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On the Chi square and higher-order Chi

distances for approximating f -divergences

Frank Nielsen, Senior Member, IEEE and Richard Nock, Nonmember

Abstract

We report closed-form formula for calculating the Chi square and higher-order Chi distances

between statistical distributions belonging to the same exponential family with affine natural space,

and instantiate those formula for the Poisson and isotropic Gaussian families. We then describe an

analytic formula for the f -divergences based on Taylor expansions and relying on an extended class of

Chi-type distances.

Index Terms

statistical divergences, chi square distance, Kullback-Leibler divergence, Taylor series, exponential

families.

I. INTRODUCTION

A. Statistical divergences: f -divergences

Measuring the similarity or dissimilarity between two probability measures is met ubiquitously

in signal processing. Some usual distances are the Pearson χ2
P and Neyman χ2

N chi square

distances, and the Kullback-Leibler divergence [1] defined respectively by

χ2
P (X1 : X2) =

∫
(x2(x)− x1(x))2

x1(x)
dν(x), (1)

χ2
N(X1 : X2) =

∫
(x1(x)− x2(x))2

x2(x)
dν(x), (2)

KL(X1 : X2) =

∫
x1(x) log

x1(x)

x2(x)
dν(x), (3)

Frank Nielsen is with Sony Computer Science Laboratories, Inc., 3-14-13 Higashi Gotanda, 141-0022 Shinagawa-ku, Tokyo,

Japan, nielsen@csl.sony.co.jp

Richard Nock is with UAG CEREGMIA, Martinique, France, rnock@martinique.univ-ag.fr.

September 12, 2013 DRAFT



2

where X1 and X2 are probability measures absolutely continuous with respect to a reference

measure ν, and x1 and x2 denote their Radon-Nikodym densities, respectively.

Those dissimilarity measures M are termed divergences to contrast with metric distances since

they are oriented distances (i.e., M(X1 : X2) 6= M(X2 : X1)) that do not satisfy the triangular

inequality. In the 1960’s, many of those divergences were unified using the generic framework

of f -divergences [2], If , defined for an arbitrary functional f :

If (X1 : X2) =

∫
x1(x)f

(
x2(x)

x1(x)

)
dν(x) ≥ 0, (4)

where f is a convex function f : (0,∞) ⊆ dom(f) 7→ [0,∞] (often normalized so that f(1) = 0).

Those f -divergences1 can always be symmetrized by taking:

Sf (X1 : X2) = If (X1 : X2) + If∗(X1 : X2), (5)

with f ∗(u) = uf(1/u), and If∗(X1 : X2) = If (X2 : X1). See Table I for a list of common

f -divergences with their corresponding generators f .

In information theory, f -divergences are characterized as the unique family of convex diver-

gences that satisfies the information monotonicity property2 [3].

Note that f -divergences may evaluate to infinity (that is, unbounded If ) when the integral

diverge, even if x1, x2 > 0 on the support X . For example, let X = (0, 1) be the unit interval,

and two densities (with respect to Lebesgue measure νL) x1(x) = 1 and x2(x) = ce−1/x with

c−1 =
∫ 1

0
e−1/xdx ' 0.148 the normalizing constant. Consider the Kullback-Leibler divergence

(f -divergence with f(u) = u log u):

KL(X1 : X2) =

∫ 1

0

x1 log
x1(x)

x2(x)
dνL(x), (6)

= − log c+

∫ 1

0

1

x
dν(x) =∞. (7)

1Beware that sometimes the χ2
N and χ2

P definitions are inverted in the literature. This may stem from an alternative definition

of f -divergences defined as I ′f (X1 : X2) =
∫
x2(x)f(x1(x)

x2(x)
)dν(x) = If (X2 : X1).

