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An Output-Sensitive Convex Hull Algorithm for Planar ObjectsFranck NielsenINRIA, BP93, 06902 Sophia-Antipolis cedex, FranceandUniversity of Nice, Parc Valrose, Francee-mail: Franck.Nielsen@sophia.inria.frandMariette YvinecINRIA, BP93, 06902 Sophia-Antipolis cedex, FranceandCNRS, URA 1376, Laboratoire I3SRue Albert Einstein, 06560 Valbonne, Francee-mail: Mariette.Yvinec@sophia.inria.frReceived (received date)Revised (revised date)Communicated by Editor's nameABSTRACTA set of planar objects is said to be of type m if the convex hull of any two objectshas its size bounded by 2m. In this paper, we present an algorithm based on themarriage-before-conquest paradigm to compute the convex hull of a set of n planarconvex objects of �xed typem. The algorithm is output-sensitive, i.e. its time complexitydepends on the size h of the computed convex hull. The main ingredient of this algorithmis a linear method to �nd a bridge, i.e. a facet of the convex hull intersected by a givenline. We obtain an O(n�(h;m) log h)-time convex hull algorithm for planar objects.Here �(h; 2) = O(1) and �(h;m) is an extremely slowly growing function. As a directconsequence, we can compute in optimal �(n log h) time the convex hull of disks, convexhomothets, non-overlapping objects. The method described in this paper also applies tocompute lower envelopes of functions. In particular, we obtain an optimal�(n logh)-timealgorithm to compute the upper envelope of line segments.Keywords: Computational geometry, Convex hull, Upper Envelope, Output-sensitivealgorithms, Marriage before conquest.1. IntroductionConvex hull has been of main interest for years in computational geometry.Many articles have considered the case of points where general paradigms have beenused or purposely developed. Worst-case optimal space and time algorithms havebeen established for sets of points in dimension d1;2;3. However, the convex hull of npoints in general position in a d-dimensional space ranges from the d-simplex with1



2d+1 faces to maximal polytopes of size O(nb d2 c) (see Ref.4,5). We are interested indesigning algorithms whose time complexity depends on both the input and outputsizes: the so-called output-sensitive algorithms.Optimal output-sensitive algorithms for points are known only in dimensions2 and 3 by the time being. D.G. Kirkpatrick and R. Seidel6;7 gave the �rst op�timal output-sensitive algorithm in dimension 2. Their algorithm is based on anew paradigm: marriage-before-conquest. H. Edelsbrunner and W. Shi8 gave anO(n log2 h)-time algorithm to compute the h facets of the convex hull of n pointsof E3 using the same paradigm. K.L. Clarkson and P.W. Shor9 described an out�put-sensitive randomized algorithm for computing the convex hull of a set of pointsin dimension 3. The expected complexity of their algorithm is optimal. Their algo�rithm uses as a basic primitive the deterministic algorithm of D.G. Kirkpatrick andR. Seidel and was derandomized later on by B. Chazelle and J. Matou²ek10.In higher dimensions (d � 4), for a long time the best known solution was thealgorithm of R. Seidel11 which after an O(n2)-time preprocessing step , �nds thefacets of a convex hull in a shelling order at a logarithmic cost per facet. Thepreprocessing step was reduced later12;13 on to O�n2� 2b d2 c+1+�� for any � > 0.Recently, T. Chan et al.14 have investigated the case of points in four dimensions,achieving an O((n + h) log2 h)-time algorithm for computing the convex hull of aset of n points where h denotes the output-size. In higher dimensions, T. Chan15realized many improvements on the convex hull computations and related problems,combining the gift-wrapping method of D.R. Chand and S.S. Kapur16 and G.F.Swart17 with recent results on data structures for ray shooting queries in polytopes(developed by P.K. Agarwal et J. Matou²ek18 and re�ned by J. Matou²ek and O.Schwarzkopf19).Computing the convex hull of a set of curved objects has been much less investi�gated. Computing the convex hull of a single planar object bounded by curves hasbeen carefully studied20;21;22 and several authors have generalized linear-time algo�rithms for computing the convex hull of a simple planar polygon23;24;25;26. In thecase of a family of n planar disks, optimal �(n logn)-time convex hull algorithmshave been designed27;28.We consider the following problem: given a collection O = fO1; :::; Ong of nconvex objects, compute in an output-sensitive manner the convex hull CH(O), i.e.the smallest convex object containing O. In the general case, the usual way tocompute the convex hull of O is to compute the lower and the upper envelopesof O and to consider the unique object bounded by these envelopes. Then, onecan apply to this single planar object one of the convex hull algorithms mentionedabove. A classical output-sensitive algorithm to compute the convex hull CH(O)is Jarvis's march29 which runs in O(nh) where h denotes the output-size. In thispaper, we generalize the marriage-before-conquest approach of R. Seidel and D.GKirkpatrick7 in the case of planar objects.Independently, T. Chan15 gave a simple algorithm for computing the convex hullof a set of planar points. His algorithm can be adapted to handle the case of convex2
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The convex hull CH(O)Figure 1: A convex hull of disks (m = 2).objects (although this is not described in Ref.15) within the same time bounds.Nevertheless, our algorithm is di�erent and is interesting in its own right. It relieson an O(n log h+�h)-time algorithm to compute the convex hull of n objects of �xedtype m such that any object can be colored with a value in f1; :::; �g and objects ofa same color do not intersect pairwisea, where h denotes the output-size. Thus, weobtain immediately an optimal �(n logh) algorithm if we consider that the objectssatisfy the hard-sphere model30 or have only a few intersections (in that case, ouralgorithm is simpler than T. Chan's one15). Moreover, we solve the problem ofcomputing in linear time a bridge, i.e. a facet of the convex hull intersecting a givenoriented line. In the general case, we �rst transform our original set of objects Ointo another set T such that CH(O) = CH(T ) with the objects in T being coloredwith at most � = dnhe objects and apply our basic algorithm.Computing the convex hull of general planar convex objects di�ers from the caseof points because the convex hull of two points p1 and p2 is the straight segment[p1p2] whereas the complexity of the convex hull of two planar convex objects Oiand Oj depends on the nature of these objects. We call arc a maximal piece of theboundary of CH(O) that is included in the boundary @Oi of an object Oi of O.The boundary of CH(O) is an alternating sequence of arcs and bitangent segments(Figure 1). In the following, the arcs of CH(O) and its bitangent segments are calledfacets. In this paper, we shall consider sets of convex objects with the propertythat the convex hull of any two objects has bounded complexity (if the objectsare non-convex and have �xed descriptive complexity, we can �rst compute theiraIn particular, if any object intersect at most  others then � �  + 1.3



