
Tailored Bregman Ball Trees for Effective Nearest Neighbors∗

Frank Nielsen† Paolo Piro, Michel Barlaud‡

Abstract

Nearest Neighbor (NN) search is a crucial tool that
remains critical in many challenging applications of
computational geometry (e.g., surface reconstruction,
clustering) and computer vision (e.g., image and in-
formation retrieval, classification, data mining). We
present an effective Bregman ball tree [5] (Bb-tree)
construction algorithm that adapts locally its internal
node degrees to the inner geometric characteristics of
the data-sets. Since symmetric measures are usually
preferred for applications in content-based informa-
tion retrieval, we furthermore extend the Bb-tree to
the case of symmetrized Bregman divergences. Ex-
act and approximate NN search experiments using
high-dimensional real-world data-sets illustrate that
our method improves significantly over the state of
the art [5], sometimes by an order of magnitude.

1 Introduction and prior work

Finding nearest neighbors (NNs) is a very common
task occurring in many applications ranging from
computer vision to machine learning and data min-
ing. Let S = {p1, ..., pn} be a set of n d-dimensional
points (with d typically ranging up to a few thou-
sand dimensions). Given a query point q, the near-
est neighbor NN(q) is defined to be the “closest”
point of S with respect to a dissimilarity measure
D: NN(q) = argmini D(q, pi). Instead of consider-
ing the closest neighbor, queries can be enlarged to
report the first k “closest” points (useful for k-NN
classification rule in machine learning). It is usually
enough to get a good neighbor [6] by relaxing the ex-
act search to get near and fast neighbors. Besides the
theoretical puzzling questions related to the dreaded
curse of dimensionality [6], practitioners make every
endeavor to speed up applications by designing tai-
lored schemes for improving over the näıve linear-time
O(dn) brute-force method. Among the flourishing
literature of nearest neighbor techniques, we distin-
guish two main sets of methods: (1) those relying
on tree-like space partitions with branch-and-bound

∗Financially supported by ANR-07-BLAN-0328-01 GAIA
(Computational Information Geometry and Applications) and
DIGITEO GAS 2008-16D (Geometric Algorithms & Statistics)

†École Polytechnique, LIX, Palaiseau, France,
nielsen@lix.polytechnique.fr

‡CNRS I3S, Sophia-Antipolis, France,
{piro,barlaud}@i3s.unice.fr

queries, such as kD-trees, metric ball and vantage
point trees [5, 8], and (2) those based on mapping
techniques [3] (e.g., locality-sensitive hashing, ran-
dom projections). The former tree-based methods
improve over the brute force algorithm by pruning

sub-trees whenever traversing the trees with queries
(exact NN) or stopping after visiting a given “bud-
get” of leaves (approximate NN). The latter meth-
ods concentrate on reducing dimensions while pre-
serving as much as possible distances and control-
ling geometrically collisions of hash functions (only
work for approximate NN). Since the Euclidean dis-
tance is often inappropriate for meaningfully mea-
suring the proximity of feature points arising from,
say, image applications, a wide range of distortion
measures has been proposed and NN data-structures
have been first extended to arbitrary metrics (e.g.,
vantage point trees [8]). However, these NN search
methods rely fundamentally on the triangle inequal-

ity property, which is not satisfied by information-
theoretic statistical distances such as the Kullback-
Leibler divergence. Cayton [5] recently proposed the
analogous of metric ball trees for the broad class of
Bregman divergences. Bregman divergences DF on
vector set X ⊂ R

d are defined for a strictly convex

and differentiable generator F (x) : X ⊂ R
d 7→ R as

DF (p||q) = F (p)− F (q)− (p− q)T∇F (q), where ∇F
denotes the gradient of F . Those divergences (param-
eterized by a generator F) include all quadratic dis-
tances (also known as Mahalanobis squared distances,
which are the only symmetric Bregman divergences
and are obtained for F (x) = Σ−1x, where Σ ≻ 0 is the
positive-definite variance-covariance matrix) and the

asymmetric KL divergence (F (x) =
∑d

j=1 xj log xj ,
the negative Shannon entropy), for which DF (p||q) 6=
DF (q||p). Many fundamental algorithms (e.g., k-
means [4], PCA) and data-structures (e.g., Voronoi
diagrams [10]) have been generalized to that class of
divergences, thus offering meta-algorithms that can
work for any Bregman divergence. For example,
Banerjee et al. [4] showed that the celebrated Lloyd
k-means algorithm extends to (and only to) the class
of Bregman divergences unifying various algorithms.
Since Bregman divergences are typically non-metric
asymmetric distortion measures, we consider both
left/right-sided and symmetrized NN searches de-
fined as follows: NNr

