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Abstract

We present in this paper a simple yet e�cient algorithm for stabbing a set S of n axis-
parallel boxes in d-dimensional space with c(S) points in output-sensitive time O(dn log c(S))
and linear space. Let c∗(S) and b∗(S) be, respectively, the minimum number of points re-
quired to stab S and the maximum number of pairwise disjoint boxes of S. We prove that
b∗(S)6c∗(S)6c(S)6b∗(S)(1+log2 b

∗(S))d−1. Since �nding a minimal set of c∗(S) points
is NP-complete as soon as d¿1, we obtain a fast precision-sensitive heuristic for stabbing S

whose quality does not depend on the input size. In the case of congruent or constrained isothetic
boxes, our algorithm reports, respectively, c(S)62d−1b∗(S) and c(S)=Od(b∗(S)) stabbing
points. Moreover, we show that the bounds we get on c(S) are asymptotically tight and corrob-
orate our results with some experiments. We also describe an optimal output-sensitive algorithm
for �nding a minimal-size optimal stabbing point-set of intervals. Finally, we conclude with
insights for further research. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Computational geometry; Geometric combinatorial optimization;
Output-sensitive algorithms

1. The problem

Let S be a set of n d-dimensional geometric objects of constant descriptive-size.
We say that S is stabbed by k points if there exist k points so that each object
of S contains at least one of these points. (This stabbing point set is also called a
0-transversal.) Thus, S can be immobilized under translation with k points. Given

(Most of this work was done while the author was visiting at The University of Tokyo, Japan and being
at INRIA, BP93, 06902 Sophia-Antipolis cedex, France and University of Nice Sophia-Antipolis, Valrose,
France.

∗ Corresponding author; present address: SONY Computer Science Laboratories Inc., Takanawa Muse
Bldg., 3-14-13 Higashi Gotanda, Shinagawa-Ku, Tokyo 141 0022, Japan.
E-mail address: Nielsen@csl.sony.co.jp, frank.nielsen@sophia.inria.fr (F. Nielsen).

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(98)00336 -3



54 F. Nielsen / Theoretical Computer Science 246 (2000) 53–72

a set S as above, �nding the minimum k = c∗(S) so that S can be stabbed by k
points has been shown 1 to be NP-complete [15] as soon as d¿2. Even in the one-
dimensional case, this problem remains NP-complete for non-convex instances [21]. As
a byproduct, this problem is intractable for small values of n (say n ' 50 and d=2
– see Section 3.5). The geometric covering=piercing problem is also referred in the
literature as the covering set problem (CSP), or dually as the hitting set problem (HSP),
where it is transformed into an optimization problem by means of matrix formulations.
Let V= {Si | i∈ I} be a collection of v= |V|= |I | subsets of 2S for a set S of
n elements. We want to �nd a minimal covering collection, i.e., a subset I ′ ⊆ I of
indices such that S=

⋃
i∈I ′ Si with |I ′| as small as possible. In other words, we want

to minimize eTv x= |I ′| subject to Ax¿en for x a {0; 1}v-vector, ek a k-dimensional
vector of 1’s and A a (v× n)-binary matrix, each column of which is the incidence
vector of one of the sets Ii, 16i6v. The above formulation gives an integer linear
program. Using these notations, the set cover system is said �-dense (�-super-dense)
if |Si|¿�|S| (resp. |Si|¿|S| − o(m�)), for all i∈ I . The CSP remains Max SNP-hard
even on dense cases but can be solved polynomially in super-dense cases [3, 26].
Chv�atal [8, 37] gave a O(nv)-time greedy algorithm to �nd a cover set of size c(S)6

c∗(S)(log k − log log k + 0:78), where k is the maximum column sum of A (k6n).
Notice that CSP can be solved in polynomial time whenever k62 (using a maxi-
mum matching algorithm in a bipartite graph) and that k-CSP have slightly better
heuristics using semi-local optimization [11]. An algorithm is precision-sensitive if its
performance ratio does not depend on the input size but rather on the size of any opti-
mal solution (greedy algorithm is not precision-sensitive). Hochbaum [19] proposed a
O(n2v)-time algorithm with a cover set of size at most c∗(S)f, where f is the maxi-
mum row sum of A, using an analytical Russian method and a linear program relaxation.
Interestingly, Feige [13] showed that no polynomial-time algorithm can approximate the
optimal solution within a factor of (1−�) log |S|, unless NP⊆DTIME[nlog log n], where
1¿�¿0 (even when c∗(S)=O(1)). Viewing incidence matrix A as an hypergraph,
we have

c∗(S)611�(S)2(�(S) + b∗(S) + 3)
(
�(S) + b∗(S)

b∗(S)
)
;

where b∗(S) is the maximum size of a stable, and �(S) is the maximum l so that
the incidence matrix A has as a submatrix the incidence matrix of the complete graph
Kl (clique of size l) [10].
One major drawback from the computational geometry point of view is that these

methods do not consider geometrical objects nor their shapes. (Although it has been
shown that the intersection graph 2 of d-dimensional convex objects can be arbitrary

