
A Visual Interactive Framework for
Formal Derivation

P. Agron , L. Bachmair , and F. Nielsen

1 Department of Computer Science,
Stony Brook University, Stony Brook, New York

2 Sony Computer Sciences Laboratory Inc,
Tokyo, Japan

Abstract. We describe a visual interactive framework that supports the
computation of syntactic unifiers of expressions with variables. Unifica-
tion is specified via built-in transformation rules. A user derives a solu-
tion to a unification problem by stepwise application of these rules. The
software tool provides both a debugger-style presentation of a derivation
and its history, and a graphical view of the expressions generated during
the unification process. A backtracking facility allows the user to revert
to an earlier step in a derivation and proceed with a different strategy.

1 Introduction

Kimberly is a software tool intended to be used in college-level courses on com-
putational logic. It combines results from diverse fields: mathematical logic, com-
putational geometry, graph drawing, computer graphics, and window systems.
A key aspect of the project has been its emphasis on visualizing formal deriva-
tion processes, and in fact it provides a blueprint for the design of educational
software tools for similar applications.

Applications of computational logic employ various methods for manipulat-
ing syntactic expressions (i.e., terms and formulas). For instance, unification
is the problem of determining whether two expressions E and F can be made
identical by substituting suitable expressions for variables. In other words, the
problem requires one to syntactically solve equations E ≈ F . For example, the
two expressions f(x, c) and f(h(y), y), where f and h denote functions, c denotes
a constant, and x and y denote variables, are unifiable: substitute c for y and
h(c) for x. But the equation f(x, x) ≈ f(h(y), y) is not solvable.1

Logic programming and automated theorem proving require algorithms that
produce, for solvable equations E ≈ F , a unifier, that is, a substitution σ such
that Eσ = Fσ. Often one is interested in computing most general unifiers, from
which any other unifier can be obtained by further instantiation of variables.
Such unification algorithms can be described by collections of rules that are

1 Note that we consider syntactic unification and do not take into account any semantic
properties of the functions denoted by f and h.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 1019–1026, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1 21



1020 P. Agron, L. Bachmair, and F. Nielsen

designed to transform a given equation E ≈ F into solved form, that is, a set
of equations, x1 ≈ E1, . . . , xn ≈ En, with variables xi on the left-hand sides
that are all different and do not occur in any right-hand-side expression Ej .
The individual equations xi ≈ Ei are called variable bindings; collectively, they
define a unifier: substitute for xi the corresponding expression Ei.

For example, the equation f(x, c) ≈ f(h(y), y) can be decomposed into two
equations, x ≈ h(y) and c ≈ y. Decomposition preserves the solutions of equa-
tional systems in that a substitution that simultaneously solves the two simplified
equations also solves the original equation, and vice versa. We can reorient the
second equation, to a variable binding y ≈ c, and view it as a partial speci-
fication of a substitution, which may be applied to the first equation to yield
x ≈ h(c). The two final equations, x ≈ h(c) and y ≈ c, describe a unifier of the
initial equation. The example indicates that in general one needs to consider the
problem of simultaneously solving several equations, E1 ≈ F1, . . . , En ≈ Fn.

A derivation is a sequence of sets of equations as obtained by repeated appli-
cations of rules. If transformation rules are chosen judiciously, the construction
of derivations is guaranteed to terminate with a final set of equations that is
either in solved form (and describes a most general unifier) or else evidently
unsolvable. Unsolvability may manifest itself in two ways: (i) as a clash, i.e. an
equation of the form f(E1, . . . , En) ≈ g(F1, . . . , Fk), where f and g are different
function symbols, or (ii) as an equation x ≈ E, where E contains x (but is dif-
ferent from it), e.g., x ≈ h(x). The transformation rules we have implemented
in Kimberly are similar to those described in [8].

In Section 2 we describe the visual framework for derivations. The current
version of Kimberly provides graphical representation of terms and formulas
as trees, but has been designed to be augmented with additional visualization
functionality for representation of directed graphs, as described in Section 3. We
discuss some implementation details in Section 4 and conclude with plans for
future work.

2 Visual Framework for Derivations

Kimberly features a graphical user interface with an integrated text editor for
specifying sets of equations. The input consists of a set of (one or more) equa-
tions, to be solved simultaneously. Equations can be entered via a “source”
panel, see Figure 1. They can also be saved to and loaded from a text file. For
example, the upper section of the window in Figure 1 contains the textual rep-
resentation of three equations to be solved, f(a, h(z), g(w)) ≈ f(y, h(g(a)), z),
g(w) ≈ g(y), and s(z, s(w, y)) ≈ s(g(w), s(y, a)). Note that in Kimberly we dis-
tinguish between variables and function symbols by enclosing the former within
angle brackets.