F (q) = arg mini DF (pi||q) (right-
sided), NNl

F (q) = arg mini DF (q||pi) (left-sided) and
NNF (q) = argmini(DF (pi||q) + DF (q||pi))/2 (sym-

1

metrized).

2 Bregman ball trees (Bb-trees)

Without loss of generality, we consider only right-

sided NN queries, as left-sided NN queries can be
handled similarly by considering the dual divergence
DF∗(∇F (q)||∇F (p)) = DF (p||q) arising from the
Legendre-Fenchel conjugate F ∗ of F (with ∇F ∗ the
functional inverse of ∇F−1). See [10, 5] for de-
tails. Bregman generators come by pairs (F, F ∗),
e.g. the dual Legendre conjugates F (x) = x log x and
F ∗(y) = exp y (with F ′(x) = (F ∗′(y))−1), see [10].

2.1 Outline of Bregman ball trees (Bb-trees) [5]

Similar to metric ball trees, a Bb-tree is built in a top-

down fashion by applying recursively a partitioning
scheme. First, the root is created to handle the source
data-set S. A 2-means (k-means [4] with k = 2) is
computed, splitting S according to the two centroid
points, say cl and cr, with respect to DF . These two
centroids defines a partition S = Sl ∪ Sr that can
be covered geometrically with corresponding Bregman
balls B(cl, Rl) and B(cr, Rr) (possibly overlapping).
This hierarchical decomposition of S is carried out
recursively on Sl and Sr until a stopping criterion is
eventually met. Two such typical termination criteria
are: (1) a predefined maximum number of points l0
(stored at leaves), or (2) a prescribed maximum radius
(r0, comes in handy for approximate NN). Note that
the source points are stored only at leaves of the Bb-
tree, and the sub-sets Sl and Sr may be theoretically
unbalanced. Internal nodes store only two left/right
Bregman balls covering the point sets stored at their
left/right sub-trees.

In both exact and approximate NN queries, we per-
form a branch-and-bound search to answer queries.
For a given query q, the tree is traversed in depth-

first-search order from the root to the leaves. At
an internal node, we choose to branch first on the
sub-tree whose corresponding ball is “closer” to the
query q (the sibling is temporarily ignored). Once
a leaf node is reached, the closest point to q among
the points stored at the leaf is computed using the
brute-force method. This first visited leaf yields the
very first NN point candidate p′, thus giving an up-
per bound DF (p′||q) to the NN distance. In exact
search, the tree traversal goes on through all formerly
ignored subtrees. To decide whether a subtree must
be explored or not, we check whether DF (p′||q) >
minx∈B(c,R) DF (x||q), where p′ is the current NN can-
didate. This test is performed by projecting q onto
the Bregman ball B(c, R). The projection of a point
q onto a Bregman ball B is the unique minimizer
qB = argminx∈B DF (x||q) [10]. Instead of projecting
exactly the query point onto the ball, we rather make

use of a Bregman annulus B(c, R, R′) = {x | R ≤
DF (x||c) ≤ R′} that encloses the exact projection by
construction: qB ∈ B(c, R, R′). If DF (p′||q) < R then
the node can be pruned; If DF (p′||q) > R′ then the
node must be explored. These lower/upper bounds
are computed during the geodesic bisection search of
the projection [5] (see Section 2.4). Overall, observe
that the less the number of pairwise intersecting balls
stored at nodes, the better the Bb-tree performance.
Although exact NN retrieval on Bb-trees can often
be achieved with much smaller computational cost
than the brute-force search, the practical interest of
Bb-trees is to get significant speed-up search when
performing approximate NN queries. The approxi-
mate search allows one for large speed-up as it does
not perform exhaustive branch-and-bound search. A
common criterion to perform approximate search is to
stop the branch-and-bound algorithm after exploring
a prescribed number of leaves [5].

