs in ics problems. Fast constant approximation heuristics
fixed dimensionUnfortunately, these algorithms ex- are popular in computer graphics [4]. LBt= {P; =
hibit a large constant hidden in the big-Oh notation (x;, y;), i € {1,...,n}} be a set of planar points. We
use notations:(P;) = x; and y(P;) = y; to mention
~ ) point coordinates. Let DigK*, r*) be the smallest
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diusr*. We want to compute él + ¢)-approximation,
that is, a disk DiskC,r) such thatr < (1 + &)r*
and P C Disk(C, r). Our paper aims at designing a

fast deterministic (i.e., worst-case time bounded) ap-

proximation algorithm that is suitable for real-time
demanding applications. Our simple implementation
for point/disk sets is a mere 30-line code which do not
require to compute the tedious basis primitive of the

smallest disk enclosing three disks. Moreover, we ex-

hibit a robust approximation algorithm using only al-

gebraic predicates of degree 2 on Integer arithmetic. In g,

Section 6, we show that our floating-point implemen-
tation outperforms or fairly competes with traditional
methods while guaranteeing worst-case time.

2. Piercing/covering duality
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Fig. 1. Covering/piercing duality principle.

Let us consider the general case of a disk set 3. Algorithm outline

D ={D; =Disk(P;, r;), i €{1,...,n}}to explain the
piercing/covering duality. Our approximation algo-
rithm proceeds by solving dual piercidgcision prob-
lems(DPs for short; see Fig. 1): given a set of corre-
sponding dual diskB(r) = {B; = Disk(P;,r —r;),i €
{1,...,n}}, determine whethef\ B(r) = (/_; Bi =

¢ or not.

Lemma 1. Observe that forr > r*, there exists a
(uniqu@ disk B of radiusr(B) =r — r* centered at
C(B) = C* fully contained insid¢ 5.

Proof. In order to ensure thaC* is inside each
B; (r), a sufficient condition is to have> max {r; +
d2(P;, C*}. SinceB; C Disk(C*,r*), Vie{l,2,...,
n}, we have

max{r; +da(P;, C*)} <r*. (*)

1
Thus, provided- > r*, we haveC* € [ B(r). Now,
notice thatvi € {1,2,...,n}, YO+ < (r — r;) —
do(P;, C*), Disk(C*, ") C B;(r). Thus, if we ensure
thatr’ < r —max (r; +d2(P;, C*)), then DisKC*, r’)
C (N B(r). Fromineq. {), we choose’ = r — r* and
obtain the lemma (see Fig. 1). Uniqueness follows
from the proof by contradiction of [6]. O

1 Source code in C is available at http://www.csl.sony.co.jp/
person/nielsen.

Our approximation algorithm proceeds by solv-
ing a sequence of dual piercirdecision problems
(see Fig. 1): given a set of diskB(r) = {B; =
Disk(P;,r),i € {1, ..., n}}, determine whethdn) 5(r)
=(); Bi = © or not. We relax the 1-piercing point
problem to that of a common piercing™*-disk (i.e.,

a disk of radiuser®*): report whether there exists a
disk B = Disk(C, er*) such thatB < (B(r) or not.
Algorithm 1 describes the complete approximation
procedure.

3.1. Solving decision problems

We explain procedure DecisionProblem of Algo-
rithm 1. Let [x,,, xp] be an interval on the-axis
where aner*-disk center might be located if it ex-
ists. (Thatisc(C) € [x, xp] if it exists.) We initialize
Xm, Xy as thex-abscissae extrema;, = max (x;) —

r, xp = min;(x;) + r. If xp < x,,, then clearly verti-
callineL : x = (x;;, + x37)/2 separates two extremum
disks (those whose corresponding centers give rise to
xm and xys) and thereforeB(r) is not 1l-pierceable
(therefore noktr*-ball pierceable). Otherwise, the al-
gorithm proceeds by dichotomy (see Fig. 2). ket

(xm + xp)/2 and letL denotes the vertical ling : x

=e. Denote byB;, ={B; N L |ie{l,...,n}} the

set of n y-intervals obtained as the intersection of
the disks ofB with line L. We check whetheB; =
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DecisionProblen®, xmin, xmax, r, ¢):
Xy =Xmin+r;
X = XmMax—r;
whilexy —x; > e do
| = XM +Xm :

.....

.....

if ypr > ym then

x=I,
y==0m+ym/2;
return true;

else

/Im andM are arg indices of,,;, andyy;
if (xm +xp1)/2>1then

xm =1,
ese
Xpm = l;
return false;

SmallEnclosingDiskp, ¢):
Xmin=min; (1, ..} Xi;
Xmax=maXe(1,....n} Xi;
dip=maxe1,.. ny 1P — Pill;

b=dy;
_d1.
a = 5

£« %(b —a)e;
whileb —a > ¢ do
r=(a+b)/2;

pierceable= DecisionProblenf®, xmin, xmax, r, €);

if pierceableghen
b=r;
else
a=r,

Algorithm 1. (1 + ¢)-approximation of the minimum enclosing disk

of P.