convex hulls in linear time). More precisely, a set of objects O is said to be of typem if the convex hull of any two objects of O has at most m arcs (or 2m facets).Let jCH(O)j denote the size of the convex hull CH(O), i.e. the number of facets(convex arcs and bitangent segments) of its boundary @CH(O). Then, O is of typem if 8 i; j 2 [1; n]; jCH(Oi; Oj)j � 2m. For example, points have type 1, disks,convex homothets and non-overlapping objects have type 2, ellipsis have type 4,etc. Note that if O is of type m then the boundaries of any two convex objects ofO cannot intersect in more than m points. Moreover, if q denotes the maximumnumber of intersection points between the boundaries of two distinct convex objectsof O, then m = maxf2; qg. Moreover, if the objects are bounded by closed convexcurves then m is even.Throughout this paper, we suppose that the type of set O is �xed. Moreover,each object in O is assumed to have a bounded descriptive size (for instance, theboundary of each object is a curve of bounded degree) : in particular, this meansthat we can �nd in constant time the two supporting lines of an object with a givenslope. Furthermore, we assume that the convex hull of two objects in O can becomputed in constant time, where the constant depends on the type m.This paper is organized as follows:In section 2, we recall the complexity of the convex hull of n objects of type m.In section 3, we �rst extend to the case of a set of convex objects of type m, thealgorithm of D.G. Kirkpatrick and R. Seidel6;7 to compute a bridge, i.e. the facetof the convex hull intersecting a given oriented line (subsection 3.1). Our algorithmis based on the searching-and-pruning paradigm and achieve an optimal �(n) timecomplexity to compute a bridge of a set of n convex objects of type m. Then, wepresent the scheme of the marriage-before-conquest approach (subsection 3.2). Thisscheme amounts to computing a bridge at a given oriented line, uses this bridgeto �lter the objects and to divide the problem into two independent sub-problemswhich are recursively solved. Finally, we re�ne the marriage-before-conquest algo�rithm in the case of a set partitionned into k subsets of non-overlapping objects,i.e. a set O = [ki=1Pi where each Pi; i 2 [1; k], is a collection of non-overlappingobjects (subsection 3.3). The time complexity of the algorithm is O(n log h+ hk).This algorithm is used as a basic primitive in the �nal algorithm. We also derivean O(n log h+ �h)-time algorithm to compute the convex hull of n objects of �xedtype m where h denotes the output-size and � is the maximal number of objectsthat an object can intersect.In section 4, we describe the algorithm in the general case. We design anO(n�(h;m) log h)-time convex hull algorithm where n is the number of objects,h denotes the output-size and �(h;m) is a very slowly growing function related tothe maximum length �(n;m) of a (n;m)-Davenport-Schinzel sequence31;32;33. Moreprecisely, �(h; 2) = O(1) and �(h;m) = O(2�(h)cm ) if m > 2, where cm is an integerdepending on m and �(�) is the functional inverse of Ackermann's function. Thealgorithm is close to optimal with respect to both the input and output sizes since
(n logh) is a lower bound7. 4
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Oi+Oi = Oi+ \ Oi�Figure 2: De�ning Oi+ and Oi�.In section 5, we adapt the method for computing upper envelopes of functionsintersecting pairwise in at most m points and obtain an O(n�(h;m+2) logh)-timealgorithm. We improve slightly the algorithm in case of k-intersecting generalizedsegments, i.e. partially de�ned functions that intersect pairwise in at most k points.In that case, we obtain an O(n�(h; k + 1) logh)-time algorithm which is �(n logh)for line segments.Finally, in section 6, we conclude and give several guidelines for future research.2. Complexity of the Convex Hull of Convex Objects of Type mIn this section, we �rst examine the complexity of the convex hull CH(O) whereO is a set of planar convex objects of type m.Let us consider p+ the point with coordinates (0;+1) (resp. p� the pointwith coordinates (0;�1)). Let us call upper convex hull (respectively lower convexhull) of O the convex hull CH+(O) = CH(O; p�) (resp. CH�(O) = CH(O; p+)).We denote by O+i (resp. O�i ) the object CH+(Oi; p�) (resp. CH�(Oi; p+)) (seeFigure 2). Let O+ = fO+i jOi 2 Og and O� = fO�i jOi 2 Og. Then, CH+(O) =CH(O+), CH�(O) = CH(O�) and CH(O) = CH(O+) \ CH(O�).We bound the complexity of the convex hull of convex objects of type m asfollows:Theorem 1 In the worst-case, the complexity of the convex hull of n planar convexobjects of type m is bounded by 4�(n;m) where �(n;m) is the maximum length ofan (n;m)-Davenport-Schinzel sequence31;32;33.Proof. Since the boundaries @CH(O+) and @CH(O�) of respectively CH(O+)and CH(O+) coincides at their extremities, the size jCH(O)j of the convex hull is atmost jCH(O+)j+ jCH(O�)j. We therefore focus on the upper bound of jCH(O+)j.Since the convex hull CH(O+) is an alternating sequence of bitangent segments andarcs, we count the maximal number of arcs that can appear on the boundary ofCH(O+), i.e. @CH(O+).To each object O+i of O+ we associate its supporting function fi(�) de�ned asfollows: fi(�) is de�ned over [0; �] as the y-coordinate of the intersection point pi(�)5
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Figure 3: Duality between the boundary of the upper convex hull @CH+(O) andthe upper envelope EF of F .Table 1: Lower and upper bounds of �(n;m). �(n) is the functional inverse ofAckermann's function.m/�(n;m) Lower Bound 
 Upper Bound O1 n n2 2n� 1 2n� 13 
(n� �(n)) O(n� �(n))4 
(n� 2�(n)) O(n� 2�(n))m = 2s+ 1 
(n� 2O(�(n)s�1)) O(n� �(n)O(�(n)s�1))m = 2s+ 2 
(n� 2O(�(n)s)) O(n� 2O(�(n)s))of the y-axis � with the supporting line of O+i with slope � (see Figure 3). We get acollection F = ffij1 � i � ng of n functions that are totally de�ned over the range[0; �]. As it is well known from duality, the upper convex hull CH(O+) is isomorphto the upper envelope EF of F , i.e. the pointwise maximum of the fi's. An arc ofEF corresponds to an arc of @CH(O+), a vertex of EF corresponds to a bitangentsegment of @CH(O+).Since O+ is of type m, two supporting functions fi and fj intersect in at mostm points.Therefore, the number of arcs of @CH(O+) is bounded by the maximal length�(n;m) of an (n;m)-Davenport-Schinzel sequence31;32;33. Since the upper convexhull is an alternating sequence of arcs and bitangent segments, we get jCH(O+)j �2�(n;m). It follows that jCH(O)j � 4�(n;m). 2Computing upper envelopes of real functions (de�ned over R) that can mutuallyintersect in at most q points is a problem which has been extensively studied34;35;36.A divide-and-conquer approach yields anO(�(n; q) logn)-time complexity algorithm.6