2.2 Speeding up construction time: Bb-tree++

In order to preprocess datasets efficiently by means of
Bregman ball trees, instead of running the full regu-
lar Bregman k-means algorithm [4], we just perform
a careful light initialization of the two cluster cen-
ters (seeds). Initialization turns out to be the cru-
cial stage of k-means. That is, k-means locally op-
timizes the potential P (C) =

∑
p∈S minc∈C DF (p||c),

where C denotes the set of k centers. Each round
assignment/cluster adjustment decreases this poten-
tial function so that monotonous convergence is guar-
anteed. It is striking to know that the worst-case
running-time of k-means is theoretically exponential
with the dimension although a recent smooth analysis
yields polynomial amortized time [9]. A bad initializa-
tion may trap k-means into a local optimum. Initial-
ization is thus all the more important, as k-means is
called at each internal node of the Bb-tree to partition
the data-sets into two sub-sets. Therefore, the idea is
to replace the k-means local iterative algorithm by a
well-chosen initialization that provides a guaranteed
upper-bound on the optimal partition. This quantum
leap for k-means was discovered by Arthur and Vassil-
vitskii [2] and later extended to Bregman divergences
by Nock et al. [12]. We describe the initialization
procedure of Bregman 2-means++ for a set S. First,
draw uniformly at random the seed cl (cluster “cen-
ter”) among the points of the data-set. Then compute
the Bregman divergence of this point to all points of
S, and draw the second seed cr according to the di-

vergence distribution: πi = DF (pi||cl)∑
pj∈S

DF (pj ||cl)
. Thus cr

can never be cl, since DF (cl||cl) = 0 (the probabil-
ity of drawing cl is zero). This careful initialization
yields an extremely fast tree construction, which sta-
tistically provides nice splitting and tends to balance
sub-sets stored at leaves. Arthur and Vassilvitskii [2]

2

proved that this initialization yields a k-means score
P (C) at most 8(2+log k) of the optimal value. Similar
bounds in O(log k) for generic Bregman divergences
were later reported by Nock et al. [12]. Note that
the two left/right Bregman balls stored at internal
nodes tend to minimize the Bregman information [4]
(i.e., variance for the square potential F (x) = x2,
mutual information for the negative Shannon entropy
F (x) = x log x, etc). Next, we improve the partition
at each internal node by learning its degree (number
of siblings) from the local data-sets.

2.3 Learning the tree branching factor

Answering queries may range from optimal logarith-
mic time (i.e., the shortest path to a leaf) up to linear
time for a complete tree traversal. Therefore, it is im-
portant to partition the source data-sets into as many
as possible non-overlapping Bregman balls. However,
consider a data-set consisting of three separated Gaus-
sian point samples. Forcing this set to be split into
two will likely create overlapping balls. Thus we bet-
ter learn the number of sub-sets when partitioning
the data so that the induced Bregman balls better
fit the intrinsic geometric characteristics of the set.1

We adapt the branching factor bfi (up to a maximum
branching factor BF) of each internal node of the Bb-
tree to the underlying distribution of the points by
using the G-means strategy [7]. The underlying idea
is to assume Gaussian distribution of each group of
points (hence the name G-means).2 Our use of G-
means [7] algorithm starts by setting k = 2 and then
test for Gaussian distribution of the points using the
Anderson-Darling statistical test. Given a confidence
level α, if the Anderson-Darling normality test returns
true, we keep the center, otherwise we split it into
two. Between two rounds, we simply run Bregman
k-means++ initialization on the data-set and get all
the new centers that hopefully refine the partitioning.
We enforce a maximum degree to each internal node
in order to strike a balance between the average tree
depth and the overall ball tree shape. The initializa-
tion to k clusters follows the same principle: Namely,
we draw the l-th seed from the data-set uniformly

according to the distribution πi =
DF (pi||Cl−1)∑

pj∈S
DF (pj ||Cl−1)

,

where Cl−1 denotes the formerly chosen (l−1)-th seed
and DF (p||S) = minx∈S DF (p||x).