{BiNL=1[a;,b;]|ie{l,...,n}}is 1-pierceable or
not. Sincel3;, is a set ofr y-intervals, we just need to
check whether mirb; > max a; or not. If (B # ¥,
then we have found a poirie, min; b;) in the inter-
section of all balls of8 and we stop recursing. (In
fact we found a(x = e,y = [y = Ma% a;, yy =
min; b;]) vertical piercing segment.) Otherwise, we
have( B, = ¥ and need to choose on which side of
L to recurse. Without loss of generality, IBt and B>
denote the two disks whose correspondyrigitervals

whereB1 N B> is located (if the intersection is empty
then we stop by reporting the two nonintersecting balls
B1 and By). Otherwise,B1 N B2 # ¢ and we branch
on the side whereg, g, = (x(C(B1)) + x(C(B2)))/2
lies. At each stage of the dichotomic process, we
halve thex-axis range where the solution is to be lo-
cated (if it exists). We stop the recursion as soon as
XM — Xm < €5. Indeed, ifxy — x, < e5 then we
know thatno center of a ballof radiuser is con-
tained in() B. (Indeed if such a ball exists thdroth

N BLix,) 7 9 and() Br(x,,) # @.) Overall, we recurse
at most 3+ [log, %1 times since the initial interval
width xp; — x,, is less than 2 and we always con-
siderr > ;.

3.2. Radius dichotomy search

Finding the minimum enclosing disk radius
amounts to find the smallest values R* such that
N B(r) # @. That isr* = argmin.cg+ (| B(r) # 0.
We seek an1 + ¢)-approximation of the minimum
enclosing ball of points by doing a straightforward
dichotomic process on relaxed decision problems as
explicited by procedure SmallEnclosingDisk. We al-
ways keep a solution intervdk, b] where r* lies,
such that at any stage we hgVeB(a — %) =¢ and
() B(b) # @. Without loss of generality, leP; denote
the leftmostx-abscissae point 6P and let P, € P
be the maximum distance point @& from P;. We
have r = do(P1, P2) > r* (since P C Disk(P1, r)).
But d2(P1, P») < 2r* since bothP, and P, are con-
tained inside the unique smallest enclosing disk of
radiusr*. Thus we have™ € [5, r]. We initialize the
range by choosing = 5 <r* andb =r < 2r*. Then
we solve thejr-disk piercing problem with disks of
radiuse = (a + b)/2. If we found a common piercing
point for () B(e) then we recurse ofa, ¢]. Otherwise
we recurse oife, b]. We stop as soon ds—a < £7.
(Therefore after @og, %) iterations since the initial
range widthb — a < r*.) At any stage, we assert that
B — &) =@ (by answering tha{)B(a) does
not contain any ball of radiug) and B(b) # @. At
the end of the recursion process, we get an interval
[a — £, b] wherer* lies in. Sinceb —a < e < e’y
and |r* —a| < & < & (becauseB(a — &) = ),
we get:b < r* 4 2e7. Sincer < 2r*, we obtain a
(14 &)-approximation of the minimum enclosing ball

on L are disjoint. We choose to recurse on the side of the point set. Thus, by solving(@g, %) decision
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Fig. 2. Arecursion stepL : x = e intersects all balls. Twg-intervals do not intersect oh. We recurse on-rangele, x;].

problems, we obtain a@logg %)-time deterministic 4. Predicatedegree
(1+ e)-approximation algorithm.
Predicates are the basic computational atoms of al-

3.3. Bootstrapping gorithms that are related to their numerical stabilities.

In the exact smallest enclosing disk algorithm [6], the

We bootstrap the previous algorithm in order to get so-calledinCircle containment predicate of algebraic

a better @n log, 1)-time algorithm. The key ideaisto  degree 4 is used on Integers. Since we only yse
shrink potential rangéa, b] of r* by selecting itera-  function to determine the sign of algebraic numbers,
tively different approximation ratiog untilwe ensure  all computations can be done on Rationals using alge-

that, atkth stagesy < ¢. Let Disk(C, r) be a(1 + ¢)- braic degree 2. We show how to replace the predicates
approximation enclosing ball. Observe thatC) — of algebraic degree4 by predicates of degree 2 for
x(C*)| < er*. We update thec-range[x,,, xy] ac- Integers: “Given a disk centék;, y;) and a radius;,