Once the initial equations have been parsed, the user may begin the process
of transforming them by selecting an equation and a rule to be applied to it.
The transformation rules include decomposition, orientation, substitution, elim-
ination of trivial equations, occur-check, and detection of clash (cf. [8]), each of



A Visual Interactive Framework for Formal Derivation 1021

Fig. 1. The upper section of the window contains a tabbed view to manage panels

named according to their functionality. The source panel, shown, provides text editing.

The lower section is used to display messages generated by the application

Fig. 2. The computation panel presents a debugger-style view of a derivation. The left

section of the panel shows the history of rule applications. The right section lists the

current equations, with variable bindings listed on top and equations yet to be solved

at the bottom

which is represented by a button in the toolbar of the “computation” panel, see
Figure 2. If an invoked rule is indeed applicable to the selected (highlighted)
equation, the transformed set of equations will be displayed and the history of
the derivation updated.

The derivation process is inherently nondeterministic, as at each step different
rules may be applicable to the given equations. The software tool not only keeps



1022 P. Agron, L. Bachmair, and F. Nielsen

Fig. 3. The visualization module represents equations as pairs of vertically joined trees.

Functions are depicted as circles and variables as rectangles. Tree edges are represented

by elliptic arcs, while straight lines join the roots of two trees

Fig. 4. Organization of user interaction

track of all rule applications, but also provides backtracking functionality to
allow a user to revert to a previous point in a derivation and proceed with an
alternative rule application.

Kimberly features a “visualization” module that supplies images of a trees
representing terms and equations, and the user may switch between a textual
and a graphical view of the current set of equations. The browser allows a user
to view one equation at a time, see Figure 3.

The design of the user interface has been guided by the intended applica-
tion of the tool within an educational setting. User friendliness, portability,
and conformity were important considerations, and the design utilizes intuitive
mnemonics and hints, regularity in the layout of interface elements, and redun-
dant keyboard/mouse navigation. The transition diagram in Figure 4 presents a
high-level view of user interaction.

Kimberly is a single document application, with all the user interface elements
fixed inside the main window. Addition of a new browser to the application in-



A Visual Interactive Framework for Formal Derivation 1023

Fig. 5. Application of the substitution rule

volves only the introduction of a panel to host the new browser. The browsing
architecture is designed to reflect interaction with the active browser, e.g., back-
tracking to an earlier state, to the remaining browsing modules.

For efficiency reasons we internally represent terms and equations by directed
acyclic graphs, and utilize various lookup tables (dictionaries) that support an
efficient implementation of the application of transformation rules. Specifically,
we keep those equations yet to be solved in an “equation list,” separate from
variable bindings, which are represented by a “bindings map.” An additional
variables lookup table allows us to quickly locate all occurrences of a variable in
a graph. The latter table is constructed at parse time, proportional in size to
the input, and essential for the efficient implementation of applications of the
substitution rule.

Figure 5 demonstrates the effect of an application of the substitution rule on
the internal data structures. The rule is applied with an equation, x ≈ g(a, y, b),
that is internally represented as e2 on the equation list in the left diagram. The
effect of the substitution is twofold: (i) the equation e2 is removed from the
equation list and added (in slightly different form) to the bindings map and (ii)
all occurrences of x are replaced by g(a, y, b), which internally causes several
pointers to be redirected, as shown in the right diagram.

3 Visualization of Directed Graphs

Many combinatorial algorithms can be conveniently understood by observing
the effect of their execution on the inherent data structures. Data structures can
often be depicted as graphs, algorithmic transformations of which are naturally
suited for interactive visualization. Results on graph drawing [1] can be combined
with work on planar labeling for animating such dynamics. At the time this
article was written no public domain software packages were available that were
suitable for our purposes, therefore we decided to develop a novel method for
browsing animated transformations on labeled graphs.



1024 P. Agron, L. Bachmair, and F. Nielsen

Fig. 6. A 3D layout of a randomly generated directed acyclic graph

We conducted a number of experiments in interactive graph drawing to equip
Kimberly with an adequate visualization module for the representation of di-
rected graphs. In particular, we studied issues of graph layout and edge routing
(and plan to address labeling and animation aspects in future work).

Our graph drawing procedure is executed in two stages. The layering step,
which maps nodes onto vertices (points in R

3), is followed by the routing step,
which maps edges onto routes (curves in R

3).
In [2] it was shown that representing edges as curved lines can significantly

improve readability of a graph. In contrast to the combinatorial edge-routing
algorithm described in [2] (later utilized in [5] to address labeled graphs) our
algorithm is iterative and consequently initialization sensitive. We treat vertices
as sources of an outward irrotational force field, which enables us to treat routes
as elastic strings in the solenoidal field (routes are curves that stay clear of the
vertices). A route is computed by minimizing an energy term that preserves both
length and curvature. Our approach is similar to the “active contours” methods
employed for image segmentation [7, 9].