2That is, given any transition probability τ that transforms measures X1 and X2 to Xτ
1 and Xτ

2 (by a Markov morphism τ ),

we have If (X1 : X2) ≥ If (Xτ
1 : Xτ

2 ), with equality if and only if the transition τ is induced from a sufficient statistic [3].
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f -divergence If (P : Q) Formula Generator f(u)

Total variation (metric) 1
2

∫
|p(x)− q(x)|dν(x) 1

2
|u− 1|

Squared Hellinger
∫

(
√
p(x)−

√
q(x))2dν(x) (

√
u− 1)2

Pearson χ2
P

∫ (q(x)−p(x))2
p(x)

dν(x) (u− 1)2

Neyman χ2
N

∫ (p(x)−q(x))2
q(x)

dν(x) (1−u)2
u

Pearson-Vajda χkλ,P
∫ (q(x)−λp(x))k

pk−1(x)
dν(x) (u− λ)k

Pearson-Vajda |χ|kλ,P
∫ |q(x)−λp(x)|k

pk−1(x)
dν(x) |u− λ|k

Kullback-Leibler
∫
p(x) log p(x)

q(x)
dν(x) − log u

reverse Kullback-Leibler
∫
q(x) log q(x)

p(x)
dν(x) u log u

α-divergence 4
1−α2 (1−

∫
p

1−α
2 (x)q1+α(x)dν(x)) 4

1−α2 (1− u
1+α
2 )

Jensen-Shannon 1
2

∫
(p(x) log 2p(x)

p(x)+q(x)
+ q(x) log 2q(x)

p(x)+q(x)
)dν(x) −(u+ 1) log 1+u

2
+ u log u

TABLE I

SOME COMMON f -DIVERGENCES If WITH CORRESPONDING GENERATORS: EXCEPT THE TOTAL VARIATION,

f -DIVERGENCES ARE NOT METRIC [4].

B. Stochastic approximations of f -divergences

To bypass the integral evaluation of If of Eq. 4 (often mathematically intractable), we carry

out a stochastic integration:

Îf (X1 : X2) ∼
1

2n

n∑
i=1

(
f

(
x2(si)

x1(si)

)
+
x1(ti)

x2(ti)
f

(
x2(ti)

x1(ti)

))
, (8)

with s1, ..., sn and t1, ..., tn IID. sampled from X1 and X2, respectively. Those approximations,

although converging to the true values when n→∞, are time consuming and yield poor results

in practice, specially when the dimension of the observation space, X , is large. We therefore

concentrate on obtaining exact or arbitrarily fine approximation formula for f -divergences by

considering a restricted class of exponential families.

C. Exponential families

Let 〈x, y〉 denote the inner product for x, y ∈ X : The inner product for vector spaces X is

the scalar product 〈x, y〉 = x>y. An exponential family [6] is a set of probability measures

EF = {Pθ}θ dominated by a measure ν having their Radon-Nikodym densities pθ expressed

canonically as:
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pθ(x) = exp(〈t(x), θ〉 − F (θ) + k(x)), (9)

for θ belonging to the natural parameter space: Θ =
{
θ ∈ RD

∣∣∫ pθ(x)dν(x) = 1
}

. Since

log
∫
x∈X pθ(x)dν(x) = log 1 = 0, it follows that F (θ) = − log

∫
exp(〈t(x), θ〉+k(x))dν(x). For

full regular families [6], it can be proved that function F is strictly convex and differentiable

over the open convex set Θ. Function F characterizes the family, and bears different names in

the literature (partition function, log-normalizer or cumulant function) and parameter θ (natural

parameter) defines the member Pθ of the family EF . Let D = dim(Θ) denote the dimension

of Θ, the order of the family. The map k(x) : X → R is an auxiliary function defining

a carrier measure ξ with dξ(x) = ek(x)dν(x). In practice, we often consider the Lebesgue

measure νL defined over the Borel σ-algebra E = B(Rd) of Rd for continuous distributions

(e.g., Gaussian), or the counting measure νc defined on the power set σ-algebra E = 2X

for discrete distributions (e.g., Poisson or multinomial families). The term t(x) is a measure

mapping called the sufficient statistic [6]. Table II shows the canonical decomposition for the

Poisson and isotropic Gaussian families. Notice that the Kullback-Leibler divergence between

members X1 ∼ EF (θ1) and X2 ∼ EF (θ2) of the same exponential family amount to compute

a Bregman divergence on swapped natural parameters [8]: KL(X1 : X2) = BF (θ2 : θ1), where

BF (θ : θ′) = F (θ)− F (θ′)− (θ − θ′)>∇F (θ′), where ∇F denotes the gradient.

