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In 1977, Klee [4] asked whether the union ∪ni=1[ai, bi] of a set of n intervals can be computed
in less than O(n log n) or not. In general, the Klee’s measure problem (KMP) asks to calculate
the union ∪ni=1Bi of n axis-parallel boxes (also called isothetic boxes) in Rd. This problem can be
solved deterministically in O(n log n) time for d ∈ {1, 2}, and (so far) in O(nfloor(d2)) for arbitrary
d ≥ 3, see Chan [3] (2013).

A simple Monte Carlo algorithm [2] consists in sampling uniformly s points (iid) in the smallest
axis-parallel bounding box B of ∪ni=1Bi: The probability of a sample point to fall inside the union

U = ∪ni=1Bi is vol(U)
vol(B) . Therefore vol(U) ' h

svol(B), where h denote the number of points falling in

U . This is a probabilistic algorithm that runs in Õ(nsd) time.
Getting back to Klee’s original question: Can we beat the O(n log n) bound (even in 1D)? This

is where two computational aspects pop up: (1) the model of computation, and (2) the concept of
adaptive parameter:

1. It is common to consider the real RAM (random access machine) model of computation where
arithmetic operations are carried in constant time on real numbers (without any precision
limitations). If instead, we consider the word RAM model [3] (integer input coded using w

bits), KMP can be solved in O

(
n

d
2

log
d
2−2 n

(log log n)O(1)

)
.

2. For special input cases like hypercubes or fat boxes [3], KMP can be solved faster: For

example, in O(n
d+1
3 logO(1) n) for hypercubes. The 1D (interval) KMP can be solved in

O(n log p) where p denotes the number of piercing points to stab1 all intervals [8]. Clearly,
p is an adaptive parameter that depends on the input configuration. So even, if we fix a
computation model, there are potentially many adaptive parameters to consider to improve
the computational complexity. So a modern extension of Klee’s measure problem is to ask
whether we can beat the O(n log p) bound (on real RAM)? Let c denote the number of
connected components of U = ∪ni=1[ai, bi]. Is it possible to get a O(n log c) bound. Well,
when p = n

2 and c = 1, we need O(n log n) time to detect that we have a single component
in the union. Indeed, consider the MaxGap problem that consists in finding the largest gap
∆ between two consecutive scalars in a given set {x1, . . . , xn}. Consider the set of intervals
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{Bi = [xi, xi + δ]}i. Then ∪ni=1Bi has a single component if and only if δ ≥ ∆
2 . On the

real RAM model of computation, MaxGap has lower bound Ω(n log n) (see [9], p. 261).
However, by using the floor function and the pigeon principle, one can get a simple linear
time algorithm for MaxGap.

It is not easy to find adaptive (computational) parameters. For example, consider computing
the diameter [5] of a set of n points of R2. Solving this problem requires Ω(n log n)-time on
the algebraic computation-tree model. However, we can compute the smallest enclosing disk
in Θ(n) time [6]: When a pair of antipodal points are on the border of the smallest enclosing
disk, it defines the diameter.

In general, adaptive algorithms refine the concept of output-sensitive algorithms by allowing
one to take into account further attributes of the input configuration that can be used to
improve the overall running time [7] (1996). See also the instance-optimal geometric algo-
rithms [1] (2017).
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