1 More precisely, Fowler et al. [15] showed that covering a set of points with �xed-size squares (the
so-called BOX COVER problem) is NP-complete as soon as d¿1.
2 The intersection graph of a set of objects is de�ned as follows: we associate to each object a node and

there exists an edge between two nodes i� the corresponding objects intersect.
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[38] as soon as d¿3.) This means that we have to supply matrix A. (Thus, the size of
the dense matrix is O(nd)× n and these algorithms require 
(nd+1) time and 
(nd+1)
space; For sparse incidence matrix, list-like datastructures may be used to improve
running times.) One way to code geometric instances is to consider from the whole
arrangement of the constant-size descriptive objects all the sets induced by k-faces,
06k6d. We label each k-face with the set of objects fully containing it. A label is
said maximal if it is not included in another one. We remove non-maximal labels and
obtain a so-called Sperner system, still possibly [27] of size O(nd). Hochbaum and
Maass [20] considered the case of geometrical objects and gave a polynomial-time
approximation scheme. Their algorithm allows us to consider sets of congruent star-
shaped centrally symmetric objects T (see Fig. 1, piercing thinline shapes with black-
square points), or dually covering sets of points with star-shaped translates T∗=T
(see Fig. 1, covering black-disk points with thickline shapes). In that context, piercing
families of congruent boxes is of particular interest since it corresponds to covering a
set of points by a minimum number of congruent copies of the centrally symmetric
box. Br�onnimann and Goodrich [7] investigate these problems using the concept of
the Vapnik– �Cervonenkis dimension; Let S=(X;R) be a set system, i.e., a set X of
elements and a collection R of ranges: elements of X. Denote by S|Y the set system
induced by Y by restricting each range R∈R to elements of Y . Set Y is said shattered
if R|Y =2Y . The VC-dimension is the maximum cardinality of a shattered set (see also
the concept of VC-exponent [7]). The VC-dimension of the set system S=(Ed;R)
of d-dimensional isothetic boxes R and points of Ed is 2. They gave an iterative
algorithm whenever the VC-dimension is bounded as it is generally the case when
considering geometric scenes. Their weight-based algorithm uses subroutines such as
set systems, �-nets, 3 net-�nders, etc. (see also [30]) and still relies on the fact that
matrix A is (partially) computed beforehand (a selecting problem). Let X be our set
of geometric objects and R be the set of labeled cells of the arrangement of objects.
Then, a hitting set of (X;R) is a geometric covering set, i.e., a subset of objects that
covers all the cells. Dually, a covering set is a collection of ranges (cells) that pierces
every geometric object.
Recently, Efrat et al. [12] studied dynamic datastructures for fat objects and obtain

e�cient piercing algorithms under the fatness assumptions in dimension 2 and 3. As
a byproduct, we have c∗(S)=O(b∗(S)) for fat objects in arbitrary �xed dimension.
Solving exactly the problem (i.e., reporting an optimal solution) has also been inves-
tigated by Hwang et al. [22] for disks and recently for convex polygonal shapes by
Assa and Katz [4].
In this paper, we are even more restrictive by considering the case of axis-parallel

boxes in high dimensions (that are often considered in VLSI design, image processing
and point location in d-dimensional Euclidean space) which has also received

3 An �-net of a set system S= (X;R) is a subset X′ of X so that each range of at least �|X| elements
contains at least one element of X′.
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Fig. 1. Duality between piercing a set of translates of a centrally symmetric object T and covering points
with copies of T∗ = T .

combinatorial attention in [14, 24, 25, 29, 31]; As an application, suppose we are given
a set of points in Ed and some hypercube Hd. We want to associate to each point a
hypercube that contains it so that we minimize the number of hypercubes. In other
words, we want to cover the point set with a minimum number of patches, i.e., trans-
lates of Hd. Throughout the paper, the boxes are considered to be closed, i.e., points
on the boundary of box B stab B. Our main algorithm, described in Section 3, will
not require to compute the arrangement of the isothetic boxes. 4 In the sequel, we do
not consider d as a constant. Let c∗(S), b∗(S) and c(S) denote, respectively, the
minimum number of piercing points of S, the maximum number of pairwise disjoint
boxes of S, and the number of points returned by our heuristic on set S. Whenever
appropriate, we will use b∗; c∗ and c as shortcuts for b∗(S); c∗(S) and c(S).
We give in this paper a simple algorithm and study its approximation factor. 5 This

algorithm may be useful in many applications due to its speed (a Java applet 6 demon-
strates it). More precisely, we give a truly output-sensitive O(dn log c)-time algorithm
that computes a set of c points stabbing the set of n d-dimensional boxes. Interest-
ingly, we show that c6b∗(1 + log2 b∗)d−1 where b∗6c∗ (c∗ is the optimal value).
Moreover, we exhibit a generic example where this bound is asymptotically matched.
We can re�ne the complexity analysis to show that c62d−1b∗ and c=Od(c∗) when
dealing, respectively, with congruent isothetic boxes and constrained boxes.
The paper is organized as follows:
In section 2, we consider the case of a family of n intervals and give an opti-

mal �(n log c∗)-time algorithm that gives an optimal stabbing set of c∗ points. In

4 Computing the arrangement of a set of n isothetic boxes costs O(nd) time and space [35].
5 � is an approximation factor of an algorithm A if c6�c∗ where c∗ is the optimal value and c is the

value delivered by heuristic A.
6 See URL http : //www.inria.fr/prisme/personel/nielsen/ or alternatively URL http : //www.csl.sony.co.jp/

person/nielsen/
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Section 3, we present the multidimensional divide-and-conquer algorithm and study
both its running time and its approximation factor. We show that the given bounds are
tight. We re�ne the analysis for sets of congruent isothetic and constrained isothetic
boxes. We corroborate our theoretical results with experiments. Finally, in Section 4,
we conclude and give several guidelines for future research.

