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On the Precision of Textures∗
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SUMMARY In this paper, we first introduce the notion of
texture precision given the 3d geometry of a scene. We then pro-
vide an algorithm to acquire a texture/color map of the scene
within a given precision. The texture map is obtained using pro-
jective devices (like pinhole sensing device) from data acquired
either in the real world or computer-synthesized. Finally, we de-
scribe a procedure to obtain level of precisions by combining a
modified edge-collapse geometry technique with an appropriate
remapping texture engine. We report on our experiments and
give perspectives for further research.
key words: texture, color map, geometric model, simplification,
level of details

1. Precision of Textures

There is a considerable amount of literature on level of
details (LODs) and texture map simplification (see [2]–
[6], [8] for related works). Those methods generally pro-
ceed by dividing the object into patches and then, by
simplifying the geometry by minimizing the texture dis-
tortion/displacement using energetic functions on each
patch. As a matter of fact, the borders of the patches
are not allowed to be modified. Roughly speaking, we
adopt the following scenario: given the known geome-
try of an object (or more generally a scene composed
of objects), how many pictures (and the corresponding
locations of the camera) do we need to take in order to
build a texture map that has a guaranteed precision.
Each picture defines a not necessarily connected super
patch. Potential applications of our method include
range scanning where we may constrain the positions
of the camera to be on a circle centered around the ob-
ject: we then scan the object in two steps: (1) get the 3d
coordinates of a triangle mesh, and (2) select positions
of the camera in order to build a texture map within
a prescribed quality. Figure 1 points out the pixel dis-
tortions obtained from the perspective projection of a
checkboard on a 3d mesh. Pixels projected onto much
slanted triangles exhibit large distortion compared to
pixels projected to perpendicular triangles.

In the sequel, objects O are considered to be tes-
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Fig. 1 Projecting a checkboard on a 3d mesh. Observation
from two different viewpoints.

selated manifolds with boundaries of R
3.

Definition 1: We define a texture as an application
T which associates to each point of O a scalar value (or
attribute). Let µ(R) defines the measure on R

3 defined
by the diameter of R. A texture T ′ has precision ε
if we can find a covering C = {c1, . . . , ck} of O (ie.,⋃

i ci = O) such that:

• Each element ci ∈ C of the cover has measure less
than ε (i.e. µ(ci) <= ε), and

• For each element ci ∈ C, T ′(x) is constant for all
x ∈ ci. (We consider T ′(ci) = 1

µ(ci)

∫
ci
T (s)ds.)

For a given 3d location (xL, yL, zL) and 3d
orientation (rollL, pitchL, yawL) of a camera L =
(xL, yL, zL, rollL, pitchL, yawL) and a point p ∈ O, the
precision of p is either infinite if no pixel of the cam-
era projects onto p, or equals to the measure of the
projected pixel. We denote by µL(p) the precision of p
from camera location and orientation L.

A triangle t ∈ O has precision ε if ∀p ∈ t,
µ(p) <= ε. Let p1, p2 and p3 be the vertices of t. If
∀i ∈ {1, 2, 3}, µ(pi) <= ε then µ(t) <= ε.

A simple approximation of the quality of the sphere
standard camera (Informally speaking, each pixel is rep-
resented as a circle — see Fig. 2; see [1] for formal def-
inition & further details) is obtained as follows: When
projecting the ‘pixel’ circle onto the plane of the ob-
ject, we can use a simpler projection than the perspec-
tive one. We can first project the pixel onto a plane
containing p parallel to the focal plane and then use a
parallel projection to project it on the tangent plane of
the object (see Fig. 3). This projection is called “weak”
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Fig. 2 The two camera models. Top: the so-called “sphere
standard camera.” Bottom: the so-called “square standard cam-
era.”

Fig. 3 Perspective projection of a pixel and “weak” approxi-
mation.

projection. In this case, the precision of a point is de-
fined by the following simple (approximation to the 1st
order) formula:

P (p) =
d ∗D

f ∗ cos θ
∼ µL(p),

with d the diameter of the pixels, D the distance be-
tween camera center O and p, and θ the angle between
the focal plane and the tangent plane (depend on cam-
era location L — parameters rollL and pitchL).