Therefore, one can compute the upper envelope of the `dual' functions fi's de�nedby objects in O+ in time O(�(n;m) log n) if set O+ is of type m. Alternatively,the convex hull CH+(O) can also be computed using the randomized incremen�tal construction of Clarkson37 and Clarkson and Shor38 in expected running time~O(�(n;m) logn).3. Computing the Convex Hull of Colored Families of Convex ObjectsIn this section, we �rst show in subsection 3.1 how to compute in linear time abridge, i.e. a facet of the convex hull intersected by a given ray. Then, we present insubsection 3.2 the marriage-before-conquest paradigm applied to the case of objects.Finally, we re�ne the algorithm in subsection 3.3 in the case of colored families ofconvex objects, i.e. families that can be partitionned into monochromatic subsetsof pairwise non-intersecting objects.3.1. Bridge of a Convex Hull3.1.1. De�nition and notationsThe bridge of O at � is the unique facet of CH+(O) that is intersected by �.The bridge at � is either an arc or a bitangent segment of CH(O). This section isdevoted to the computation of the bridge at an oriented line � of a set of planarconvex objects of �xed type m. The bridge facet is easily determined if one knowsthe line which supports CH(O) at the point � \ @CH(O) where � intersects theboundary of CH(O). Indeed, if this line is a supporting line for at least two objectsin O then the bridge is a bitangent segment whereas if this line is a supporting lineof a single object Oi 2 O then the bridge is an arc of CH(O) included in @Oi. Inboth cases, the two endpoints of the bridge can be found in linear time once thissupporting line is known. Thus, we focus on the determination of the supportingline of CH(O) at point � \ @CH(O). Hereafter, this line is called the supportingline of the bridge at �.Computing the supporting line of the bridge at � of n convex objects is ageneralized linear program39;40;41;42 and can therefore be computed by a randomizedalgorithm in expected ~O(n) time. Moreover, we can use the derandomized algorithmof B. Chazelle and J. Matou�sek43 in order to obtain a linear deterministic algorithm.Hereafter we give a more direct algorithm to compute in linear time the bridge at �.D.G. Kirkpatrick and R. Seidel7 gave a deterministic optimal �(n) algorithm thatcomputes a bridge for a set of n points using a searching-and-pruning procedure.We extend this algorithm to convex objects of �xed type m.In order to follow the steps of this searching-and-pruning method, we �rst extendthe main theorem of D.G. Kirkpatrick and R. Seidel7's algorithm for computing thebridge of points to the case of convex objects that can be separated by a line parallelto �. Then, we introduce the vertical decomposition in order to obtain convenientsets of convex objects. We �nally give the overall algorithm and analyze its timecomplexity. 7



3.1.2. The case of convex objectsWithout loss of generality, consider that the direction of � is the direction ofthe y-axis, called the vertical axis. We denote by x(p) the abscissa of point p.Kirkpatrick and Seidel proved the following lemma for a set O of points:Lemma 2 (3.2, pp. 291 Ref.7) Let p; q be a pair of points of O with x(p) < x(q),let sb be the slope of the supporting line of the bridge of O at � and let s be theslope of the straight line through p and q. If s > sb then p cannot be a point of thebridge of CH(O) at �. If s < sb then q cannot be a point of the bridge at �.Two objects O1 and O2 are said to be x-separated if they can be separated by aline parallel to �. Note that x-separated objects can be ordered along the x-axis.In the following, we note x(O) the x-range of an object O, i.e. the projection of Oonto the x-axis. Let (O1; O2) be a pair of x-separated objects. If O1 is to the leftof an oriented vertical line separating O1 and O2 then we note x(O1) < x(O2) andO1 (resp. O2) is called the left (resp. right) object of the pair (O1; O2). An objectO 2 O is said to participate to the bridge at � if the supporting line of CH+(O) at� \ @CH+(O) is a supporting line of object O. We extend lemma 2 to the case ofx-separated objects. Observe that if O1 and O2 are a pair of x-separated object, theboundary of the upper convex hull CH+(O1; O2) has a unique bitangent segment.Lemma 3 Let (O1; O2) be a pair of x-separated objects with x(O1) < x(O2), lets be the slope of the unique bitangent segment of @CH+(O1; O2) and let sb be theslope of the bridge of O at �. If s > sb then the left object O1 of the pair cannotparticipate to the bridge at �. If s < sb then the right object O2 of the pair cannotparticipate to the bridge at �.Proof. We only give the proof in case of s > sb (the other case is obtained bysymmetric considerations). Let I be the intersection point between a separatingline �0 parallel to � and the a�ne hull L of the unique bitangent segment of@CH+(O1; O2) (see Figure 4). Let s be the slope of L and de�ne L0 as the linepassing through I with slope sb. Let L1(sb) be the tangent line to O1 with slope sb.L1(sb) and L0 are parallel lines (and can therefore be ordered along �0). Becauseof the convexity of O1, if s > sb then y(L0 \�0) = y(L \�0) � y(L1(sb) \�0) andL1(sb) is below L0. But the contact point T2(s) = L \ O2 is strictly above L0 ifs > sb. Therefore, point T2(s) is above L1(sb) so that O1 cannot participate to thebridge at � 23.1.3. Vertical decompositionThe vertical decomposition will give rise to a set of x-separated convex objects.Let O = fO1; :::; Ong be a set of n planar convex objects of type m and CH+(O)its upper convex hull. We decompose this upper convex hull by striping CH+(O).To stripe CH+(O), we draw through each vertex of @CH+(O) a line parallel to �.These parallel lines induce a decomposition of each object Oi of O into sub-objects,called tiny objects in the following (see Figure 5). We only keep the tiny objectswhose boundary participates to the boundary of the convex hull @O. Note thateach tiny object is de�ned from a single object and two vertical lines, and that two8
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Figure 4: Discarding O1 when s > sb.
OiOj

�Tiny objects of a cluster (Oi; Oj )Tiny objects removed directly from the set of candidates
Figure 5: Vertical decomposition of a pair of convex objects of type 2.tiny objects arising from this decomposition are x-separated.3.1.4. AlgorithmLet L be the line which supports CH(O) at point � \ @CH+(O). Line L isa supporting line for some of the objects in O. Our goal is to select from O theobjects that touch L.We pair up the convex objects of O into pairs (Oi; Oj). For each pair (Oi; Oj),we �rst compute CH+(Oi; Oj), the upper convex hull of Oi and Oj and apply thevertical decomposition to CH+(Oi; Oj). We discard from this decomposition all thetiny objects that do not have an arc of @CH+(Oi; Oj) on their boundaries. Indeed,as these tiny objects do not appear on the boundary of CH+(Oi; Oj), they also donot appear on the boundary of CH+(O) and therefore cannot participate to anybridge of CH+(O) (Figure 1). 9