2. An optimal algorithm for stabbing intervals

In this section, we consider the case of intervals, i.e., one-dimensional boxes. Let S
be a set of n intervals.

2.1. Principle

Finding the minimum value c∗ so that S can be stabbed with c∗ points is easy and
already known in [9, 20] although no explicit e�cient algorithm is reported. Consider
the interval I that has the rightmost left endpoint p. I must be stabbed by a point
and clearly, the best place to stab it is on the left endpoint p. We then remove all
the intervals stabbed by p and loop until all the intervals of S are stabbed. We thus
obtain a minimal-size set of c∗(S) points that stab S. A straightforward algorithm
based on these facts has running time O(nc∗(S)) with linear space. We show below
how to get an optimal output-sensitive algorithm in time �(n log c∗(S)).

Remark 1. In dimension 2 (and therefore in higher dimensions), the rectangle R with
the rightmost left edge is not necessary the one that has the topmost bottom edge so
that we cannot exhibit a rectangle R where we can easily a priori compute the best
place to pierce it.

Remark 2. Let b∗(S) be the maximum size of any subset of pairwise disjoint boxes
of S. Clearly, c∗(S)¿b∗(S). In the one-dimensional case, the above algorithm
shows that c∗(S)= b∗(S). This property is no longer true in higher dimensions.
(For example, in dimension 2, we may have c∗(S)¿ 3

2b
∗(S) with |S|=5, and

c∗(S)¿b5b∗(S)=3c with |S|=23. It is an open problem to �nd a worse set S
for which c∗(S)¿b5b∗(S)=3c.)

2.2. Getting an output-sensitive algorithm

The methodology consists in applying the divide-and-conquer strategy to the set
S= {[a1; b1]; : : : ; [an; bn]} of n intervals. However, it di�ers from the traditional divide-
and-conquer by �ltering the recursive subsets. Let Divide-and-Conquer(S) be the al-
gorithm which returns an optimal stabbing point set P of S.
Base case: If n=1 then return P= {a1}.
Partition: Computer the median m of {a1; : : : ; an}. Let Sr = {[ai; bi] | ai¿m} and

Sl=S\Sr .
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Recurse: Let Pr = Divide-and-Conquer(Sr). Let q= min Pr be the leftmost stab-
bing point of Sr . Filter Sl by removing all intervals stabbed by q : S′

l = {[ai; bi] |
bi¡q}. Let Pl= Divide-and-Conquer(S′

l ). Return P=Pr ∪Pl.
The algorithm reports an optimal stabbing point set |P|= c∗(S)= c∗ because it

stabs the intervals successively from right to left as explained in Section 2.1.
Let t(n; c∗) denote the time complexity of the algorithm. We prove below that

t(n; c∗)6An(1 + log2 c∗) for 16c∗6n.

Proof. We have

t(n; c∗)6
{
B if n=1;
Cn+ t(n=2; c∗(Sr)) + t(n=2; c∗(S′

l)) otherwise;

where C depends on the partitioning and median �nding algorithms [6].
If n=1 then c∗=1 and t(n; c∗)6A for A¿B. Otherwise, we apply the inductive

hypothesis to both S′
l and Sr and get

t(n; c∗)6Cn+ An
2
(1 + log2 c

∗(S′
l ) + 1 + log2 c

∗(Sr)):

Using H�older’s inequality on the concave log2(·) function, we obtain

t(n; c∗)6Cn+ An
2

(
2 + 2 log2

c∗
2

)
:

That is t(n; c∗)6An(1 + log2 c∗) for A¿C.

The algorithm readily uses linear storage.
Since verifying if among n numbers k are distinct requires 
(n log k) time on the

real RAM [28], it follows that this lower bound also holds for the stabbing problem
by standard reduction in linear time. Therefore, we obtain the following theorem:

Theorem 3. Given a set S of n intervals, there exists an optimal output-sensitive
algorithm that reports an optimal stabbing point set of size c∗ in optimal �(n log c∗)
time with linear space.

Remark 4. As a direct consequence, we obtain a �(n log c∗)-time algorithm for com-
puting the union of an n-interval set S, where c∗ is the minimal number of points
required to stab S. Note that it is not possible to get an O(n log C(S))-time algo-
rithm for computing the union of intervals, where C(S) is the number of connected
components of S. (We may have c∗(S)= dn=2e but C(S)= 1.) Indeed, we prove on
the algebraic decision tree model that computing ∪S requires 
(n log n) time even
when C(S)= 1. Let X= {x1; : : : ; xn} be n real numbers. The UNIFORM GAP prob-
lem asks whether the di�erence between consecutive numbers are uniformly equal to
�, for some �¿0. UNIFORM GAP has a 
(n log n) lower bound on the algebraic
decision tree model (see [35], p. 260). Consider the interval set S= {[x1 − �=2; x1 +
�=2]; : : : ; [xn− �=2; xn+�=2]} of intervals where �=(maxi xi−mini xi)=n−1. Observe that
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C(S)= 1 if and only if X is equally spaced. Therefore testing whether C(S)= 1 or
not is 
(n log n) hard. We conclude that computing the union of intervals is 
(n log n)
hard even when considering parameter C(S).

Remark 5. Although the greedy algorithm [8] performs generally a Hn factor from the
optimum (Hn=

∑n
i=1 1=i and Hn61+ log n), for the case of intervals we show below

that it will return at most 2c∗−1 points. Moreover, there is a family of intervals where
the greedy algorithm attains this worst-case bound.