II. χ2 AND HIGHER-ORDER χk DISTANCES

A. A closed-form formula

When X1 and X2 belong to the same restricted exponential family EF , we obtain the following

result:

Lemma 1: The Pearson/Neyman Chi square distance between X1 ∼ EF (θ1) and X2 ∼ EF (θ2)

is given by:

χ2
P (X1 : X2) = eF (2θ2−θ1)−(2F (θ2)−F (θ1)) − 1, (10)

χ2
N(X1 : X2) = eF (2θ1−θ2)−(2F (θ1)−F (θ2)) − 1, (11)

provided that 2θ2 − θ1 and 2θ1 − θ2 belongs to the natural parameter space Θ.

This implies that the chi square distances are always bounded. The proof relies on the following

lemma:
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Lemma 2: The integral Ip,q =
∫
x1(x)px2(x)qdν(x) with p + q = 1 for X1 ∼ EF (θ1) and

X2 ∼ EF (θ2), p ∈ R, p+ q = 1 converge and equals to:

Ip,q = eF (pθ1+qθ2)−(pF (θ1)+qF (θ2)) (12)

provided the natural parameter space Θ is affine.

Proof: Let us calculate the integral Ip,q:

=

∫
exp(p(〈t(x), θ1〉 − F (θ1) + k(x)))

× exp(q(〈t(x), θ2〉 − F (θ2) + k(x)))dν(x),

=

∫
e〈t(x),pθ1+qθ2〉−(pF (θ1)+qF (θ2))+k(x)dν(x),

= eF (pθ1+qθ2)−(pF (θ1)+qF (θ2))

∫
pF (x|pθ1 + qθ2)dν(x).

When pθ1 + qθ2 ∈ Θ, we have
∫
pF (x|pθ1 + qθ2)dν(x) = 1, hence the result.

To prove Lemma 1, we rewrite:

χ2
P (X1 : X2) =

∫
(
x22(x)

x1(x)
− 2x2(x) + x1(x))dν(x), (13)

=

(∫
x1(x)−1x2(x)2dν(x)

)
− 1, (14)

and apply Lemma 2 for p = −1 and q = 2 (checking that p+ q = 1). The closed-form formula

for the Neyman chi square follows from the fact that χ2
N(X1 : X2) = χ2

P (X2 : X1). Thus

when the natural parameter space Θ is affine, the Pearson/Neyman Chi square distances and

its symmetrization χ2
P + χ2

N between members of the same exponential family are available

in closed-form. Examples of such families are the Poisson, binomial, multinomial, or isotropic

Gaussian families to name a few. Let us call those families: affine exponential families for short.

The canonical decomposition of usual affine exponential families are reported in Table II. Note

that a formula for the α-divergences between members of the same exponential family were

reported in [8] for α ∈ [0, 1]: In that case, αθ1 + (1 − α)θ2 always belong to the open convex

natural space Θ (here, p belongs to R).

B. The Poisson and isotropic Gaussian cases

As reported in Table II, those Poisson and isotropic Gaussian exponential families have affine

natural parameter spaces Θ.
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Poi(λ) : p(x|λ) =
λxe−λ

x!
, λ > 0, x ∈ {0, 1, ...}

NorI(µ) : p(x|µ) = (2π)−
d
2 e−

1
2
(x−µ)>(x−µ), µ ∈ Rd, x ∈ Rd

Family θ Θ F (θ) k(x) t(x) ν

Poisson log λ R eθ − log x! x νc

Iso.Gaussian µ Rd 1
2
θ>θ d

2
log 2π − 1

2
x>x x νL

TABLE II

EXAMPLES OF EXPONENTIAL FAMILIES WITH AFFINE NATURAL SPACE Θ. νc DENOTES THE COUNTING MEASURE AND νL

THE LEBESGUE MEASURE.