We call cluster the set of remaining tiny objects of a pair. As each pair is oftype at most m since O is of type m, we can deduce that there are at most (m+1)convex tiny objects in a cluster. Then, we pair up all the tiny objects within acluster into at most bm+12 c tiny pairs. Note that we pair up only the tiny objectswithin a cluster since, as they are x-separated, they have type 2 whereas two tinyobjects of di�erent clusters have type m. In the following, we shall use lemma 3 toreduce the number of tiny objects in the clusters. As the slope sb of the supportingline of CH(O) at � \ @CH+(O) is of course unknown, the trick is to resolve testslike s < sb or s > sb using transitivity. A cluster is said to be reduced if it has onlyone remaining tiny object. The algorithm consists in an initial step where we pairup the objects in order to get non-reduced clusters and several rounds of selectingand clustering where we eliminate, round after round, the tiny objects. We describethe algorithm below:Initial step. We pair up the objects and compute for each pair its vertical decom�position. This step gives rise to clusters of tiny objects. If an object Oi ofa pair (Oi; Oj) is included in Oj then the cluster generated by this pair isreduced. In that case, we discard Oi and pair Oj again until all clusters arenon-reduced.Selecting and Clustering. A round:� Selecting.� Pair up the tiny objects inside each cluster.� Compute the median sm of the slopes of the bitangent segments ofpairs of tiny objects (use the median algorithm ofBlum et al.44).� Let O0 be the subset of objects which contribute to the currentcollection of tiny objects. Then, �nd the supporting line L(sm)of CH+(O0) with slope sm and locate the contact points L(sm) \CH+(O0) with respect to �. To �nd the supporting line of CH+(O0)with a given slope sm, we �nd the object(s) which maximizemaxi=1::jO0jfyi � smxig where point (xi; yi) is the contact point ofthe supporting line of Oi with slope sm. In general, there is one ortwo such objects and therefore one or two contact points but therecan be possibly more.� Discard tiny objects:� If there are contact points located in both sides of � then sm =sb. The supporting line of CH(O) at � \ @CH+(O) is fullydetermined by a tiny pair whose bitangent segment has slopesm.� If all the contact points are located at the left side of � thensm > sb. We consider all tiny pairs with slope s � sm anddiscard the left tiny object t1 of these pairs.10



� If all the contact points are located at the right side of � thensm < sb. We consider all tiny pairs with slope s � sm anddiscard the right tiny object t2 of these pairs.� Clustering. This stage is required in order to obtain a set of non-reducedclusters for the next round. For each reduced cluster, we consider theoriginal object O 2 O which gave rise to the single tiny object of thiscluster. We pair up these objects and compute for each pair its verticaldecomposition. This step gives rise to new clusters. If an object Oi ofa pair (Oi; Oj) is included in Oj then the cluster generated by this pairis reduced. In that case, we discard Oi and pair Oj again until all clus�ters are non-reduced. In the next round, we consider these new clusterstogether with the non-reduced clusters remaining from the last selectingstep.The algorithm halts whenever it �nds a tiny pair whose slope equals the slopesb of the supporting line of the bridge at � or if it remains only one tiny object.In the former case, the bridge is a bitangent segment and we �nd its two endpointsin linear time. In the latter case, there are two subcases: either the remaining tinyobject does not intersect � and CH(O) \ � = ; or it de�nes the object whoseboundary contains the bridge arc. In the latter subcase, the endpoints of the arccan be found in linear time.3.1.5. Complexity analysisTheorem 4 The above algorithm computes the bridge of a set of n planar convexobjects of �xed type m in optimal �(n) time and storage.Proof. Once we know the supporting line of the bridge at �, we can determine,in linear time, the nature of the bridge (arc or segment) and compute its twoendpoints in linear time for a �xed type m. We therefore focus on the analysis ofthe searching-and-pruning algorithm.Let l and k be respectively the number of tiny objects and the number of clusters(they are all non-reduced) present at the beginning of some round of the selectingand clustering steps. Then, we denote by c(l; k) the cost of the algorithm from thatstage. Let l0 and k0 be respectively the number of tiny objects and the number ofnon-reduced clusters at the end of that round, i.e. after the clustering step. Wehave the following recursive equation:c(l; k) = �O(1) if k � 1�l + �(k � k0) + c(l0; k0) otherwise, (1)where � and � = �m are some constants (� depending on m).Let r denote the number of clusters reduced during the selecting phase. Sincewe pair up the r reduced clusters to create new non-reduced clusters, we havek0 � k � r + b r2c. In the second part of equation (1), �l is the cost of the selectingphase, � r2 � �(k� k0) the cost of the clustering phase of the round and c(l0; k0) the11



total cost of the remaining rounds. Each vertical decomposition of the convex hullof two objects costs �m = � if type m is �xed.If k = 1 there is only one cluster of tiny objects. We can compute the convexhull of the at most two objects which give rise to the set of its tiny objects in timeO(1) = m =  if type m is �xed.Let S1 (jS1j = l01) be the set of remaining tiny objects after the selecting phaseof the current round and S2 (jS2j = l02) the set of tiny objects created during theclustering phase. Let S 0 (jS 0j = l0j) be the set of tiny objects at the beginning ofthe next round, i.e. S 0 � S1 [ S2. Clearly, we have l0 � l01 + l02.We prove that l01 � 56 l:Assume that among the k clusters present at the beginning of the current round,ko clusters have an odd number of tiny objects (say the �rst ko clusters) and thusremain with an unpaired tiny object after the pairing of tiny objects while the(k � ko) other clusters have all their tiny objects paired. Finally, denote by ai thenumber of pairs of tiny objects in the i-th cluster. We have the following equation:l = koXi=1(2ai + 1) + kXi=ko+1 2ai = � kXi=1 2ai�+ ko (2)The selecting process removes a tiny object from half of the tiny pairs, so thatl01 � l � 12Pki=1 ai. Using equation (2), we obtain l01 � 34 l + ko4 . As the number oftiny objects l is at least 2k + ko and ko ranges over [0; k], we have l � 3ko. Thus,l01 � 5l6 .Now, consider the number of created tiny objects during the clustering step.Clearly, l02 � (k� k0)(m+1). l0 is therefore upper-bounded by 56 l+(k� k0)(m+1).Then, it follows by induction on vector (k; l) ordered lexicographically thatc(l; k) � �l + (� + �(m+ 1))k +  for any � � 6�.Initially, l � dn2 e(m + 1) and k � dn2 e so that the complexity of all the roundsof the selecting and clustering step is upper bounded by O(n) for any �xed type m.The cost of the initial step is also O(n). Thus we obtain an �(n)-time algorithmto compute the bridge 23.2. Marriage-Before-Conquest AlgorithmIn this section, we present the marriage-before-conquest strategy to computethe convex hull CH(O) of a set of n convex objects O. We consider w.l.o.g. thecomputation of the upper convex hull since the boundary of CH(O) is obtained inO(1) time from the boundaries of CH+(O) and CH�(O). Each object in O hastwo supporting lines parallel to the y-axis, called walls. Each wall is oriented asthe y-axis. Let W be the set of walls and denote by jWj = w = 2n its cardinality.Let R be a range, i.e. an interval on the x-axis. We de�ne a slab as the portionof the euclidean plane E2 between two lines parallel to �. The upper convex hullCH+(O) can be described as an x-ordered sequence of facets. The following algo�rithm MarriageBeforeConquest(W ;O;R) computes a subsequence MBC(W ;O;R)of the facets of CH+(O) included in the slab B = R� (�1;+1).12