cording to the so far foqnd piercing point abcissae determine whether a poittt, y) is inside, on or out-
x(C) and current approximation factor. We start by side the disk”. It boils down to compute the sign of
solving the approximation of the smallest enclosing (x — x;)2 + (y — y;)% — rl?_ This can be achieved using

ball fore; = 1. It costs Qn log, %) =0(n).Usingthe  another dichotomy search on lifie x = /. We need to

final output rangéda, b], we now haveb — a < eqr*. ensure that i, > yu, then there do exist two disjoint
Consider = 3 and reiterate untit; < ¢. The overall disks B,, and By,;. We regularly sample lind. such
cost of the procedure is that if y,, > yu, then there exists a sampling point in
flogy 11 [vm, ym] that does not belong to bpth disl&, and
Z‘ Onlog, 2) O(nlog }) By . In order to guaran'tee that gettlng, we need to en-
2 2¢ ) sure soméatnesof the intersection of ) B(r) N L by

i=0
We get the following theorem: -
2 Comparing expressionsy; + vr2—(—x1)2 > y» +
Theorem 1. A (1 + £)-approximation of the minimum _\/r2— (l—xg)z_is of degree 4 for Integers. Indeed, by isolat-
losing disk of a set of points on the plane can ing z_and removing the square rgoby successive squaring, the
enc g - ; 1 e predicate sign is the same &&2 — (I — x1)2 — (I — x2)?)2 >
be computed efficiently i©(nlog, ) deterministic 4(r2 — (1 — x1)2)(r2 — (I — x)2). The last polynomial has highest
time. monomials of degree 4.
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Table 1
Timings
Method/distribution O Square max ® Ring max O Square avg ® Ring avg
Eberly ¢ = 1079) 0.7056 0.6374 0.1955 02767
Ritter (€ > 101) 0.0070 0.0069 0.0049 Q0049
ASED (£ = 1072) 0.0343 0.0338 0.0205 00286
ASED (¢ = 1073) 0.0515 0.0444 0.0284 Q0405
ASED (e =107%) 0.0646 0.0617 0.0392 Q0449
ASED (¢ = 1079) 0.0719 0.0726 0.0473 Q0527

Experiments done on 1000 trials for point sets of size 100000. Maxifmuzx) and average (avg) running times are in fractions of a second.

Bold numbers indicate worst-case timings.

recursing on the-axis until we havexy; — x,, < \sz

In that case, we know that if there was a commoft
ball intersection, then its centercoordinate is inside
[xm. xm]: this means that odl, the width of the in-
tersection is at Ieas%. Therefore, a regular sampling
on vertical lineL with step width% guarantees to
find a common piercing point if it exists. A straightfor-
ward implementation would yield a time complexity
O( log, %). However it is sufficient for each of the
disks, to find the upper most and bottom most lattice
point in O(log, %)—time using the floor function. Us-
ing the bootstrapping method, we obtain the following
theorem:

Theorem 2. A (1 + ¢)-approximation of the minimum
enclosing disk of a set af points on the plane can be
computed irO(n log, %) time using Integer arithmetic
with algebraic predicates InCircle of degr@e

5. Extension to disks

Our algorithm extends straightforwardly for sets
of disks. Consider a set of planar disksD =
{Dl, . Dn} with C(D;) = P; = (x;, yi) andr(D,-) =
ri. Let B(r) ={B; | C(B;) = P; andr(B;) =r — ri}.
Using the dual piercing principle, we obtain thdt=
argmin.cg (1 B(r) # 8. (We haveC* = (B(r*).)
Observe also that* > max r;. Initialization is done
by choosing = r1+max (d2(P1, P;)+r;) anda = §.
We now let

r22 — rl2 + (r1+ rz)2
2(r1+r2)?

XB1By = XB; + (sz - -XB]_)-

6. Experimental results

We compare our implementation with D.H. Eber-
ly's C++ implementatioh using double types that
guarantees precisian= 10> and has expected run-
ning time 1@ but no known worst-case bound better
than Qn!). We also compare our code with Ritter’s
fast constant approximation £ 10%) greedy heuris-
tic used in game programming [4]. Timings are ob-
tained on an Intel Pentium(R) 4 1.6 GHz with 1 GB
of memory for points uniformly distributed inside a
unit square 0) and inside a unit ring of width .01
(®). Table 1 reports our timings. The experiments
show that over a thousand square/ring random point
sets, our algorithm (ASED) maximum time is much
smaller than that of Eberly’s (in addition, this latter
algorithm requiresO(log3n) calls [6] to the expen-
sive and intricate basic primitive of computing the
circle passing through three points). Source codes in
C for point and disk sets are available at http://www.
csl.sony.co.jp/person/nielsen.
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