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Abstract. We present in this paper a novel non-parametric approach
useful for clustering independent identically distributed stochastic pro-
cesses. We introduce a pre-processing step consisting in mapping mul-
tivariate independent and identically distributed samples from random
variables to a generic non-parametric representation which factorizes de-
pendency and marginal distribution apart without losing any informa-
tion. An associated metric is defined where the balance between ran-
dom variables dependency and distribution information is controlled by
a single parameter. This mixing parameter can be learned or played
with by a practitioner, such use is illustrated on the case of cluster-
ing financial time series. Experiments, implementation and results ob-
tained on public financial time series are online on a web portal http:
//www.datagrapple.com.

1 Introduction

Random walks are sometimes used to perform data clustering [13] or can be
a point of view on spectral clustering [21, 27]. In this paper, we consider the
original converse problem: clustering random walks. These stochastic processes
are an important mathematical formalization used to model, for instance, the
path of molecules travelling in gas, or financial market prices as stated in the
random walk hypothesis [3] and the efficient-market hypothesis [12].

1.1 Clustering time series

Partition-based clustering is the task of grouping a set of objects in such a way
that objects in the same group (cluster) are more similar to each other than
those in different groups. This task leverages a representation of the dataset
and a distance between objects. In practice, such semantic representation and
distance are unknown and the ones used are motivated by some heuristics.

When working with time series, researchers have considered, for instance, Lp

metrics or Dynamic Time Warping (DTW) [7] for comparing them, and wavelets
[23] or SAX [19] as means of representation. These approaches were found useful
to detect anomalies in time series [16] with a strong focus on pattern recognition
[15].
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Fig. 1. Different criteria (apparently signal shape and homothetic scaling) are used for
grouping these random walks in the two examples

1.2 Shortcomings of a standard approach

To understand why a standard approach fails to properly cluster random walks,
we have to give a close look at the definition: a random walk is the sum

∑
iXi

of a series of independent and identically distributed (i.i.d.) random variables
Xi. So, there are no temporal patterns and thus approaches looking for them
such as using a distance DTW and compressing time series using patterns as a
way of representation are useless here. Note also that all information is carried
by the increments Xi, it is therefore the underlying time series to study. By
using a Lp metric between the increment time series, we may capture similarity
in co-movements but, informally, we observe that we lose information of the
random walk “shape”, a criterion to take into account to cluster random walks
as we can see it in the left panel of Figure 1. Moreover, since increments are
independent and identically distributed, time does not matter in these time
series and we actually consider equivalence classes of random walks consisting
in all the permutations of the Xi. To cluster this special kind of time series, one
cannot simply use the standard machinery of machine learning on time series.
Common normalizations do not make sense either. So, this work is a first step
to study the problem of clustering random walks with application to financial
time series in mind [20].

To alleviate the shortcomings of a standard approach, this paper propounds
in Section 2.1 a proper random walk representation capturing all information
which is leveraged by a relevant distance. In Section 2.3, the approach is val-
idated on synthetic datasets. In-depth results using the presented workflow on
real and public financial time series from the credit default swap market, and
implementations for reproducible research are available online (http://www.
datagrapple.com).
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2 Generic Non-Parametric Representation

We explain in this section our approach to represent and then cluster N random
walks using a pre-processing we dubbed TS-GNPR for Generic Non-Parametric
Representation of random walk Time Series.

2.1 Representation and distance

Let (Ω,F ,P) be a probability space. Ω is the sample space, F is the σ-algebra
of events, and P is the probability measure. Let V be the space of all continuous
real valued random variables defined on (Ω,F ,P). Let U be the space of ran-
dom variables following a uniform distribution on [0, 1] and G be the space of
absolutely continuous cumulative distribution functions (cdf). We define the fol-
lowing representation of random vectors, that actually splits the joint behaviours
of the marginal variables from their distributional information:

Let T be a mapping which transforms a random vector X = (X1, . . . , XN )
into its TS-GNPR, an element of UN × GN representing X, defined as

T : VN → UN × GN (1)

X 7→ (GX(X), GX)

where GX = (GX1 , . . . , GXN
), and GXi being the cumulative distribution func-

tion of Xi. T is a bijection, and thus preserves the whole information. Note that
it replicates Sklar’s theorem [26], seminal result of copula theory.