This approximation has a useful property as shown
below:

Theorem 1: Let c be a standard camera model and
p a point of an object O locally plane around O. We

can find a point p0 of the projected pixel containing p
such as the formula P (p0) = d∗D0

f∗cos θ is larger than the
measure of the pixel µL(p).

Proof 1: We note that if the camera is a square stan-
dard model, we can bound any square pixel by the disc
containing it. The measure of the projection of the disc
is obviously an upper bound of the measure of the real
projected pixel. The approximation formula is obtained
by first projecting the pixel with a perspective projec-
tion on a plane parallel to the focal plane containing p,
and then use a parallel projection to project it on the
plane of the object. The plane projection is parallel to
a normal vector of the focal plane. We use as point p0

the point of the projected pixel that is the furthest pos-
sible from the optical center of the camera and belongs
to the great axis of the projected pixel, which is an el-
lipsis. Let us select the diameter A as the perspective
projection of a pixel I (µL(p) = |A| by definition). Let
us call Proj(I) the image by the weak projection at p
of a camera pixel I (using distance D) and Proj0(I)
the image by the weak projection associated with p0

(using distance D0).
We consider now an infinitesimal portion δI of the

pixel I. It has length δd. The length Proj(δI) can be
obtained by the approximation formula which is a first
order approximation. So we have |Proj(δI)| = d∗|Opi|

f∗cos θ

with pi a point of Proj(δI). The length of Proj0(δI) is
given immediately by |Proj0(δI)| = d∗|Op0|

f∗cos θ = d∗D0
f∗cos θ ,

with D0 the distance from the optical center O to
the point p0. As we have choosen p0 as being the
point of the projected pixel belonging to the great axis
and the furthest possible from the optical center, we
have |Proj(δI)| <= |Proj0(δI)|. If we integrate this
inequality, we have |Proj(I)| <= µL(p) <= |Proj0(I)|.
|Proj0(I)| is an upper bound of µL(p).

2. Acquiring a Triangle Mesh within a Given
Precision

Definition 2: Let pi be a set of points belonging to
an object O. The set pi is visible with a precision of
ε if all the points of the set are seen with a precision
smaller or equal to ε.

From this definition, it follows the definition of the
precision of a triangle.

Definition 3: Let O be an object, and T a triangle
belonging to the surface of this object. We define the
precision of the triangle T viewed by the camera c as
the maximum of the precision of all the points of the
triangle viewed by the same camera c.

That is to say if some points have an infinite pre-
cision, the precision of the triangle is also infinite. It
means a triangle partially hidden is considered to have
an infinite precision; That is we consider that we do not
have valuable datas about it.
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2.1 Taking a Picture of a Triangle with a Precision

We need to separate the triangle into two parts, accord-
ing to the following definition.

Definition 4: Let T be a triangle and c a camera.
If the precision of the triangle is finite, for each point
p, we can find a pixel pi whose projection contains p.
p belongs to the interior of T viewed by c if all the
points of the projection of pi belong to T . Otherwise,
p belongs to the border of T viewed by c.

We want to give a way to bound the precision of
the points of the interior of the triangle if we know the
measure of the projection of the pixels of the vertices
of the triangle on the plane of the triangle.

Definition 5: Let T be a triangle of an object O. Let
c be a standard camera (either sphere or square). We
project the pixels of the camera on the plane of the
triangle. We call “potential precision” of the triangle
T the maximum of the approximation of the precision
given by the following formula at the three vertices of
the triangle. P (p) = d∗D

f∗cos θ , with d the diameter of the
pixels, D the distance between camera center O and p
and θ the angle between the focal plane and the plane
supporting the triangle.

We now give a relationship between the precision
of the points of the interior of the triangle t and its
potential precision.

Theorem 2: Let T be a triangle and c a standard
camera. The precision of any point of the interior of the
triangle is smaller or equal than the potential precision
of this triangle.

Proof 2: We denote by t1, t2, t3 the three vertices of
the triangle T , and we assume that t1 is the furthest
from the optical center of the camera. For any point p
of the triangle T , we have the following inequalities.