Termination. If w = 0 thenMBC(W ;O;R) = ;. ReturnMBC(W ;O;R).Divide. Find the median Wm of the walls W . Split W into two balanced subsetsW 01 = fW 2 Wjx(W ) � x(Wm)g and W 02 = fW 2 Wjx(W ) � x(Wm)g.Merge. Compute the bridge b at the median oriented line Wm.Filter. Let W1 (respectively W2) be the subset of the walls of W 01 (resp. W 02)that do not intersect b. Let w1 and w2 denote respectively the cardinalitiesof sets W1 and W2. Let x+b and x�b be respectively the abscissæ of the rightand left endpoints of b. Let R1 = R \ (�1; x�b ), B1 = R1 � (�1;+1),R2 = R\ (x+b ;+1) and B2 = R2� (�1;+1). Let O1 (resp. O2) be the setof objects in O that intersect slab B1 (resp. slab B2). Compute W1, W2, R1,R2, B1, B2, O1 and O2. Let n1 = jO1j and n2 = jO2j.Conquest. Call recursively MarriageBeforeConquest(W1;O1;R1) andMarriageBeforeConquest(W2;O2;R2) and return the ordered sequence of facetsMBC(W1;O1;R1) [ fbg [MBC(W2;O2;R2).We denote by c(n;w; h) the complexity of the algorithmMarriageBeforeConquestrunning inside range R if there are w walls in B, n objects intersecting B and hcomputed facets of CH+(O) in B. Each computed facet is intersected by at leastone wall of W , so that h � jWj. We obtain the following equation:c(n;w; h) = �O(n) if h � 1c(n1; w1; h1) + c(n2; w2; h2) +O(n) otherwise (3)The algorithm ensures that w1 + w2 � w and w1; w2 � dw2 e but it does notcontrol n1 nor n2 (n1; n2 � n) so that its worst-case running time is O(nh). Atthe end, we are left with an x-ordered alternating sequence of computed facetsand empty slabs (i.e. slabs that do not contain any wall of W). We can �nd thewhole upper convex hull using Jarvis's algorithm inside each empty terminal slab.In the following section, we study a special case where we can bound the number ofobjects that participate to the upper convex hull inside a slab (parameter n1 andn2 of equation (3)). We will use this �special� case as a basic primitive in the �nalalgorithm.3.3. The Case of a Non-Overlapping PartitionLet O be a set of n objects of �xed type m. If we know that a partition ]ki=1Piof set O of �xed type m into k subsets such that each subset Pi, for i 2 [1; k], is aset of non-overlapping convex objects then we can derive an O(n log h+ hk)-timecomplexity algorithm to �nd the convex hull of O. This result holds, for exampleif O is a set of non-overlapping convex objects, since in that case k = 1 and m = 2.Let B be a vertical slab where we want to compute the upper convex hull. Amongthe objects of O intersecting B, we distinguish two mutually exclusive categories:Category 1: The objects that have a wall inside B.13



Category 2: The objects that intersect B but do not have a wall inside B: theseobjects are called the spanning objects hereafter.AlgorithmMarriageBeforeConquest is slightly modi�ed, taking into account thesetwo categories of objects inside each slab B (with associated range R), as follows:� We bound the number of objects to consider in slab B by selecting among thespanning objects, at most one object of each family Pi. Indeed, R is includedin the x-range of each spanning object. Thus, the spanning objects whichbelong to a given family Pi can be ordered along any vertical line included inB and only the topmost object can contribute to the upper convex hull in B.� We stop the recursive calls as soon as w � k and run Jarvis's march in eachresulting slab on the set of objects OB relevant for this slab. We have jOBj �2k since there are at most k spanning objects and k objects of category 1.This Jarvis's march is initialized from the computed facet which intersectsthe rightmost vertical line limiting B and stopped when the leftmost verticalline limiting B is reached.Theorem 5 Let O be a set of n planar convex objects of �xed type m partitionnedinto k subsets of non-overlapping convex objects, then the convex hull of O can becomputed in O(n log h+ hk) time, where h is the size of the convex hull of O.Proof. Let c(n;w; h) denote the complexity of the above algorithm. We have:c(n;w; h) = �O(hk) if w � kc(n1; w1; h1) + c(n2; w2; h2) +O(n) otherwise (4)with w1+w2 � w, w1; w2 � dw2 e, n1 � w1+k and n2 � w2+k since we keep, ineach sub-slab B1;B2, at most k spanning objects and there are at most w1 objects(resp. w2 objects) that have a wall in slab B1 (resp. B2).We consider the recursive time complexity equation (4) and link parameters nand w using the inequality: n � w+k; thus c(n;w; h) � c(w+k; w; h) and from nowon, we simply note c(w; h) for c(w+ k; w; h). Bounding n by w+ k in equation (4),we obtain: c(w; h) = ��hk if w � kc(w1; h1) + c(w2; h2) + �(w + k) otherwise (5)where � and � are some constants.Note that w1 � dw2 e, w2 � dw2 e and h = h1 + h2 +1. We prove by induction onw that c(w; h) � (w log h+ kh) for a suitable constant :� If w � k then c(w; h) = �kh by equation (5). So that c(w; h) � (w logh+kh)if  � �.� Suppose that c(w0; h) = (w0 logh+ kh) for 0 � w0 < w and consider c(w; h)with w > k. Using equation (5), it follows that:c(w; h) = (w1 logh1 + kh1 + w2 logh2 + kh2) + �(w + k)14