Statistical distances (or non-metric divergences) have been intensively stud-
ied [4] for data processing. One important class of divergences is f -divergences
that ensures the property of information monotonicity [1]. Informally, informa-
tion monotonicity guarantees that the divergence between coarse-binned his-
tograms is less than fine-binned histograms as some information are lost due to
the binning process.

In our setting, which actually does not require the copula theory framework,
using the generic non-parametric representation, we introduce artificially a sep-
arable divergence as follows: we leverage TS-GNPR by defining a distance dθ
between random variables taking into account both distributional forms and
joint behaviours.

Let (X,Y ) ∈ V2. Let GX , GY be vectors of marginal cdf.
We define the following distance depending on θ ∈ [0, 1]:

d2θ(X,Y ) = θd21(GX(X), GY (Y )) + (1− θ)d20(GX , GY ),

where

d21(GX(X), GY (Y )) = 3E[|GX(X)−GY (Y )|2], (2)

and

d20(GX , GY ) =
1

2

∫
R

(√
dGX
dλ
−
√
dGY
dλ

)2

dλ. (3)



As particular cases, d0 is the Hellinger distance, a particular f -divergence,
quantifying the similarity between two probability distributions, and the distance
d1 =

√
(1− ρS)/2 is a distance correlation measuring statistical dependence

between two random variables, where ρS is the Spearman’s correlation between
X and Y .

We can notice that for θ ∈ [0, 1], 0 ≤ dθ ≤ 1 and for 0 < θ < 1, dθ is a metric.
For θ = 0 or θ = 1, the separation axiom of metrics does not hold. This distance
dθ is invariant under diffeomorphism, i.e. let h : V → V be a diffeomorphism, let
(X,Y ) ∈ V2, we have dθ(h(X), h(Y )) = dθ(X,Y ). It is a desirable property as it
ensures to be insensitive to scaling (e.g. choice of units) or measurement scheme
(e.g. device, mathematical modelling) of the underlying phenomenon.

To apply the proposed distance on sampled data, we define a statistical es-
timate of dθ: distance d1 working with continuous uniform distributions can be
approximated by rank statistics yielding to discrete uniform distributions, in
fact coordinates of the multivariate empirical copula [9]; distance d0 can be ap-
proximated using its discrete form working with estimates of marginal densities
obtained from a basic kernel density estimator. For computing d1, we need a
bijective ranking function and since we consider application to time series, it is
natural to choose arrival order to break ties. Let (Xi)

M
i=1 be M realizations of

X ∈ V. Let SM be the permutation group of {1, . . . ,M} and let σ ∈ SM be any
fixed permutation, say σ = Id{1,...,M}. A bijective ranking function for (Xi)

M
i=1

can be defined as a function

rkX : {1, . . . ,M} → {1, . . . ,M} (4)

i 7→ #{k ∈ {1, . . . ,M} | Pσ}

where Pσ ≡ (Xk < Xi) ∨ (Xk = Xi ∧ σ(k) ≤ σ(i)).

Let (Xi)
M
i=1 and (Yi)

M
i=1 be M realizations of random variables X,Y ∈ V. An

empirical distance between realizations of random variables can be defined by

d̃2θ
(
(Xi)

M
i=1, (Yi)

M
i=1

) a.s.
= θd̃21 + (1− θ)d̃20, (5)

where

d̃21 =
3

M2(M − 1)

M∑
i=1

(
rkX(i)− rkY (i)

)2
(6)

and

d̃20 =
1

2

+∞∑
k=−∞

(√
ghX(hk)−

√
ghY (hk)

)2

, (7)

h being a suitable bandwidth, and ghX(x) = 1
M

∑M
i=1 1{b

x
hch ≤ Xi < (bxhc+1)h}

being a density histogram estimating the probability density function gX from
(Xi)

M
i=1, M realizations of random variable X ∈ V.



2.2 Parameter selection using clustering stability

To effectively use dθ it boils down to select a particular value for θ. For instance,
this value can be chosen by an expert who intends to give more weight on
joint behaviours rather than distribution information, or the converse if one
focuses on marginals. To aggregate both information in a balanced data-driven
manner, we suggest using stability principles. Several researchers [6, 18, 25, 8]
advocate that stability of some kind is a desirable property of clustering, i.e.
partitions obtained should be similar while data undergo small perturbations,
yet some critics have arose [17, 5] warning about the pitfalls of using stability as
a method for clustering validation and model selection. In [24], authors conclude
that stability is still a relevant criterion over finite samples.