• The Poisson family. For P1 ∼ Poi(λ1) and P2 ∼ Poi(λ2), we have:

χ2
P (λ1 : λ2) = exp

(
λ22
λ1
− 2λ2 + λ1

)
− 1. (15)

To illustrate this formula with a numerical example, consider X1 ∼ Poi(1) and X2 ∼ Poi(2).

Then, it comes that χ2
P (P1 : P2) = e− 1 ' 1.718.

• The isotropic Normal family. For N1 ∼ NorI(µ1) and N2 ∼ NorI(µ2), we have according

to Table II: χ2
P (µ1 : µ2) = e

1
2
(2µ2−µ1)>(2µ2−µ1)−(µ>2 µ2−

1
2
µ>1 µ1)−1. In that case the χ2 distance

is symmetric:

χ2
P (µ1 : µ2) = e(µ2−µ1)

>(µ2−µ1) − 1 = χ2
N(µ1 : µ2) (16)

C. Extensions to higher-order Vajda χk divergences

The higher-order Pearson-Vajda χkP and |χkP | distances [5] are defined by:

χkP (X1 : X2) =

∫
(x2(x)− x1(x))k

x1(x)k−1
dν(x), (17)

|χ|kP (X1 : X2) =

∫
|x2(x)− x1(x)|k

x1(x)k−1
dν(x), (18)

are f -divergences for the generators (u − 1)k and |u − 1|k (with |χ|kP (X1 : X2) ≥ χkP (X1 :

X2)). When k = 1, we have χ1
P (X1 : X2) =

∫
(x1(x) − x2(x))dν(x) = 0 (i.e., divergence is

never discriminative), and |χ1
P |(X1, X2) is twice the total variation distance (the only metric
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f -divergence [4]). χ0
P is the unit constant. Observe that the χkP “distance” may be negative for

odd k (signed distance), but not |χ|kP . We can compute the χkP term explicitly by performing the

binomial expansion:

Lemma 3: The (signed) χkP distance between members X1 ∼ EF (θ1) and X2 ∼ EF (θ2) of the

same affine exponential family is (k ∈ N) always bounded and equal to:

χkP (X1 : X2) =
k∑
j=0

(−1)k−j
(
k

j

)
eF ((1−j)θ1+jθ2)

e(1−j)F (θ1)+jF (θ2)
. (19)

Proof:

χkP (X1 : X2) =

∫
(x2(x)− x1(x))k

x1(x)k−1
dν(x), (20)

=

∫ k∑
j=0

(−1)k−j
(
k

j

)
x1(x)k−jx2(x)j

x1(x)k−1
dν(x), (21)

=
k∑
j=0

(−1)k−j
(
k

j

)∫
x1(x)1−jx2(x)jdν(x). (22)

Then the proof follows from Lemma 2 that shows that I1−j,j(X1 : X2) =
∫
x1(x)1−jx2(x)jdν(x) =

eF ((1−j)θ1+jθ2)

e(1−j)F (θ1)+jF (θ2)
.