Proof. Let I be a set of intervals and Q an optimal set of points piercing I. Consider
two adjacent points (absciss�) Q1 and Q2 of Q. Then, the greedy algorithm will pick
at most one point in the range ]Q1; Q2[. Indeed, once it has picked one point Q in
]Q1; Q2[ and removed all the intervals stabbed by Q, all the intervals intersecting
]Q1; Q2[ intersect either Q1 or Q2 and therefore the maximal cells are located at the
extremities. Therefore, the greedy algorithm will return at most (c∗(I)− 1) + c∗(I)
points, i.e. 2c∗(I) − 1 points. However, in dimension d¿1, greedy algorithms may
have a 
(log n) factor even for sets of hypercubes (see Fig. 3).

3. The algorithm in higher dimensions

3.1. Principle

The ‘divide-and-conquer’ strategy holds in any dimension and for any kind of objects.
We show in that section how we can get results on the approximation factor when
dealing with axis-parallel boxes. Let S be a set of n d-dimensional boxes. A box B can
be viewed as the ordered cartesian product

∏d
i=1[r

−
i (B); r

+
i (B)]; where [r

−
i (B); r

+
i (B)]

is the range of B along the ith dimension. We say that box B is to the left (right) of
hyperplane H : (xi= l) if r+i (B)¡l (resp. r

−
i (B)¿l).

We describe below the 2-level recursion algorithm (see also Fig. 2):

Preprocessing(S). For dimension d, consider the set of intervals S(d) = {[r−d (B); r+d
(B)]; B∈S} obtained from the boxes and compute a sorted optimal stabbing set of
points Pd(S). (Apply the optimal algorithm of Section 2.2 for piercing this set of
intervals.) Call Divide-and-Conquer(S).
Divide-and-Conquer(S).
Intervals (Base case): If S is one-dimensional then return P1(S).
Partition: Select the value m of the median stabbing point of Pd(S). Partition S

according to the hyperplane Hm : (xd=m);
• Let S1 be the set of boxes that do not cross Hm and are to the left of Hm.
• Let S2 be the set of boxes that do not cross Hm and are to the right of Hm.
• Let Sm be the set of boxes intersecting Hm.
Conquest: If Pd(S1)¿1 then call Divide-and-Conquer(S1).
If Pd(S2)¿1 then call Divide-and-Conquer(S2).
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Fig. 2. Partition of S into three subsets depending on their location with respect to the hyperplane
Hm: (xd =m). We denote by S′

m the set of (d− 1)-dimensional boxes Sm ∩Hm.

Recurse: Stab the boxes of Sm by piercing the set of (d − 1)-dimensional boxes :
S′
m= {B∩Hm |B∈Sm}. Go to Preprocessing(S′

m).

Let t(S) and c(S) be, respectively, the running time of the algorithm and the
number of stabbing points delivered by this heuristic. Sometimes, when we want to
specify the dimension d of S, we put in subscript of these notations a d. Thus, td(S)
and cd(S) denote, respectively, the running time and the output size of our algo-
rithm for a set of d-dimensional isothetic boxes S. We study both the approximation
factor and the running time of the algorithm. Recall that d is not assumed to be a
constant.
Our algorithm relies on the following three simple facts:

Monotonicity rule: For any object O, c∗({O} ∪S)¿c∗(S).
Additive rule: Let I1 and I2 be two subsets so that ∀I1 ∈I1; ∀I2 ∈I2; I1 ∩ I2 = ∅

then c∗(I1 ∪I2)= c∗(I1) + c∗(I2).
Cutting rule: Let S be a set of boxes and H a hyperplane perpendicular to the

i-th axis, with 16i6d. Then, c∗(SH )= c∗(S′
H ) where S′

H = {B∩H |B∈S} and
SH = {B |B∩H 6= ∅}. This rule is appropriate only for isothetic-like d-boxes.
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We have

cd(S)=
{
cd−1(Sm ∩Hm) if S1 =S2 = ∅;
cd−1(Sm ∩Hm) + cd(S1) + cd(S2) otherwise:

Let us prove by induction on the lexicographically ordered vector (d; n) that

b∗(S)6c∗(S)6c(S)6b∗(S)(1 + log2 b∗(S))d−1:

Proof. The inequality b∗(S)6c∗(S)6c(S) is obtained straightforwardly from their
respective de�nitions. We concentrate on proving that c(S)6b∗(S) (1 + log2 b

∗
(S))d−1. We are going to prove a somewhat stronger result, namely

c(S)6b∗(S)(1 + log2 b∗(S(d)))(1 + log2 b
∗(S))d−2;

where S(d) is the set of intervals S(d) = {[r−d (B); r+d (B)]; B∈S}. Since b∗(S(d))6
b∗(S), we will be able to conclude.
For d=1, section 2.2 describes an optimal algorithm so that c(S)= b∗(S)6b∗(S)

(1+log2 b
∗(S))0 = b∗(S). If b∗(S)= 1 then all pairs mutually intersect and therefore

c(S)= c∗(S)= 161(1+ 0)d−1. (This may also be seen as a Helly-type number. See
[9].)
Therefore, assume that d¿2 and b∗(S)¿1.
If S1 =S2 = ∅ then we directly apply the recurrence inequality and get
c(S)6b∗(S′

m)(1 + log2 b
∗(S′

m))
d−26b∗(S)(1 + log2 b∗(S))d−1;

since S′
m=S.