When visiting the Bb-tree for answering nearest
neighbor queries, we use a priority queue. To relax
the exact NN to approximate NN queries, the crite-
rion of stopping the search once a few leaves have been
visited was proposed and successfully demonstrated
by Cayton [5]. However, there was no guarantee to

1Refer to Figure 1 of [7] for examples.
2This is not restrictive as any smooth density function may

be arbitrarily well approximated using a Gaussian mixture
model.

get a good approximation to the exact NN because
leaves containing sub-sets that are close to the exact
NN are not necessarily close in the tree. We improve
this point by a careful non-recursive implementa-
tion of the tree traversal, which allows us to order the
nodes to be explored by their divergence to the query
point (i.e., the divergence of the query to the ball cen-
ters). Using a priority queue guarantees that nearest
nodes are always explored first when traversing back
the tree, by jumping appropriately to the most likely
not yet visited sub-tree.

2.4 Bregman projection onto balls

The geodesic Γpq linking p to q is defined
as Γpq = {LERP(λ, p, q) | λ ∈ R}, with
LERP(λ, p, q) = ∇F−1((1 − λ)∇F (p) + λ∇F (q));
see [10, 5, 11]. To find the Bregman projection
qB = argminx∈B(c,R) DF (x||c) of a query point q onto
a Bregman ball B(c, R), we first check whether q
is outside the ball or not: DF (q||c) > R. If not,
DF (q||c) ≤ R and the projection is simply the point
itself: qB = q. Now consider the geodesic segment
Γcq, the projection point qB belongs necessarily to
the geodesic Γcq: qB = LERP(λq, c, q) for some λq ∈
[0, 1]. The value λq is approximated by a bisection

search as follows. Initially, let λ
(0)
m = 0 and λ

(0)
M = 1

and consider a midpoint m = LERP(λ(0), c, q) ob-

tained for λ(0) =
λ(0)

m +λ
(0)
M

2 . If DF (m||c) > R then

recurse on [λ
(1)
m , λ

(1)
M] = [λ

(0)
m , λ(0)], otherwise recurse

on [λ
(1)
m , λ

(1)
M] = [λ(0), λ

(0)
M] and so on until the range

size λ
(i)
M − λ

(i)
m goes below a threshold ǫ (typically

ǫ ∈ [10−10, 10−5]). This yields a fine approximation
of qB ∼ LERP(λ(i), c, q) by splitting the “λ” intervals
a dozen of times. (Recall that the algorithm keeps a
Bregman annulus, and refine the inner/outer radii to
decide whether to prune or explore a sub-tree.)

2.5 Handling symmetrized Bregman divergences

Many content-based information retrieval sys-
tems (CBIRs) need symmetrical distortions
measures. Except for generalized quadratic
distances (Mahalanobis), the symmetrized Breg-
man divergence is technically not a Bregman
divergence [10]. The symmetric KL divergence
(SKL) goes by the name of Jensen-Shannon
JS(p; q) = 1

2KL(p||p+q

2) + 1
2KL(q||p+q

2). It turns
out that these symmetrized Bregman diver-
gences [11] are all generalizations of the Jensen
remainder obtained for convex generators F :
JSF (p; q) = 1

2 (F (p) + F (q)) − F (p+q

2). (Besides
the Jensen-Shannon divergence for F (x) = x log x,
these so-called Burbea-Rao divergences also includes
the important COSH distance used in speech/sound
processing for the Burg entropy F (x) = − logx.)

3

Bb-tree construction (bs = 50)

method iter depth depthavg Leav. speed-up

2-m. 10 53 28.57 594 1
2-m.++ 10 58.33 31.18 647 1.03
2-m.++ 0 20 10.76 362 19.71

Table 1: Construction time of Bregman ball trees.