For Poisson/Normal distributions, we get:

χkP (λ1 : λ2) =
k∑
j=0

(−1)k−j
(
k

j

)
eλ

1−j
1 λj2−((1−j)λ1+jλ2), (23)

χkP (µ1 : µ2) =
k∑
j=0

(−1)k−j
(
k

j

)
e

1
2
j(j−1)(µ1−µ2)>(µ1−µ2). (24)

Observe that for λ1 = λ2 = λ, we have χkP (λ1 : λ2) =
∑k

j=0(−1)k−j
(
k
j

)
eλ−λ = (1− 1)k = 0

when k ∈ N, as expected. The χkP value is always bounded. For sanity check, consider the

binomial expansion for k = 2, we have: χ2
P (λ1 : λ2) =

(
2
0

)
eλ1−λ1 −

(
2
1

)
eλ2−λ2 +

(
2
2

)
e
λ22
λ1
−2λ2 =

e
λ22
λ1
−2λ2 − 1, in accordance with Eq. 15. Consider a numerical example: Let λ1 = 0.6 and

λ2 = 0.3, then χ2
P ∼ 0.16, χ3

P ∼ −0.03, χ4
P ∼ 0.04, χ5

P ∼ −0.02, χ6
P ∼ 0.018, χ7

P ∼ −0.013,

χ8
P ∼ 0.01, χ9

P ∼ −0.0077, χ10
P ∼ 0.006, etc. This numerical example illustrates the alternating

sign of those χk-type signed distances.
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III. f -DIVERGENCES FROM TAYLOR SERIES

Recall that the f -divergence defined for a generator f is If (X1 : X2) =
∫
x1(x)f

(
x2(x)
x1(x)

)
dν(x).

Assuming f analytic, we use the Taylor expansion about a point λ: f(x) = f(λ) + f ′(λ)(x −

λ) + 1
2
f ′′(λ)(x − λ)2 + ... =

∑∞
i=0

1
i!
f (i)(λ)(x − λ)i, the power series expansion of f , for

λ ∈ int(dom(f (i)))∀i.

Lemma 4 (extends Theorem 1 of [5]): When bounded, the f -divergence If can be expressed

as the power series of higher order Chi distances:

If (X1 : X2) =

∫
x1(x)

∞∑
i=0

1

i!
f (i)(λ)

(
x2(x)

x1(x)
− λ
)i

dν(x),

∗
=

∞∑
i=0

1

i!
f (i)(λ) χiλ,P (X1 : X2), (25)

where in the ∗ equality we have swapped the integral and sum according to Fubini theorem

since we assumed that If <∞, and χiλ,P (X1 : X2) is a generalization of the χiP defined by (see

Table I):

χiλ,P (X1 : X2) =

∫
(x2(x)− λx1(x))i

x1(x)i−1
dν(x). (26)

and χ0
λ,P (X1 : X2) = 1 by convention.

• Choosing λ = 1 ∈ int(dom(f (i))), we approximate the f -divergence as follows (Theorem 1

of [5]):

|If (X1 : X2)−
s∑

k=0

f (k)(1)

k!
χkP (X1 : X2)|

≤ 1

(s+ 1)!
‖f (s+1)‖∞(M −m)s, (27)

where ‖f (s+1)‖∞ = supt∈[m,M ] |f (s+1)(t)| and m ≤ p
q
≤ M . Notice that by assuming the

“fatness” of p
q
, we ensure that If <∞.

• Choosing λ = 0 (whenever 0 ∈ int(dom(f (i)))) and affine exponential families, we get the

f -divergence in a much simpler analytic expression:

If (X1 : X2) =
∞∑
i=0

f (i)(0)

i!
I1−i,i(θ1 : θ2), (28)

I1−i,i(θ1 : θ2) =
eF (iθ2+(1−i)θ1)

eiF (θ2)+(1−i)F (θ1)
. (29)

September 12, 2013 DRAFT



9

Lemma 5: The bounded f -divergences between members of the same affine exponential fam-

ily can be computed as an equivalent power series whenever f is analytic.