Otherwise, either S1 or S2 is not empty. We have b∗(S(d)
1 )= b(b∗(S(d))− 1)=2c

and b∗(S(d)
2 )= d(b∗(S(d))− 1)=2e. Applying the inductive hypothesis with b∗(S(d))

6b∗(S), we get

c(S)6(b∗(S)− 1)
(
1+ log2

⌈
b∗(S)− 1

2

⌉)d−1
+ b∗(S′

m)(1+ log2 b
∗(S′

m))
d−2:

Since d(b∗(S)− 1)=2e6b∗(S)=2 and b∗(S′
m)6b

∗(S), we obtain

c(S)6 b∗(S)(1 + log2 b∗(S))d−2
(
1 + log2

b∗(S)
2

)

+ b∗(S)(1+ log2 b∗(S))d−2;
c(S)6b∗(S)(1 + log2 b∗(S))d−1:

Remark 6. In fact, we proved above that c(S)6b∗(S)∏d
i=2(1+ log2 b

∗(S(i))).
Moreover, with a more careful analysis, the bound can be lowered to

c(S)6b∗(S) logd−12 b∗(S) + d− 1
2b
∗(S) logd−22 b∗(S):

However, as detailed later, the asymptotic value 
(b∗(S) logd−12 b∗(S)) is attained.
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Let us now analyze the time td(S) spent by this algorithm for reporting the cd(S)
stabbing points.
We prove below by induction on the lexicographically ordered vector (d; n) that

td(S)6Adn(1 + log2 c(S)) (?).

Proof. If d=1 then we proved in Section 2.2 an O(n(1 + log c(S)))-time algorithm.
Therefore, t1(S)6Bn(1 + log2 c(S))6An(1 + log2 c(S)) for A¿B, where B depends
on the implementation of the one-dimensional algorithm. If n=1 then td(S)6Ad and
(?) holds trivially.
Otherwise (d¿1 and n¿1), we can write td(S) by decomposing it into two parts :

(1) the costs of making all the b∗(S(d)) subsets partitioning S using S(d), and (2)
the costs of all recursive calls on the (d− 1)-dimensional sets of boxes S′

i . Therefore
we get

td(S)6Cn log2 c
∗(S(d)) +

∑
S′
i

td−1(|S′
i |):

By applying the inductive hypothesis to all sets S′
i , we get

td(S)6Cn log2 c
∗(S(d)) +

∑
S′
i

A(d− 1)|S′
i | log2 c(S′

i );

td(S)6Cn log2 c
∗(S(d)) + An(d− 1) log2 c(S)6Adn log2 c(S);

for A¿C¿B.

Note that when c(S)= c∗(S)= 1 then our algorithm requires O(nd)-time (this is
easily checked). Let N =O(nd) denote the input size of our set S of n d-dimensional
boxes. Then; our algorithm runs in O(N log c)-time and linear space.

Theorem 7. Let S be a set of n d-dimensional boxes. Denote by b∗ the maximum
number of pairwise disjoint boxes of S. Then, there exists an output-sensitive algo-
rithm that reports a set of c stabbing points of S in time O(dn log c) with linear
space whose approximation c is bounded by c6b∗(1 + log2 b∗)d−1.

We prove below that the greedy strategy has a 
(log2 n) approximation ratio on
sets of boxes.

Theorem 8. As soon as we consider d-boxes with d¿2; greedy algorithm [8] may
yield a 
(log2 n) factor from the optimum.

Proof. We build a family A such that c∗(A)= 2 of n=2k+2 − 2 squares that is
decomposed into two sub-families A1 and A2 of 2k+1 − 1 squares each such that
both c∗(A1)= 1 and c∗(A2)= 1. A planar box B= [a; b] is de�ned by its leftmost
bottommost corner a=(xa; ya) and its rightmost uppermost corner b=(xb; yb).
A1 is de�ned by 20 square [(−k; 0); (0; k)]; : : : ; 2i squares [(−k − i;−i); (−i; k − i)];

: : : ; and 2k squares [(−2k;−k); (−k; 0)]. Similarly, A2 is de�ned by 20 square [(0;−k);
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Fig. 3. Building a family A such that the greedy algorithm returns 
(log n)c∗(A) points.

(k; 0)]; : : : ; 2i squares [(−i;−k − i); (k − i;−i)]; : : : ; and 2k squares [(−k;−2k);
(0;−k)] (see Fig. 3). Clearly, the greedy algorithm will return k+1 points (−k;−k); : : : ;
(−k + i;−k + i); : : : and (0; 0) stabbing A instead of an optimal solution of two points
(e.g., p1 and p2 in Fig. 3).

3.2. A bad example

Let us now analyze the tightness of the upper bound of our heuristic. In the
d-dimensional Euclidean space, consider the following k families Fi ; 16i6k, of iso-
thetic boxes: Fi is the set of all boxes with corners of integer coordinates in [1; k]
containing the lattice point (i; : : : ; i). (We include in Fi the degenerate box de�ned
by point (i; : : : ; i).) Let S=

⋃
16i6k Fi. Clearly b∗(S)= c∗(S)= k. However, our

algorithm will report 
(b∗(S) logd−1 b∗(S)) stabbing points. Thus, we proved the
tightness of the approximation factor of the multidimensional heuristic.