P (p) =
d ∗ |Op|
f ∗ cos θ

P (p) =
d ∗ |α �Ot1 + β �Ot2 + γ �Ot3|

f ∗ cos θ
,

with α + β + γ = 1 and α, β, γ non negative.

P (p) <=
d ∗ (α|Ot1| + β|Ot2| + γ|Ot3|)

f ∗ cos θ

P (p) <=
d ∗ |Ot1|
f ∗ cos θ

So, the approximation of the precision of a pixel
in any point of the triangle is smaller than the maxi-
mum of this approximation of the precision on the three
vertices.

We have seen in the previous theorem that for ev-
ery projected pixel, there is a point such that the ap-
proximation of the precision is an upper bound of the

Fig. 4 A set of 18 cameras covering 98% of a 800-triangle
bunny model. Each position of the camera defines a set of trian-
gles having precision at least ε.

precision of this pixel.
Therefore, a pixel of the interior if the triangle has

its projected pixel entirely inside the triangle, so there is
a point of the triangle where the approximation of the
precision is bigger than the measure of the projected
pixel, and this approximation is smaller than the max-
imum of the approximation for the vertices. So, the
measure of this pixel is smaller than the maximum of
the approximation for the vertices.

We present below a heuristic for capturing a trian-
gle mesh within precision ε:

1. Find a set of camera positions (i.e. camera loca-
tions and attitudes) L so that each triangle can be
“seen” at least once within precision ε. (see Fig. 4.)

2. Select a subset L′ ⊂=L so that all triangles can be
seen within precision ε. (This amounts to a set
cover problem [9].)

3. Take the “pictures” from L′ and create the corre-
sponding texture map (see Fig. 5).

Step 1 is a preselection step. A naive approach con-
sists of regularly sampling (grid-like) a bounding box
centered around the object. Then at each point of the
grid we sample the orientations of the camera. Sam-
pling each parameter p times yield a set |L| = O(p6)
of camera positions that are not necessarily covering
all the object. We investigated several heuristics (see
[1]) that cover usually 99% of the object with linear
order of camera positions. (We handle the few not-yet-
covered triangles one by one.) Note that the combina-
torial complexity of the visibility graph of a nonconvex
polyhedron is Θ(n9) [10].

Step 2 is a set cover problem in disguise [11]. In-
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Fig. 5 Acquired pictures that combine into a texture map.
Bounded triangles indicate the ones that have the desired pre-
cision.

deed, let L(O) = t(L) be the set of triangles of O hav-
ing precision at most ε. We want to minimize |L′| such
that

⋃
L∈L′ t(L) = O. Note that we can associate a

cost (penalty) w(L) to each camera position and ask
for minimizing

∑
L∈L′ w(L) as well. Step 1 is the most

delicate part since we need to find for each triangle t
a position L such that t is fully visible from L and
µL(t) <= ε. In most cases, where we sampled the combi-
natorial space of camera positions, we prefer to solve a
partial set cover, where we first ask to cover at least a
fraction of the triangles (using configuration space, say
L1). We then compute for the not-yet-covered triangles
corresponding camera positions and attitudes (config-
uration space, say L2), and finally solve the set cover
problem on L1 ∪ L2.

Step 3 acquires the pictures either in the real world
or by computer simulations, eg. raytracing. (In the lat-
ter case, we can choose orthographic projection, etc.)
The portions of each picture combine in the overall tex-
ture map using 2d bin packing [12] as depicted in Fig. 5.
Note that we omitted taking care of the pixels whose
projections fall into several triangles (border or vertex)
as depicted in Fig. 6). Those are given a special treat-
ment as explained in [1].

The preselection step is important in practice since
it samples the configuration space which otherwise will
be too costly to compute. Let f denotes the focal length
of a pinhole camera, and d the size of the pixels. Given
a precision ε, we define the α-distance as αεf

d .
Below, we report on several heuristics (see Fig. 7):

• Spherical discretization:
This heuristic selects cameras on a sphere centered at
the object with radius the α-distance and camera ori-
entations pointing to the center. The surface of the
sphere is then discretized both in lattitude and longi-
tude. Although this heuristic is very simple, we obtain

Fig. 6 Interior and border of a triangle for a given camera.

