Adaptive Algorithms: Revisiting Klee's measure problem...

Frank Nielsen

11th November 2017

This column is also available in pdf: filename AdaptiveAlgorithmKleeMeasure.pdf

In 1977, Klee [4] asked whether the union $\bigcup_{i=1}^{n} [a_i, b_i]$ of a set of n intervals can be computed in less than $O(n \log n)$ or not. In general, the *Klee's measure problem* (KMP) asks to calculate the union $\bigcup_{i=1}^{n} B_i$ of n axis-parallel boxes (also called isothetic boxes) in \mathbb{R}^d . This problem can be solved deterministically in $O(n \log n)$ time for $d \in \{1, 2\}$, and (so far) in $O(n^{\text{floor}}(\frac{d}{2}))$ for arbitrary $d \geq 3$, see Chan [3] (2013).

A simple Monte Carlo algorithm [2] consists in sampling uniformly *s* points (iid) in the smallest axis-parallel bounding box *B* of $\bigcup_{i=1}^{n} B_i$: The probability of a sample point to fall inside the union $U = \bigcup_{i=1}^{n} B_i$ is $\frac{\operatorname{vol}(U)}{\operatorname{vol}(B)}$. Therefore $\operatorname{vol}(U) \simeq \frac{h}{s} \operatorname{vol}(B)$, where *h* denote the number of points falling in *U*. This is a probabilistic algorithm that runs in $\tilde{O}(nsd)$ time.

Getting back to Klee's original question: Can we beat the $O(n \log n)$ bound (even in 1D)? This is where two computational aspects pop up: (1) the model of computation, and (2) the concept of adaptive parameter:

- 1. It is common to consider the *real RAM* (random access machine) model of computation where arithmetic operations are carried in constant time on real numbers (without any precision limitations). If instead, we consider the *word RAM* model [3] (integer input coded using w bits), KMP can be solved in $O\left(\frac{n^{\frac{d}{2}}}{\log^{\frac{d}{2}-2}n}(\log\log n)^{O(1)}\right)$.
- 2. For special input cases like hypercubes or fat boxes [3], KMP can be solved faster: For example, in $O(n^{\frac{d+1}{3}} \log^{O(1)} n)$ for hypercubes. The 1D (interval) KMP can be solved in $O(n \log p)$ where p denotes the number of piercing points to stab¹ all intervals [8]. Clearly, p is an adaptive parameter that depends on the input configuration. So even, if we fix a computation model, there are potentially many adaptive parameters to consider to improve the computational complexity. So a modern extension of Klee's measure problem is to ask whether we can beat the $O(n \log p)$ bound (on real RAM)? Let c denote the number of connected components of $U = \bigcup_{i=1}^{n} [a_i, b_i]$. Is it possible to get a $O(n \log c)$ bound. Well, when $p = \frac{n}{2}$ and c = 1, we need $O(n \log n)$ time to detect that we have a single component in the union. Indeed, consider the MAXGAP problem that consists in finding the largest gap Δ between two consecutive scalars in a given set $\{x_1, \ldots, x_n\}$. Consider the set of intervals

¹Piercing javascript demo at https://www.lix.polytechnique.fr/~nielsen/PiercingBoxes/

 $\{B_i = [x_i, x_i + \delta]\}_i$. Then $\bigcup_{i=1}^n B_i$ has a single component if and only if $\delta \geq \frac{\Delta}{2}$. On the real RAM model of computation, MAXGAP has lower bound $\Omega(n \log n)$ (see [9], p. 261). However, by using the floor function and the pigeon principle, one can get a simple linear time algorithm for MAXGAP.

It is not easy to find *adaptive (computational) parameters*. For example, consider computing the diameter [5] of a set of n points of \mathbb{R}^2 . Solving this problem requires $\Omega(n \log n)$ -time on the algebraic computation-tree model. However, we can compute the smallest enclosing disk in $\Theta(n)$ time [6]: When a pair of antipodal points are on the border of the smallest enclosing disk, it defines the diameter.

In general, *adaptive algorithms* refine the concept of output-sensitive algorithms by allowing one to take into account further attributes of the input configuration that can be used to improve the overall running time [7] (1996). See also the instance-optimal geometric algorithms [1] (2017).

References

- Peyman Afshani, Jérémy Barbay, and Timothy M Chan. Instance-optimal geometric algorithms. Journal of the ACM (JACM), 64(1):3, 2017.
- [2] Karl Bringmann and Tobias Friedrich. Approximating the volume of unions and intersections of high-dimensional geometric objects. In *International Symposium on Algorithms and Computation*, pages 436–447. Springer, 2008.
- [3] Timothy M Chan. Klee's measure problem made easy. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 410–419. IEEE, 2013.
- [4] Victor Klee. Can the measure of $\bigcup_{i=1}^{n} [a_i, b_i]$ be computed in less than o(nlogn) steps? American Mathematical Monthly, pages 284–285, 1977.
- [5] Grégoire Malandain and Jean-Daniel Boissonnat. Computing the diameter of a point set. International Journal of Computational Geometry & Applications, 12(06):489–509, 2002.
- [6] Nimrod Megiddo. Linear-time algorithms for linear programming in r^3 and related problems. SIAM journal on computing, 12(4):759–776, 1983.
- [7] Frank Nielsen. Adaptive Computational Geometry ("Algorithmes géométriques adaptatifs"). Thèse de doctorat en sciences, Université de Nice-Sophia Antipolis, France, 1996.
- [8] Frank Nielsen. Fast stabbing of boxes in high dimensions. *Theoretical Computer Science*, 246(1):53–72, 2000.
- [9] F.P. Preparata and M.I. Shamos. *Computational geometry: an introduction*. Texts and monographs in computer science. Springer-Verlag, 1988.