3.3. Congruent or constrained boxes

The previous section exhibits an example where our algorithm reaches its worst-case
performance. However, in order to build it, we did consider stretched boxes, i.e., non-
constrained boxes. We de�ne the aspect ratio of a d-dimensional box B= [(a1; : : : ; ad);
(b1; : : : ; bd)] to be maxi; j=1::d {(bi−ai)=(bj−aj)}. Loosely speaking, we will call aspect
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ratio of S the maximum of the aspect ratio of the boxes in S. Note that if the boxes
have a bounded aspect ratio then they also have a bounded-size (volume) but not the
converse. Thus, hypercubes have aspect ratio equal to 1. We use the non-bounded aspect
ratio in order to build our bad example. In [20], the polynomial-time approximation
scheme depends on the aspect ratio of the congruent isothetic boxes.
In this section, we re�ne the analysis of the approximation factor whenever the

projections of the d-boxes onto the d-axis have the bounded aspect ratio property.
Note that the boxes may have a non-bounded aspect ratio but their projections (sets of
intervals) may have their aspect ratio bounded.

Lemma 9. Let S be a set of n congruent isothetic d-dimensional boxes. Then; our
algorithm guarantees that c(S)62d−1b∗(S).

Proof. For sake of simplicity, let us �rst consider the case of (unit) hypercubes. S is
a collection of n congruent hypercubes. We prove below by induction on the dimension
that c(S)62d−1b∗(S). Section 2.2 shows that the algorithm ensures c1(S)= b∗(S)
for (unit) intervals.
Otherwise (d¿2), let S be a set of n d-boxes. Consider the ordered sequence (left

to right) of cutting hyperplanes perpendicular to the dth-axis : (Hm(1): xd= a1); : : : ;
(Hm(k): xd= ak) with the associated partition of the hypercubes S′

m(1); : : : ;S
′
m(k).

Clearly, we have ai+2 − ai¿1; 16i6k − 1 for the case of unit hypercubes. There-
fore S′

m(i)∩S′
m(j)= ∅ if |i − j|¿2. We have

cd(S)=
k∑
i=1
cd−1(S′

m(i));

cd(S)62d−2
k∑
i=1
b∗(S′

m(i)):

We can decompose the last sum taking into account the parity of i as follows:

cd(S)62d−2
(

bk=2c∑
i=1

b∗(S′
m(2i)) +

dk=2e−1∑
i=0

b∗(S′
m(2i + 1))

)
:

But
∑bk=2c

i=1 b∗(S′
m(2i))= b

∗(⋃i=1::bk=2c S′
m(2i))6b

∗(S) and ∑dk=2e−1
i=0 b∗(S′

m(2i+1))=
b∗(⋃i=0::dk=2e−1S′

m(2i + 1))6b
∗(S) since both S ′m(2i)∩ S ′m(2j)= ∅ and S ′m(2i + 1)∩

S ′m(2j + 1)= ∅ as soon as i 6= j.
Therefore, we get

cd(S)62d−2× 2b∗(S);

cd(S)62d−1b∗(S):

We only use the fact that all boxes have identical widths along the ith dimension,
16i6d. Therefore, the result applies for congruent boxes.
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Hochbaum and Maass [20] also considered this problem (in its dual form however)
and gave an O(ldn2l

d+1)-time algorithm (a polynomial-time approximation scheme)
which ensures that c(S)6(1 + 1=l)dc∗(S) for a given integer l¿1. Thus, for l=1
it yields an O(n3)-time algorithm with performance ratio 2d.
Since our algorithm proceeds dimension by dimension, we only need to have the

bounded aspect ratio for the projected boxes (along the d-axis). Let S be a collection
of n constrained boxes:

S= {[(b1;1; : : : ; b1; d); (u1;1; : : : ; u1; d)]; : : : ; [(bn;1; : : : ; bn; d); (un;1; : : : ; un; d)]}
with maxi; j=1::n {(ui;1−bi;1)=(uj;1−bj;1)}6B1; : : : ;maxi; j=1::n{(ui; d−bi; d)=(uj;d−bj;d)}6
Bd, for some constants Bi¿1; 1616d.
Using the same techniques as above, we get the following lemma:

Lemma 10. Let S be a collection of n d-dimensional constrained boxes with B1; : : : ;
Bd de�ned as above. Then, our algorithm will return c(S) stabbing points so that
c(S)6(

∏d
i=2 2dBie+ 1)b∗(S).

We may assume w.l.o.g. that B1 = maxi=1::d {Bi}. Otherwise, we make a simple
rotation of the orthogonal frame in linear time. This also means that we may have
a direction where the projected boxes are not constrained since we are able to solve
exactly the problem in one dimension (see Section 2.2).

Remark 11. In the case of congruent boxes, an alternative heuristic is to consider the
dual problem of covering n points by unit hypercubes. If we allow the 
oor function,
then in O(dn log c)-time, by an ‘output-sensitive’ variant of Quicksort, we can compute
the c cell grids that contain at least one point. Since any unit hypercube intersects at
most 2d grid cells, we conclude that c62db∗. (Moreover, by using the optimal 1d
algorithm, we get c62d−1b∗.)

Remark 12. Let C be a family of n planar convex objects. An object O is said �-
fat if the ratio of the length of the edges of a smaller enclosing hypercube and a
bigger included hypercube is bounded by �. If C is O(1)-fat and objects have more
or less the same size, then we can slightly modify our heuristic in order to report at
most O�(1)db∗ stabbing points. Indeed, we �rst pierce all enclosing hypercubes. Then
for each stabbing point and its associated set of stabbed boxes, we stab the objects
included in the enclosing hypercubes with only O�(1)d grid-spaced points. If objects
are allowed to have a broad range of sizes, this method does not apply. Efrat et al.
proposed another approach for general fat convex objects [12].