The layering step involves computing a clustering of a directed acyclic graph
via topological sorting. We sorted with respect to both minimum and maximum
distance from a source vertex and found that the latter approach typically pro-
duces significantly more clusters than the former. We map clusters onto a series
of parallel circles centered on an axis, see Figure 6.

4 Implementation

The design of Kimberly is centered around providing multiple views of the
derivation process. A flexible architecture allows for straightforward introduc-
tion of new visualization modules (perspectives). To achieve the flexibility we
have followed the canonical MVC (Model-View-Controller) paradigm [4–pp 4-5].
The model object of the application keeps the history of rule applications and



A Visual Interactive Framework for Formal Derivation 1025

information on the currently selected step in the derivation and the selected
equation. The controller object inflicts rule-firings on the model and notifies the
perspectives of the changes. Perspectives are automatically kept in synch with
the model; A perspective may, for example, change selection parameters of the
model which would mechanically cause other perspectives to reflect the changes.

Images generated during the graph drawing stages are cached, as in-time im-
age generation may take unreasonably long and adversely affect user experience.
Memory requirements for storing the images may be very high, and hence images
are stored compressed. An alternative approach would be to rely on a customized
culling scheme under which only the elements in the visible region (intersecting
the viewport) are drawn, using fast rectangle intersection algorithms and other
computational geometry techniques.

For the 3D experiments we built an application with animation and simu-
lation processes running in separate threads, enabling us to adjust simulation
parameters such as step size while observing the effects in real time. Routes
are implemented as polylines and computed by iteratively displacing the joints
(mass points) under the sum of internal and external forces until the displace-
ments become negligible. Motion of mass points is considered to be in a viscous
medium and is therefore calculated under the assumption of F = mdx

dt . Segments
of the polyline are treated as strings with non-zero rest length to encourage an
even distribution of the mass points. At each step forces are scaled appropriately
to ensure there are no exceedingly large displacements. Once the visualization
scheme is fully understood we plan to base a perspective on it and make it an
integral part of Kimberly .

5 Future Work

Further experimentation is needed to address the labeling and animation of
graph transformations. We plan to use the same edge-routing algorithm to com-
pute trajectories for animation of graph transformations. An advantage of draw-
ing graphs in 3D is that edge intersections can always be avoided. But cognitive
effects of shading and animation on graph readability need to be further in-
vestigated. Although the extra-dimensional illusion is convenient for setting up
interaction, it is apparent that bare “realistic” 3D depictions are not sufficient.

Herman et al. [6] point out that while its desirable to visualize graphs in
3D because the space is analogous to the physical reality, it is disorienting to
navigate the embeddings. Our research suggests that highly structured 3D lay-
outs are more beneficial in this sense than straightforward extensions of the
corresponding 2D methods because they are less disorienting. While our layout
possesses axial symmetry, one can imagine a decomposition into spherical or
toroidal clusters. The authors of [6, 3] corroborate our conviction that there is
no good method for viewing large and sufficiently complex graphs all at once,
and that interactive exploration of a large graph is indispensable. A key issue is
how to take advantage of the graphics capabilities common in today’s computers
to increase the readability of graphs.



1026 P. Agron, L. Bachmair, and F. Nielsen

Once the directed-graph browser has been integrated in the existing tool, the
next step would be to consider applications to other derivation-based methods.
Possible educational applications include grammars, as used for the specifica-
tion of formal languages. The current system focuses on the visualization of
derivation-based methods; future versions are expected to feature more exten-
sive feedback to a user during the derivation process.

References

1. G. Di Battista, P. Eades, R. Tamassia, and I. Tollis. Graph Drawing. Prentice
Hall, 1998.

2. David P. Dobkin, Emden R. Gansner, Eleftherios Koutsofios, and Stephen C.
North. Implementing a general-purpose edge router. In Proceedings of the 5th In-
ternational Symposium on Graph Drawing, pages 262–271. Springer-Verlag, 1997.

3. Irene Finocchi. Hierarchical Decompositions for Visualizing Large Graphs. PhD
thesis, Universita degli Studi di Roma “La Sapienza”, 2002.

4. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

5. Emden R. Gansner and Stephen C. North. Improved force-directed layouts. In
Proceedings of the 6th International Symposium on Graph Drawing, pages 364–373.
Springer-Verlag, 1998.

6. I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation
in information visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics, 6(1):24–43, 2000.

7. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. Inter-
national Journal of Computer Vision, 1(4):321–331, 1987.

8. R. Socher-Ambrosius and P. Johann. Deduction Systems. Springer, 1996.
9. C. Xu and J. Prince. Snakes, shapes, and gradient vector flow. IEEE Trans. Image

Processing, 7(3):359–369, 1998.


	Introduction
	Visual Framework for Derivations
	Visualization of Directed Graphs
	Implementation
	Future Work