Corollary 1: A second-order Taylor expansion yields If (X1 : X2) ∼ f(1) + f ′(1)χ1
N(X1 :

X2)+
1
2
f ′′(1)χ2

N(X1 : X2). Since f(1) = 0 (f can always be renormalized) and χ1
N(X1 : X2) = 0,

it follows that

If (X1 : X2) ∼
f ′′(1)

2
χ2
N(X1 : X2), (30)

and reciprocally χ2
N(X1 : X2) ∼ 2

f ′′(1)
If (X1 : X2) (f ′′(1) > 0 follows from the strict convexity

of the generator). When f(u) = u log u, this yields the well-known approximation [1]:

χ2
P (X1 : X2) ∼ 2 KL(X1 : X2). (31)

For affine exponential families, we then plug the closed-form formula of Lemma 1 to get a simple

approximation formula of If . For example, consider the Jensen-Shannon divergence (Table I)

with f ′′(u) = 1
u
− 1

u+1
and f ′′(1) = 1

2
. It follows that IJS(X1 : X2) ∼ 1

4
χ2
N(X1 : X2). (For

Poisson distributions λ1 = 5 and λ2 = 5.1, we get 1.15% relative error.

A. Example 1: χ2 revisited

Let us start with a sanity check for the χ2 distance between Poisson distributions. The Pearson

chi square distance is a f -divergence for f(t) = t2 − 1 with f ′(t) = 2t and f ′′(t) = 2 and

f (i)(t) = 0 for i > 2. Thus, with f (0)(0) = −1, f (1)(0) = 0, f (2)(0) = 2, and f (i)(0) = 0 for

i > 2. Recall that I1−i,i(θ1 : θ2) = eF (iθ2+(1−i)θ1)−(iF (θ2)+(1−i)F (θ1) = exp(λi2λ
1−i
1 −iλ2−(1−i)λ1).

Note that I1−i,i(λ, λ) = e0 = 1 for all i. Thus we get: If (X1 : X2) = −I1,0 + I−1,2 with

I1,0 = eλ1−λ1 = 1 and I−1,2 = e
λ22
λ1
−2λ2+λ1 . Thus, we obtain If (X1 : X2) = −1 + e

λ22
λ1
−2λ2+λ1 , in

accordance with Eq. 15.

B. Example 2: Kullback-Leibler divergence

By choosing f(u) = − log u, we obtain the Kullback-Leibler divergence (see Table I). We

have f (i)(u) = (−1)i(i − 1)!u−i, and hence f (i)(1)
i!

= (−1)i
i

, for i ≥ 1 (with f(1) = 0). Since

χ1
1,P = 0, it follows that:

KL(X1 : X2) =
∞∑
j=2

(−1)i

i
χj1,P (X1 : X2). (32)
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Note that for the case of KL divergence between members of the same exponential families,

the divergence can be expressed in a simpler closed-form using a Bregman divergence [8] on

the swapped natural parameters. For example, consider Poisson distributions with λ1 = 0.6 and

λ2 = 0.3, the Kullback-Leibler divergence computed from the equivalent Bregman divergence

yields KL ∼ 0.1158, the stochastic evaluation of Eq. 8 with n = 106 yields K̂L ∼ 0.1156 and

the KL divergence obtained from the truncation of Eq. 32 to the first s terms yields the following

sequence: 0.0809(s = 2), 0.0910(s = 3), 0.1017(s = 4), 0.1135(s = 10), 0.1150(s = 15), etc.

IV. CONCLUDING REMARKS

We investigated the calculation of statistical f -divergences between members of the same

exponential family with affine natural space. We first reported a generic closed-form formula for

the Pearson/Neyman χ2 and Vajda χk-type distance, and instantiated that formula for the Poisson

and the isotropic Gaussian affine exponential families. We then considered the Taylor expansion

of the generator f at any given point λ to deduce an analytic expression of f -divergences using

Pearson-Vajda χkλ,P distances. A second-order Taylor approximation yielded a fast estimation of

f -divergences. This framework shall find potential applications in signal processing and when

designing inequality bounds between divergences.

A JavaTM package that illustrates numerically the lemma is available online at:

http://www.informationgeometry.org/fDivergence/

REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of information theory. New York, USA: Wiley-Interscience, 1991.
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