We can also mix up our algorithm with the PTAS (polynomial-time approxima-
tion scheme) of [20] in order to obtain tradeo�s both for the running time and the
performance ratio. (We refer the reader to [1] for such an approach.)
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Note that unless P=NP, it is not possible to achieve the absolute performance
c(S)6c∗(S) + k for some constant integer k [16]. Let G be the intersection graph
of a set of n d-dimensional isothetic boxes S, i.e., to each box corresponds a node
and there is an edge between two nodes i� their corresponding boxes intersect. Iso-
thetic boxes have nice combinatorial properties. For example, a set of boxes have a
nonempty intersection i� they intersect pairwise. (This is a Helly-type theorem [9, 18].)
Therefore, �nding a minimum-size set of stabbing points can be done by �rst com-
puting G in quadratic time and then, �nding a minimum clique partition of G, i.e.,
a set of cliques (complete subgraphs of G) whose union covers all vertices of G.
There is a one-to-one correspondence between these two problems. As a direct corol-
lary, it implies that the mimimum clique partition is NP-complete (as proved in [16]),
even for intersection graphs of isothetic boxes. Note that if every 3-subset of S (i.e.,

a subset S ∈
(

S
3

)
) has an empty intersection (∩ S = ∅), then the stabbing problem

can be solved in polynomial time by reduction to the maximum matching problem.
The stabbing problem is related somehow to C(p; q)-numbers and N(p; q;d) numbers
[17, 18].

N(p; q;d) numbers are de�ned for 26q6p for the class P of isothetic d-boxes as
follows: it is the smallest integer so that for every set S∈P of parallelotopes, we have:

if every p-subset S ∈
(

S
p

)
contains at least one q-subset Q∈

(
S
p

)
that has a nonempty

intersection (∩Q 6= ∅), then S can be stabbed by N(p; q;d) points. Debrunner et al.

[17, 18] proved that N(p; q;d)6
(
p−q+d
d

)
if 26q6p.

Therefore, we have

c∗6N(b∗ + 1; 2;d)=
(
b∗ − 1 + d

d

)
;

since every (b∗ +1)-subset of S contains at least a pair of intersecting boxes. In this
paper, our heuritic shows that c∗6b∗(1 + log2 b∗)d−1.
Perhaps, one of the most challenging conjectures that remains unsettled is the fol-

lowing:

Conjecture 13 (Wegner, 1967). If K is a family of parallel rectangles in the plane;
no p of which are pairwise disjoint; then K can be stabbed by 2p− 3 points.

This conjecture has been con�rmed for squares and p64 but remain opened for
nonconstrained boxes, i.e., nonbounded size boxes.

3.4. Computing a pairwise nonintersecting set of boxes

Given a graph G=(V; E), an independent set I of G is a set of nodes I ⊆V such
that there is no edge of E between two nodes of I . Therefore, a maximal independent
set of the intersection graph of the boxes corresponds to a maximal set of pairwise
nonintersecting boxes. Although �nding a maximal independent set on general abstract
graph G has been shown to be 
(n1=4)-hard to approximate [5] in polynomial time, we
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describe below a 1=[logd−12 (b∗(S) + 1)] approximation heuristic based on the same
partitioning scheme.
Let b(S) be the size of an independent set found by some heuristic. Then, we have

b(S)6b∗(S)6c∗(S)6c(S):

On the other hand, we previously showed that c(S)6b∗(S)(1 + log2 b∗(S))d−1.
More precisely, we proved

c(S)6max
i
{bi}(1 + log2 b∗(S))d−1;

where the bi’s are the maximal number of pairwise disjoint intervals of projected
subsets of S induced by the partitioning scheme. A simple heuristic consists in giving
an independent set of objects of S from the independent set of projected intervals
which has the maximal size. By doing that, we get

b(S)= max
i
{bi}¿ b∗(S)

(1 + log2 b∗(S))d−1
:

Remark 14. A better heuristic, in practice, can be modeled as a binary tree where
the root is set S and children correspond to recursive calls on subsets generated by
partitioning the objects of S. Each internal node S′ has at most two children labeled
with sets Sl and Sr . We compute recursively in a bottom-to-top fashion an independent
set of S by choosing either, at some node S; the maximal independent set of S′ or
the union of the independent sets computed so far of sets Sl and Sr .

3.5. Experimental results

We did the implementation in C++ using the LEDA 7 and GALIA 8 librairies.
The code length is about 1000 lines. It should be noted that the algorithm and there-
fore its implementation are robust. Indeed, we only compare our standard input val-
ues without creating intermediate values (even when our algorithm reports intersec-
tion points). The algebraic degree of all test predicates is one. Since the problem
of computing the minimum value c∗ so that our set is c∗-pierceable is NP-complete,
we could not compare in the experiments the precise relationships between c
and c∗.
However, loosely speaking, if we admit that in average c∗(S′

m)= c
∗(S)(d−1)=d and

c∗(S1)= c∗(S2) (which might be the case, for example, when considering the uniform
distribution of congruent boxes) then we expect c(S) to be an O(1)-approximate

7 Library for E�cient Datastructure and Algorithms. Max-Planck Institut f�ur Informatik, Im Stadtwald
66123 Saarbr�ucken, Germany.
8 GALIA is the european successor of CGAL – see “The CGAL Kernel User Manual” – INRIA Sophia-

Antipolis, France.
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Table 1
Considering uniformly distributed rectangles in the unit square

|S| = 16 32 64 128 256 512 1024 2048 4096 8192 16364 32728 65536 130000 260000 520000
c(S) = 9 14 23 30 56 78 123 188 272 417 648 928 1413 2093 3122 4486