with w1; w2 � w2 and h1 + h2 + 1 = h. Note that log(h1h2) is maximized forh1 = h2 = h�12 , thus:c(w; h) � (w2 log h24 + kh) + �(w + k);c(w; h) � (w logh+ kh� w) + �(w + k):But k < w by hypothesis, so thatc(w; h) � (w logh+ kh) + (2� � )w;and c(w; h) � (w logh+ kh) for suitable  � 2�.This proves that c(w; h) � (w logh + kh) for constant  = maxf2�; �g. Initially,w = 2n (each of the n initial objects has two walls) so that the complexity of thealgorithm is O(n log h+ kh). 2As a direct consequence, we obtain a �(n logh)-time algorithm for computingthe convex hull of non-overlapping convex objects. Note that our algorithm requiresto know the partition of O into subsets of non-overlapping objects. We can de�nefor a family of n objects its intersection graph G as follows: for each object Oi 2 Owe create a node and two di�erent nodes are linked i� their corresponding objectsintersect. If � is the maximum degree of the nodes of G, we know from the graphtheory that there exists a partition of O into p subsets of non-overlapping objectssuch that p � � + 1. We can slightly modify our algorithm in order to take intoaccount the paramater � without knowing a partition into subsets of non-overlappingobjects: choose a vertical line inside the slab and select from the spanning objectsthe object O that has the uppermost intersection point with that line. Then, wediscard all the spanning objects that do not intersect O (this means that we onlykeep the spanning objects intersecting O). It is trivial to prove that all the spanningobjects that do not intersect O are below O and therefore cannot participate to theupper convex hull. Thus, we obtain an O(n log h+ �h)-time algorithm to computethe upper convex hull of n objects of �xed type m where � is the maximal number ofintersection of any object with the others. For example, we can compute the convexhull of n hard-disks30 in �(n logh) (a family of disks in the hard-sphere model hasthe property that each disk intersects at most O(1) others, i.e. � = O(1)). We alsoobtain an optimal �(n logh)-time algorithm if � � O( n logn�(n;m) ).Note that the above algorithm computes the upper convex hull inside each ter�minal slab using Jarvis's march. If we skip this last phase of the algorithm, weare left with a subsequence of the facets of the convex hull. There is a terminalslab intersecting at most 2k objects between each pair of consecutive facets in thesubsequence. Then, the algorithm is called PartialMBC and its complexity is stillO(n log h+ kh) but h is, here, the number of computed bridges (and not the totalnumber of facets of the upper convex hull).15



4. The General CaseIn this section, we �rst present a convex hull algorithm assuming we know a goodestimate he of the output-size h. To obtain a good estimate of the output-size, wehave to compare the size h of the convex hull with some given value p; we showin section 4:2 how to perform such comparisons. The �nal algorithm is given insection 4:3.4.1. Given an Estimate of the Output-SizeLet he be an estimate of the output-size h = jCH+(O)j. The algorithm includestwo steps: the �rst step computes from O a set T of objects partitionned intonon-overlapping subsets such that CH+(O) = CH+(T ). Then, in a second step, weapply the marriage-before-conquest algorithm of section 3.3 on T . We describe thealgorithm below:Grouping. Group the n objects into d nhe e groups of size he. For each group, wecompute the vertical decomposition of the convex hull of its objects. Thus, weobtain from the groups a set T of O(d nhe e�(he;m)) tiny objects partitionnedinto d nhe e subsets of at most �(he;m) non-overlapping tiny objects.Marriage-before-conquest. Let W be the set of walls corresponding to the tinyobjects of T . Let R be the x-range (�1;+1).Return MarriageBeforeConquest(W ; T ;R) (see algorithm section 5).Let us now analyze the complexity of the two steps:Grouping. Computing the vertical decomposition of the upper convex hull of agroup of he objects requires O(�(he;m) loghe) time: we �rst compute the up�per envelope of the he objects by a divide-and-conquer algorithm and then runa walk-like convex hull algorithm on the resulting upper envelope20. The up�per envelope has worst-case size �(he;m). Thus, the time required to computethe vertical decomposition of a group is O(�(he;m) loghe). Since there ared nhe e groups, the total time complexity of this �rst step is O(n�(he;m)he loghe).Marriage-before-conquest. We run the marriage-before-conquest algorithm ofsection 3.3 onto the set of O(n�(he;m)he ) tiny objects partitionned into d nhe e sub�sets of non-overlapping objects. From the complexity analysis of section 3.3,this step requires O(n�(he;m)he logh+ nhhe ) time.The total time complexity of the algorithm is thereforeO �n�(he;m)he (loghe + log h) + nhhe �. Thus, if he = h then the time required to com�pute the convex hull CH+(O) is O(n�(h;m)h logh).4.2. Comparing the Output-Size with a Given ValueIn order to �nd a good estimate of h, we will need to determine if our currentestimate (say p) is good (this means that p roughly equals to h) or not, i.e. toanswer tests like p > h , p = h or p < h.16



Lemma 6 There exists a deterministic algorithm that given an integer p, answerswhether h > p or not in O(n�(p;m)p log p) time.Proof. We design an algorithm which does not di�er too much from thealgorithm of section 4.1: the idea is to group the objects into dnp e groups of p objectsand then run the marriage-before-conquest algorithm PartialMBC on the dnp e subsetsof non-overlapping tiny objects resulting from the vertical decomposition of eachgroup. Finally, we bound the number of facets computed by Jarvis's marches insidethe terminal slabs. More precisely, we run Jarvis's march inside each �terminal�slab (a slab with at most np walls) until we have computed a total of minfp; hgfacets. We describe the algorithm below:Let a = 0 (a denotes the number of computed facets).Grouping. Group the n objects into dnp e groups of size p and compute the verticaldecompositions of their convex hull. We obtain a set T of O(n�(p;m)p ) tinyobjects partitionned into dnp e non-overlapping subsets.Marriage-before-conquest. Apply algorithm PartialMBC on the set T until eachslab has less than dnp e walls, incrementing a each time we compute a bridge.If a > p stop and return yes, i.e. h > p.Jarvis's march. Fill the terminal slabs by running Jarvis's march inside each slabon a set of O(np ) objects (at most dnp e spanning objects and dnp e objects thathave a wall inside the slab), incrementing a and testing if a > p each time wecompute a new facet. If a > p at some step then we stop the algorithm andreturn yes, i.e. h > p.Default case. At this stage, we have computed the whole upper convex hull anda = h, the number of computed facets is less or equal to p. We return no.The overall cost of the grouping step is O(n�(p;m)p log p) as in section 4:1. Thecost of the marriage-before-conquest algorithm is bounded by O(n�(p;m)p log p) sincewe stop the recursion process if the slab has less than dnp e walls. Indeed, we splitinto two balanced parts the walls of the tiny objects of T at each recursive call ofthe procedure. So that dividing the number of walls inside each slab by a factor�(p;m) amounts to computing at most �(p;m) bridge facets. Thus, the cost of run�ning PartialMBC is bounded by O(n�(p;m)p log�(p;m))+n�(p;m)p = O(n�(p;m)p log p)since log�(p;m) = O(log p). Let c(n; p) denote the time complexity of this al�gorithm. Then, c(n; p) = O(n�(p;m)p log p) + O(np a0) where a0 is the number ofcomputed facets during the Jarvis's march (a0 � a). Clearly, a0 � p so thatc(n; p) = O(n�(p;m)p log p). This proves the lemma. 24.3. The Overall AlgorithmThe scheme of the algorithm is to �nd a good estimate he of h, that is anestimate such that h � he < h2, and to run the algorithm of section 4:1 with thatestimate. The �nal algorithm is described below:17