Similarity between partitions To measure clustering stability, we first have
to define a similarity measure between clusters, and then partitions. We consider
a correlation-flavoured similarity which can be seen as the scalar product of
representation vectors [10]. Given two clusters C1 and C2, their similarity sC is
defined by

sC(C1, C2) =
#(C1 ∩ C2)√
#(C1)#(C2)

(8)

where #(C) is the number of elements in a cluster C. Given two partitions P1

and P2, with the same size K, of a dataset X , i.e. Pi = {Cki }Kk=1 for i ∈ {1, 2},
and X =

⊎K
k=1 C

k
i , we define a similarity sP between P1 and P2 by averaging

the pairwise similarities between clusters from P1 and P2, where each cluster
in P1 is optimally assigned to a cluster in P2 with respect to maximizing the
average cluster similarity, i.e.

sP (P1, P2) = max
σ∈SK

1

K

K∑
k=1

sC(Ck1 , C
σ(k)
2 ) (9)

Hungarian algorithm [22] is used to find the best assignment σ between the
clusters from P1 and P2.

Time stability of a clustering Many different kind of data perturbations
can be considered, a popular one being the bootstrap [11] as it preserves the
statistical properties of the initial sample. In the context of time series context,
it seems more natural to consider perturbations due to a time-sliding window.
In a steady regime, practitioners want their model stable with respect to passing
time. Since increments of the random walks are i.i.d. this perturbation also
preserves the data statistical properties.

To define time stability, we suggest to apply a clustering algorithm at dif-
ferent periods and compute the partition similarities between the resulting clus-
terings. More precisely, we propose to apply the same clustering algorithm to a
sliding window, compute all the similarities between partitions of two successive
windows and finally average all of them.



Let X = (x1, . . . , xN )> be a matrix describing N time series, where each xi
is a vector in RT and T is the time horizon under focus. Given a window of
width H, we note PKH (t) the partition computed by a given clustering algorithm
on the window ]t−H, t]. Given a number of cluster K, a window width H, and
a time step δt, the stability index is defined by

SI(X,K,H, δt) =
1

W

T∑
t=H

sP(PKH (t),PKH (t+ δt)) (10)

where W =
⌊
T−H
δt

⌋
+ 1 is the number of slidings.

Stability index for model selection We present a simple example where
time series are aggregated using a one level factorial model:

∀i ∈ [1, N ], ∀t ∈ [1, T ],

xi(t) =
√
ρmm(t) +

√
ρkfk(i)(t) +

√
ρsεi(t) (11)

where m, (fk)Kk=1 and (εi)
N
i=1 are multivariate uncorrelated Gaussian noises,

ρm, ρk ≥ 0, such that ρm + ρk ≤ 1, and ρs = 1− ρm − ρk.

In economical terms, m is a systemic factor that correlates all the xi together
whereas (fk)Kk=1 are sectoral factors that lead to the grouping of the time series in
K clusters. Finally, (εi)

N
i=1 are residual noises that decrease pairwise correlations.

Two series xi and xj belong to the same clusters if they share the same sectoral
factor, that is if k(i) = k(j).

Here we choose K = 10 clusters among N = 100 time series, for an horizon
T = 500. Time series are evenly distributed among the factors, forming clusters
of size N

K = 10. We choose ρm = 40% and ρk = 30%. We compute our stability

index with a window of size H = T
2 = 250 and a time step δt = 5 and obtain

the results shown in Figure 2. We see that the stability index is equal to 1
for degenerated cases K = 1 and K = N but also for the ground truth K =
10 clusters. This stability index usefulness depends on the signal-to-noise ratio√
ρk/(1− ρk), usually small in applications, and the length of the time series,

usually finite horizon in applications, to obtain a good estimate. The mentioned
bias which is obvious for K = 1 or K = N exists for all values of K. We look
for an estimate of this bias by computing the stability score on purely Gaussian
noise and obtain the following stability curve plotted on Figure 3.

We thus propose the following adjusted stability index by subtracting this
estimate. Given a set of time series X and a multivariate Gaussian noise N , we
define the adjusted stability index by

ASI(X,K,H, δt) =
SI(X,K,H, δt)− SI(N ,K,H, δt)

1− SI(N,K,H, δt)
(12)

θ? can be estimated similarly with this stability index.