Table 2
Number of di�erent con�gurations conf (S) for some input set
S, i.e. number of distinct piercing point sets of size ranging over
[c∗; n] for small values of n. Note that for d-dimensional set S
of boxes, the complexity of the arrangement of S is O(|S|d).
Thus, we have conf (S)6

∑|S|
i=c∗(S)

(
O(|S|d)

i

)
62O(|S|d)

|S| = 14 15 16 17 18
conf (S) = 15120 29400 99120 241272 672964

of c∗(S) for �xed dimension d. Indeed, let Kd (with K1 = 1) be the multiplicative
constant. We have

c(S)6Kd(c∗(S))6c∗ +
dlog c∗(S)e∑

i=0
2iKd−1

((
c∗(S)
2i

)(d−1)=d)
:

Therefore, we �nd Kd61+(1=(21=d−1))Kd−1 with K1 = 1. Thus, in the planar case we
get under these hypothesis that c(S)63:42c∗(S). (This result is corroborated in the
experiments using a good lower bound for c∗(S), e.g., b(S).)
We report the value of c(S) in Table 1 for a set S of uniformly distributed isothetic

planar boxes. We have also implemented an exhaustive search procedure for �nding
a minimal set of piercing points. This algorithm could not handle input size greater
than 25 (although some tricks have been plugged 9 in). Table 2 shows the number of
con�gurations explored by the exhaustive algorithm.
Fig. 5 shows some experiments for sets S that are 20-pierceable, i.e., c∗(S)= 20.

The left chart shows the number of stabbing points reported by our algorithm in case
of congruent=nonconstrained boxes. The right chart depicts the running time of our
algorithm. (We took the average over 20 trials.) Fig. 4 shows the result of our algorithm
on 200 boxes.
It may be nice to study the average stabbing number an(d) of a �xed-size randomly

chosen set of n d-boxes as a function of d.

9 Finding good cuts for an exhaustive algorithm is interesting in itself since it allows to handle large input
sizes for ‘special’ down-to-earth tailored instances (see for example the well-known Traveling Salesman
Problem [36]).
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Fig. 4. A stabbing set of 42 points (black points) of a set of 200 boxes on the plane and a pairwise
nonintersecting set of 14 boxes (grey boxes).

Fig. 5. Impact of the dimension over a set S (c∗(S)= 20 and |S|=20 000) of constrained=nonconstrained
d-boxes for 16d620. The right chart exhibits the running time of our implementation.

4. Concluding remarks

We have investigated in this paper the stabbing problem for a set of d-dimensional
isothetic boxes which consists in �nding a set of points so that each box contains
at least one of these points. Finding a minimum-size set of stabbing points has been
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Table 3

Class Approximation factor c(S)=c∗(S) Reference

Boxes (1 + log2 b
∗)d−1 This paper

Fat objects Od; �(1) [12]

k-oriented objects G(2; k) logOd(k
d−1)(b∗ + 1) G is a Gallai number [32, 33]

Bounded VC-dim. O(log c∗); O(1) [7]
Abstract sets O(log n) [8]

shown to be NP-complete as soon as d¿1, even when considering congruent iso-
thetic boxes. Therefore that problem is intractable in practice. We gave in this paper
a heuristic that computes c points, stabbing a set of n d-dimensional axis-parallel
boxes, in output-sensitive time O(dn log c) using linear space. Moreover, we proved
that c6b∗(1 + log2 b∗)d−1, where b∗ is the maximum number of pairwise disjoint
boxes. We showed the tightness of the bounds by building a generic family S of
d-dimensional boxes so that c=
(b∗ logd−12 b∗). We proved in the case of congru-
ent boxes and ‘constrained’ boxes that c62d−1b∗ and c=Od(b∗), respectively. Our
algorithm can be easily parallelized onto PRAM computers in order to gain e�ciency
(see [2]). We plan to investigate the tradeo�s between the running time of any stabbing
algorithm for sets of boxes and its relative performance. We also focus on the case of
c-oriented objects and general convex=nonconvex objects [32].
This paper raises some open problems:

• The exact relationships betwen c∗ and b∗ (related to Wegner’s conjecture that
c∗62b∗ − 1 in the planar case).

• The hardness of approximation of constrained boxes compared with general boxes
inside the polynomial-time solvable hierarchy of problems.

• Can we obtain better approximation algorithms by applying to our set of c stabbing
points other (time-costly) algorithms?

• In [23], Imai and Asano gave an algorithm to compute a deepest cell in an ar-
rangement of n isothetic boxes in O(nd−1 log n). Using similar ideas of Overmars
and Yap [34], computing a deepest cell can be improved to O(nd=2 log n). Can we
compute a deepest cell in a better running time? This would improve the running
time of the greedy algorithm.
Another aspect of this problem that is currently being investigated is to give e�cient

algorithms to detect whether a set of objects is k-pierceable or not for small values of
k [27].
To conclude, we give in Table 3 stating the main results obtained on the geometric

set stabbing problem:
Finally, we would like to mention a related geometric covering=hitting set problem

which has applications in classi�ers and neural networks:

Problem 15. Given a set S of n points in the plane, in degenerate position, �nd a
minimal number of lines covering S.
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Currently, the best approach which guarantees a performance ratio of O(log c∗),
where c∗ is the size of any optimal solution, is to apply the Br�onnimann and Goodrich
techniques [7].
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