Initializing. Let i = 0 and p = 220 = 2.Estimating. While (p < h) do p  minfn; p2g (this means that i  i + 1 andp = 22i)Computing. Compute the upper convex hull using p = he = 22i (note that h2 >p � h).Note that we use the algorithm of section 6:2 to perform tests like p < h in thewhile-loop.Let c(n; h) be the cost of the algorithm, we obtain:c(n; h) = O(1) +O0@dlog log heXi=0 n�(22i ;m)22i 2i1A+O�n�(he;m)he loghe� :Let �(p;m) be an upper bound of the ratio �(p;m)p that satis�es �(p2;m) =O(�(p;m)) like �(p;m) � O(2�(p)cm ) with cm an integer depending on m (thisupper-bound is deduced from the maximal length of (n; s)-Davenport-Schinzel se�quences, see Table 1). We bound c(n; h) as follows:c(n; h) � O0@n�(h;m) dlog log heXi=0 2i1A+O �n�(h2;m) logh2� ;c(n; h) = O(n�(h;m) log h):This yields the desired upper-bound c(n; h) = O(n�(h;m) log h).Theorem 7 There exists a deterministic algorithm that computes the upper convexhull of n planar convex objects of �xed type m in time O(n�(h;m) log h) usingO(n�(h;m)) storage.This bound is very close to optimal since 
(n logh) is a lower bound7. In caseof convex objects of type 2 (like disks, convex homothets, non-overlapping objects,etc.), the algorithm is truly optimal since �(h;2)h = O(1) (see Ref.45). Ifm > 2 we donot know if our algorithm is optimal. We cannot reach the 
(n logh) lower bound(proved in Ref.7) with this method. Indeed, when grouping the objects into groupsand computing their vertical decomposition, we create a set of tiny objects whichis slightly supra-linear with respect to the original set of objects. This remark givesrise to the problem of the lower bound as soon asm > 2. Is 
(n�(h;m)h log h) a betterlower bound for the convex hull problem? Can we group the objects in a betterway so that the number of tiny objects obtained from the convex decomposition ofthe groups is less than O(n�(p;m)p ) for a p-grouping?In the following section, we show how this method can be used to compute upperenvelopes of functions and line segments. In the latter case, we can improve thegrouping step of the inputs so that we achieve an optimal �(n logh)-time algorithmin the case of line segments. 18



5. Computing Upper EnvelopesLet F = ff1; :::; fng be a collection of n mono-variate, possibly partially de�ned,functions, all algebraic of some constant maximum degree. We denote by EF itsupper envelope, i.e. the pointwise maximum of the fi's:EF (x) = maxi2f1;:::;ngffi(x)g;where fi(x) is the value of the function fi at abscissa x or �1 if x does not belongto the domain of de�nition of fi. Throughout this paper, we will use the termfunction for the mathematical object itself or its graph. Thus, in term of graph,the upper envelope of functions can be seen as the part of the graphs of the fi'svisible from viewpoint (0;+1). If the functions are partially de�ned, then theobserver (which stands at point (0;+1)) may see the point (0;�1), i.e. thereexists vertical rays emanating from (0;+1) that do not collide with the functiongraphs. In order to unify the de�nition of the mathematical object upper envelopein case of partially de�ned functions, we add an extra function f�1(�) such thatf�1(x) = �1;8 x 2 R. Thus,EF (x) = maxi2f1;:::;ngffi(x); f�1(x)g = maxi2f1;:::;ngffi(x);�1g:The upper envelope is a sequence of maximal visible portions of the original func�tions. Hereafter, we call facet of the upper envelope each maximal visible portionof the original functions. A facet is fully determined by the function whose graphcoincides with that facet, and its two endpoints. The size of the upper envelope EFof F , denoted by jEF j, is the number of facets of the upper envelope.Set F is said of type m if any two functions of F intersect in at most m points.Line segments are of type 1, parabolæ are of type 2, ... Since the functions have abounded descriptive size (algebraic functions of �xed degree), F is of �xed type m.We can use the theory of Davenport-Schinzel31;32;33;46 to bound the complexityof the upper envelopeEF ofF . The maximal length �(n;m) of an (n;m)-Davenport-Schinzel sequence is almost linear in n for �xed m31;32;33. It is well-known that thesize of the upper envelope of n functions totally de�ned over R (resp. partiallyde�ned over R) is bounded by �(n;m+ 1) (resp. �(n;m+ 3)).For example, line segments are partially de�ned functions intersecting pairwisein at most one point. Thus, the size of the upper envelope of n line segments is�(n; 3) = O(n�(n)). Here �(n) is the extremely slowly growing functional inverse ofAckermann's function36. This bound is tight: M. Sharir and A. Wiernik36 built a setof n line segments such that the size of their upper envelope is 
(n�(n)). Howeverfor practical implementation, it is worth noting that �(n) � 4 for n � tower(65536)where tower(i) is a tower of 2 of length i, i.e. tower(1) = 2 and tower(i + 1) =2tower(i).The methodology previously described for computing convex hulls can be appliedfor computing upper envelopes. We brie�y recall the main steps. Computing thebridge at a given oriented line �, i.e. the facet of EF intersected by �, can be done19
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Figure 6: Upper envelope of 200 line segments. Facets are shown in bold.
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almost trivially in linear time: �rst, we select the function which has the highestintersection point with �. Let f be that function. Then, in a second step, we �ndthe two endpoints (to the left and right of � ) limiting the bridge facet. As typem is �xed, we can compute the two endpoints in linear time. We can also designa linear-time-per-facet algorithm (an analogous algorithm of Jarvis's march). Thenwe consider the case of a set of functions partitionned into k subsets of pairwisenonintersecting subsets. We obtain a O(n log h+kh)-time upper envelope algorithm.We de�ne the vertical decomposition of a group of functions as the partiallyde�ned functions induced by striping vertically the upper envelope. We follow thesame steps as those of the convex hull algorithm and obtain anO(n�(h;m) log h)-timeO(n�(h;m))-storage algorithm with �(h;m) = O(2�(h)cm ) where cm = dm2 e if thefunctions are partially de�ned and cm = dm2 e�1 otherwise (see Table 1). Note thatthe complexity of the upper envelope depends on both the number of intersectionpoints and if the functions are partially or totally de�ned.Thus, for the case of line segments we obtain an O(n�(h) log h)-time algorithm.We show in the following section how we can reach the optimal bound 
(n logh)by adapting the technique due to J. Hershberger47. The main idea is to group thethe line segments e�ciently. A family of functions is said to be k-intersecting ifthe functions are intersecting pairwise in at most k points. A set of k-intersectinggeneralized segments is a family of partially de�ned functions that are k-intersecting.5.1. An Improved Algorithm for k-Intersecting SegmentsW.l.o.g. we consider the case of line segments. The generalization of the resultto k-intersecting generalized segments is straightforward. The main idea is to creategroups so that the size of the vertical decomposition of each group remains linear.We �rst compute a lazy interval tree as follows: consider the 2n endpoints of theline segments and compute by recursive application of the median algorithm44 apartition P = fP1; :::;Ppg of the 2n endpoints so that each sheaf Pi has size 2npand the sheaves are x-ordered, i.e. x(Pi) < x(Pj) for all j > i. We consider thefollowing p� 1 reference abscissæ and p x-ranges:� For each sheaf Pi, we associate the x-range Xi of the points pi 2 Pi. Notethat all the x-ranges of the sheaves are disjoint.� Between two successive sheaves, we choose an abscissa ai so that Xi < ai <Xi+1, i.e an abscissa between two consecutive x-ranges of sheaves.We build an interval tree IT as follows: each leaf of the interval tree correspondsto the x-range of a sheaf and each internal node to an abscissa separating thesheaves (see Figure 8). Then, we allocate the n line segments according to thelowest common ancestor of their two endpoints. At this step, all the segments arelocated into two kinds of sets:� Those staying at a leaf of IT . This means that the x-range of each of theseline segments is included in the x-range of the sheaf. We say that these linesegments are unclassi�ed. 21