Object Standard Triangle Simplified
sphere normal triangle

normal

A 1470 (99%) 1476 (99%) 1474 (99%)
B 1493 (97%) 1518 (99%) 1526 (100%)
C 1587 (97%) 1634 (100%) 1634 (100%)

Fig. 7 Efficiency of the preselection heuristics. A is a bunny
model (1477 triangles), B is a Champagne cup (1526 triangles)
and C is a compund scene of four animals (1634 triangles).

good results in practice for values of α around 0.6 and
a hundred points sampled on the sphere.
• Triangle normal method:
For each triangle of the object, we put a camera in
the point c such as, if g is the centroid of the trian-
gle, cg is a normal to the plane of the triangle, c is
in the outside side of the triangle, and |cg| is the α-
distance. This algorithm works slightly better than the
“spherical discretization”, but for large objects, such as
100000 polygon objects, the size of the preselection set
is prohibitive.
• Simplified triangle normal method:
This method is roughly speaking the same as the previ-
ous one, except that we use a simplified version of the
triangle mesh. So we only have one camera for every
triangle of the simplified object which can have 10 or
100 times less triangles than the original model.

3. Building Levels of Precisions

We extend the notion of precision ε of the texture to
both the geometry and the texture (in order to reduce
the number of vertices and henceforth triangles). Infor-
mally speaking, we want to approximate the object so
that one cannot distinguish the simplified from the orig-
inal one by taking pictures having resolution at least ε.

Our algorithm works as follows:
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Fig. 8 Mapping the photos of the original object on the
simplified one

Fig. 9 Level of precision (LOP) hierarchy: 8251 triangles
(200 k), 2925 triangles (120 k), 2238 triangles (71 k), 1567 tri-
angles (33 k), 1034 triangles (18 k), 425 triangles (6 k).

1. Simplify the triangle mesh within some precision
ε′. (We use a modified edge-collapse algorithm
that do not necessarily preserve the topology as
we wished.)

2. Compute, for the simplified triangle mesh, the po-
sitions L of the camera in order to acquire the

Fig. 10 Top: Texture map of a 3d textured object obtained
from a commercial range scanner. Bottom: Resynthesized tex-
ture map with guaranteed precision from its 3D geometry.

whole object within some precision ε′′.
3. Take pictures of the original object at the positions

computed in Step 2 and build the overall texture
map.

Theorem 3: A simplified object satisfying the follow-
ing conditions is an ε-approximation:

• The symmetric Haussdorf distance between the
simplified and original model is at most ε′ = ε

2 .
• The texture is acquired within precision ε′′ = ε

2 .
• The angle from any ray emanating from a camera

to the normal of a selected triangle is at most π
4

(see Fig. 8).

We add the constraints on incidence angle in Step
2 of the simplification algorithm [1]. That is, for a given
camera position and location L, we say that a triangle
t is in t)(L) if it is fully visible and that the incidence
angle θ between the focal plane induced by L and the
plane supported by t is at most π

4 . Figure 9 shows a
hierarchy of level of precisions. Note that our method
guarantees the precision: Especially at the silhouette,
our method does not have the “polygonalization” ef-
fect (see [2]–[7] for a comparison). However, since we
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perform global optimization in the set cover problem,
our algorithm is time consuming. Also for each level
of precision, we obtain a different independent texture
parametrization.

4. Concluding Remarks

Our methods extend naturally to simplification of al-
ready captured color map objects. Given a 3d tex-
tured model, we first compute its precision and then
build a hierarchy of level of precisions. In that case,
we can simulate orthographic projection or other ap-
propriates sensing models. Figure 10 shows such an
example. The detailed algorithms also apply for vari-
ous geometric model representations, where for exam-
ple the surfaces can be coded as a rought 3d mesh and
a normal shift map. Our algorithms extend among oth-
ers to scene illuminations and positions of cameras for
telesurveillance planning.
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