−1 0 1 2

0

1

2

Number Closer

S
pe

ed
−

up

SIFT dataset (KL)

bb−tree++ (BF=4, bs=100)

bb−tree Cayton

*

*

Figure 1: BB-tree versus BB-tree++ (log-log plot
scale). The axis denotes the error rate expressed as
the number of closer points to the approximated NN.

The symmetrized Bregman centroid can be explicitly
computed following the geodesic-walk algorithm
of [11].

3 Experiments

Table 1 compares different partitioning methods when
building a Bb-tree on the SIFT dataset [13] (10, 000
visual feature points extracted from images, encoded
in dimension 1111). Bregman 2-means++ with iter =
0 means that only the initialization step is carried
out. The speed-up is by comparison with the most
computationally expensive k-means method.

We used the maximum number of explored leaves
as a parameter for stopping the branch-and-bound
search. In each experiment of approximate search,
we fixed a value of this parameter (from near-exact

search to visiting only a single leaf), then we evalu-
ated error rate and computational cost. Namely, the
error rate is expressed as the number of closer points
to the approximated NN (a quantity called Number
Closer), while the speed-up is given by the ratio be-
tween the number of divergence computations in Bb-
tree over the brute-force search. Figure 1 displays a
comparison of Cayton’s Bb-tree with our Bb-tree++
in approximate search on SIFT dataset (log-log plot).

Figure 2 presents the results of approximate search
queries on SIFT dataset wrt. SKL divergence (sym-
metrized Bregman). The marked point shows a speed-
up of 60.3 (101.78) when the Number Closer equals 14
(101.15), i.e. 0.14% of database points (log-log plot).

−3 −2 −1 0 1

−1

0

1

Number Closer

S
pe

ed
−

up

SIFT dataset (SKL)

bb−tree++ (BF=4, bs=50)
bb−tree++ (BF=4, bs=100)
bb−tree++ (BF=4, bs=200)

*

Figure 2: NN queries with respect to Jensen-Shannon
divergence (symmetric Kullback-Leibler, SKL).

Acknowledgments

We thank L. Cayton for sharing with us his code and
SIFT high-dimensional datasets.

References

[1] S.-I. Amari and N. Nagaoka. Methods of Information
Geometry. Oxford University Press, 2000.

[2] D. Arthur and S. Vassilvitskii. k-means++: the ad-
vantages of careful seeding. In SODA, pages 1027–
1035, 2007.

[3] V. Athitsos, M. Potamias, P. Papapetrou, and
G. Kollios. Nearest neighbor retrieval using distance-
based hashing. In ICDE, pages 327–336, 2008.

[4] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh.
Clustering with Bregman divergences. Journal of Ma-
chine Learning Research (JMLR), 6:1705–1749, 2005.

[5] L. Cayton. Fast nearest neighbor retrieval for Breg-
man divergences. In ICML, pp. 112–119, 2008.

[6] B. Chazelle. Technical perspective: finding a good
neighbor, near and fast. Commun. ACM, 51(1):115,
2008.

[7] G. Hamerly and C. Elkan. Learning the k in k-means.
In NIPS, 2003.

[8] N. Kumar, L. Zhang, and S. K. Nayar. What is a
good nearest neighbors algorithm for finding similar
patches in images? In ECCV, pp. 364–378, 2008.

[9] B. Manthey and H. Röglin. Improved Smoothed
Analysis of the k-Means Method. In SODA
(arXiv:0809.1715), 2009.

[10] F. Nielsen, J.-D. Boissonnat, and R. Nock. On Breg-
man Voronoi diagrams. In SODA, pp. 746–755, 2007.

[11] F. Nielsen and R. Nock. Bregman sided and sym-
metrized centroids. In M. Ejiri, R. Kasturi, edi-
tor, International Conference on Pattern Recognition
(ICPR). IEEE CS Press, 2008. (arXiv:0711.3242)

[12] R. Nock, P. Luosto, and J. Kivinen. Mixed Breg-
man clustering with approximation guarantees. In
ECML/PKDD (2), pages 154–169, 2008.

[13] D. Lowe. Distinctive image features from scale-
invariant keypoints. In International Journal of Com-
puter Vision, pages 91–111, Vol. 60, 2005.

4