Fig. 2. Using time stability we accu-
rately detect 10 clusters

Fig. 3. Estimate of the stability index
bias obtained on purely Gaussian noise

2.3 Validation and experiments

To benchmark our approach, we use the following generative model that gen-
eralizes the one presented in Section 2.2. Let S ∈ N. Let (K1, . . . ,KS) ∈ NS .
Let (Y sk )Ks

k=1, 1 ≤ s ≤ S, be i.i.d. random variables following a standard normal

distribution. Let p,K ∈ N. Let N = pK
∏S
s=1Ks. Let (Zik)Kk=1, 1 ≤ i ≤ N , be

independent random variables. For 1 ≤ i ≤ N , we define

Xi =

S∑
s=1

Ks∑
k=1

βsk,iY
s
k +

K∑
k=1

αk,iZ
i
k, (13)

where αk,i = 1, if i ≡ k − 1 (mod K), 0 otherwise; βsk ∈ [0, 1], βsk,i = βsk,

if diKs/Ne = k, 0 otherwise. (Xi)
N
i=1 are partitioned into Q = K

∏S
s=1Ks

clusters of p random variables each. Playing with the model parameters, we de-
fine in Table 2 some interesting test case datasets to study distribution clus-
tering, dependence clustering or a mix of both. For clarity, we set S ≤ 2
and K ≤ 4, and use the following notations as a shorthand: N := N (0, 1);
J :=

∑
n≥0(−1)n1{t=Tn}, with Tn =

∑n
i=1Xi and Xi ∼ Pois(λ) are i.i.d., with

λ = 5; L := Laplace(0, 1/
√

2); S := t-distribution(3)/
√

3.
Our approach is essentially not algorithm dependent as can be seen in Ta-

ble 1 where k-means++ [2] and Ward, a hierarchical clustering, algorithms have
the same behaviour on datasets A, B and C which are described in Table 2. As
expected algorithms working on standard representation, and TS-GNPR with
θ = 1 (working only on rank correlations) cannot retrieve distribution informa-
tion which is the only information present in dataset A, whereas TS-GNPR with
θ = 0 (working only on distributions) or estimated θ? (working on an optimal
mix of co-movements and distributions) can. On dataset B containing only co-
movements information, all approaches but expectedly TS-GNPR with θ = 0
perform accurately. Nonetheless, when distribution and dependence information
are mixed (dataset C), only TS-GNPR with θ? can recover the ground truth.
Notice that TS-GNPR with θ = 1 achieves a much better Adjusted Rand Index
(ARI) [14] than the standard representations (0.72 against 0.45) which shows



that working on a proper representation, even if only a part of the total infor-
mation is available, is a better practice than working directly on the time series
where heavy-tailed distributions can obfuscate the dependence relations between
them.

Table 1. Comparative results for test case datasets

Adjusted Rand Index

Algo. Representation A B C

X 0 0.94 0.42
(X − µX)/σX 0 0.94 0.42
(X −min)/(max−min) 0 0.48 0.45
TS-GNPR θ = 0 1 0 0.47
TS-GNPR θ = 1 0 0.91 0.72

Ward TS-GNPR θ? 1 0.92 1

X 0 0.90 0.44
(X − µX)/σX 0 0.91 0.45
(X −min)/(max−min) 0.11 0.55 0.47
TS-GNPR θ = 0 1 0 0.53
TS-GNPR θ = 1 0.06 0.99 0.80

k-m++ TS-GNPR θ? 1 0.99 1

Table 2. Model parameters for some interesting test case datasets

Dataset Clustering N M Q K1 β
1
k K2 β

2
k Zi

1 Z
i
2 Z

i
3 Z

i
4

A Distribution 400 10000 4 0 0 0 0 N J L S
B Dependence 300 500 30 3 0.1 10 0.1 N N N N
C Mix 100 1000 20 0 0 10 0.1 N N J J

3 Discussion

The aim over the long term is to design a full framework for the study of ran-
dom walks in finite samples which will tackle multivariate inference and outlier
detection based on clustering dynamics. The presented work was but a first step
toward this goal by allowing us to have a proper data representation with a
model selection based on a criterion that is dear to practitioners in finance, i.e.
time stability. To complete this work, it remains to show that clustering using
TS-GNPR could achieve consistency in simple factorial models where correla-
tion matrices are slightly perturbed. We might also wish to improve the distance
working on the TS-GNPR representation as we may want to compare distribu-
tions differently by taking into account, for instance, tail dependence.
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