Figure 7: The upper envelope of 100 line segments. The upper left drawing depictsthe upper envelope of 100 line segments. Then from left to right, and top to bottom,we �rst compute groups of size 10; 20; :::; 90 and apply the marriage-before-conquestalgorithm on the set of line segments resulting from the vertical decompositions oftheir upper envelopes.
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� Those lying in an internal node of IT . This means that all the line segments,whose lowest common ancestor of the abscissæ of their endpoints is the ab�scissa ai, cross the vertical line x = ai. Their upper envelope is linear in thenumber of line segments. We say that these segments are classi�ed.Following the communication of J. Hershberger47, we notice that the upperenvelope of the line segments allocated into a same internal level of IT is linear inthe number of line segments. Indeed, the upper envelope of the segments allocated toa given internal node is linear (see Ref.47) because all these segments cross a verticalline and the segments of two nodes of a same internal level are separated by a verticalline by virtue of the interval tree. Let ni denote the number of line segments at leveli, 1 � i � dlog pe. By grouping the line segments of each internal level of the intervaltree into groups of size p and computing for each group the vertical decompositionof their upper envelope, we obtain an O(np +log p)-coloration, i.e. a partition of theoriginal set of n line segments into Pdlog pei=0 dnip e = O(np + log p) subsets of pairwisenon-intersecting line segments resulting from the vertical decomposition of theirupper envelope. We also color the unclassi�ed line segments (those staying at aleaf of the interval tree) as follows: to the i-th line segment attached to a given leafof the interval tree, we give it the color (i; 2). Here, 2 means the unclassi�ed linesegments. Note that i � dnp e. Moreover, two line segments with color (i; 2) do notintersect since they belong to two di�erent sheaves and are therefore x-separated.Thus, globally, after an O(n log p)-preprocessing time required for building thelazy interval tree, we obtain a O( 2np +log p)-coloration of a new created set of O(n)line segments which has the same upper envelope as O. We run the O(n logh +kh)-time algorithm upon this new set. Since k = 2np +log p, we obtain an O(n log h+2np h+ h log p) = O((n + h) logh)-time algorithm with linear storage.For the case of k-intersecting generalized segments, we note that the complexityof the upper envelope of the ni k-intersecting segments at the i-th level of the intervaltree is O(�(ni ; k+1))47. It follows that the complexity of the upper envelopes (oneupper envelope per group) of the n k-intersecting segments is O(n�(h; k+1)). Thus,we can compute the upper envelope of k-intersecting segments in time O((n�(h; k+1) + h) logh). The space requirement has also been reduced to O(n�(h; k + 1)). Achallenging problem is to design an algorithm that computes the upper envelope of nfunctions intersecting pairwise in at most m points in less than O(�(n;m+1) logn)operations. Probably, if a better result is found, it may yield straightforwardly to abetter output-sensitive algorithm since the crucial step of our method is to computepartitionned sets.As a �nal remark, to underline the power of the grouping scheme, we show howin the case of line segments we can obtain again an O(n logh)-time algorithm usingray shooting procedures. As before, we create dnp e groups of size p, compute theirupper envelopes and preprocess these upper envelopes (which can be viewed assimple polygons, each of them of size O(p�(p))) for ray shooting. For each group,the time for computing its upper envelope and preprocess it for ray shooting isO(p log p)48;49. Thus, the total time for the preprocessing step is O(n log p). The23
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siP1 Pp
Figure 8: Building the lazy interval tree.ray shooting query time of a group is O(log p). Then, the procedure walks fromx = �1 to x = 1 as follows: consider that the algorithm at some stage hasfound a portion of the upper envelope (a line segment) and therefore knows (by therightmost endpoint e of that facet) which line segment s will support the followingportion of the upper envelope. Then, for each group (in fact each simple polygon),we shoot a ray from the endpoint e following the direction of s. Finally, among thenp terminations, we choose the one that shorten the most the line segment s. Thecost of this algorithm is O(n log p+(np log p+ np )h). If p = h then the algorithm hastime complexity O(n logh). We use again the technic of approximation in order toachieve that bound.6. Concluding RemarksWe have applied the marriage-before-conquest paradigm to the computation ofthe convex hull of n planar convex objects of �xed type m. We �rst described alinear-time algorithm to compute the bridge of the convex hull at a given orientedline. Then, we investigated the case where the family of objects consists of k sub�sets of non-overlapping objects. For that case, we designed an O(n log h+ kh)-timealgorithm where h denotes the output-size. As a byproduct, we obtain an optimal�(n logh)-time algorithm for computing the convex hull of a set of non-overlappingobjects. Moreover, if each object cannot intersect more than � others then we designan O(n log h+ �h)-time algorithm. Finally, we transformed the problem of comput�ing the convex hull of O to computing the convex hull of a set T partitioned intonon-overlapping subsets such that CH(O) = CH(T ). (We use nonoutput-sensitivealgorithms in order to get T .)The size of the partition of T , i.e. the number of non-overlapping subsets, de�24
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