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oo Application Context

We are interested in building a system (a model) which evolves
when new data is available:

X1y X2y oo gy XNyowo

@ The time needed for processing a new observation must be
constant w.r.t the number of observations.

@ The memory required by the system is bounded.

@ Denote 7 the unknown distribution of X
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a Outline of this talk

@ Online learning exponential families

© Online learning of mixture of exponential families
@ Introduction, EM, k-MLE
@ Recursive EM, Online EM
@ Stochastic approximations of k-MLE
@ Experiments

© Conclusions
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oa Reminder : (Regular) Exponential Family

Firstly, = will be approximated by a member of a (regular)
exponential family (EF):

Er = {f(x;0) = exp{(s(x),0) + k(x) — F(0)|6 € ©}
Terminology:

A\ source parameters. F(6) the log-normalizer:

¢ natural parameters. differentiable, strictly
1) expectation parameters. convex
s(x) sufficient statistic. © = {0 € RP|F(H) < o}

k(x) auxiliary carrier measure. IS an open convex set

Almost all common distributions are EF members but uniform,
Cauchy distributions.
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oa Reminder : Maximum Likehood Estimate (MLE)

@ Maximum Likehood Estimate for general p.d.f:

N N
~ 1
AIN) — 5 max”fx,-;@ = ar min——g log f(x;; 6

g9 i1 G ) g‘) N 810 0)

assuming a sample x = {x1, x2, ..., xny} of i.i.d observations.

@ Maximum Likehood Estimate for an EF:

(M) = argmin <— <I:tl Zs(x,-),9> — cst(x) + F(9)>

0

which is exactly solved in H, the space of expectation parameters:

AV = VF(@OMN) = %Zs(x,-) = M = (vF)™! (,:t/ ZS(Xi)>

i
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oa Exact Online MLE for exponential family

@ A recursive formulation is easily obtained

Algorithm 1: Exact Online MLE for EF
Input: a sequence S of observations
Input: Functions s and (VF)~! for some EF
Output: a sequence of MLE for all observations seen before
no =0, N=1,
for xy € S do
A = N1+ N (s () — AN D),
yield H(Y) or yield (VF)~1(7M);
N=N+1,

Analytical expressions of (VF)™! exist for most EF (but not all)
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oa Case of Multivariate normal distribution (MVN)

@ Probability density function of MVN:
N (1, T) = (27) 72 |E| 72 exp~ 20 =710
@ One possible decomposition:
N (x;01,600) = exp{(01,x) + (b2, —xxT ) F

1 _ d 1
- Zt91«92 19, — 5 log(7) + 5 log |62}

N { s(x) = (x, —xxT)
(VA) () = ((=mnd —m2) "t 3(=mnf —m2) ™)
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Case of the Wishart distribution

See details in the paper.
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'a

Finite (parametric) mixture models

o Now, 7 will be approximated by a finite (parametric) mixture

f(-;0) indexed by 6:
K K
ﬁ(X)%f(X;@):ZWJ'G(X;Qj), 0§Wj§1,ZWj:

j=1 j=1

where w; are the mixing proportions, f; are the component
distributions.

@ When all f;'s are EFs, it is called a Mixture of EFs (MEF).
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Incompleteness in mixture models

o'a
incomplete complete
deterministic
observable — unobservable
X ={x1,...,xn} Xe={y1=0a,z1),...,yn}

o]

Z; ~ catg(w)
XilZi =j ~ (- 0)) ’

®

For a MEF, the joint density p(x, z; 6) is an EF:

K
log p(x,z:8) = Y [z = jl{log(w;) + {6, 51(x)) + ki(x) — Fi(6;)}

j=t

j=1

() (4737 e
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oo Expectation-Maximization (EM) [1]

The EM algorithm maximizes iteratively Q(6; 6(9), x).

Algorithm 2: EM algorithm

Input: () initial parameters of the model
Input: xM) = {x1,...,xn}
Output: A (local) maximizer (") of log f(; 6)

t < 0;

repeat
Compute Q(6; é(t),x) = Ep [log p(xc: 0)|x] ; // E-Step
Choose A(t+1) — argmax, Q(6; é(t),x) : // M-Step
t <+t +1;

until Convergence of the complete log-likehood,
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oa EM for MEF

o For a mixture, the E-Step is always explicit:

(t) _ W t)f X 0( ))/Z A(t f(X/,

o For a MEF, the M-Step then reduces to:

5(1)
gt+1) argmaxz < < Z(lt)zu ) ; (Iog " FJ(GJ)>>
i) = \\Xi 2, si(x) 0j

II,J

N
A~ 1 A
Wj(t-i- ) _ § :Zl_(’f')/N

i=1

ZI I_] SJ(XI)

A(t4+1) A(t+1)
= VRO = 5 50
i <iyg

(weighted average of SS) ‘
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oo k-Maximum Likelihood Estimator (k-MLE) [2]

@ The k-MLE introduces a geometric split x = |_|J 1 th)
accelerate EM :

5

= [argr,nax lef(x,-; éj(vt)) =]

J

e Equivalently, it amounts to maximize Q over partition Z [3]
@ For a MEF, the M-Step of the k-MLE then reduces to:

K o(1) |
) log w; — F;(0))
ot+1) — 4 max}j IX; ,< i — Fi(0; )
() \ \Zex ()SJ(X,) 0;

X 2ot Si(xi)
t+1) ’A(t)|/N ﬁj(tJrl) _ VF(QJ(-HI)) _ iEX;

el ‘

J

(cluster-wise unweighted average of SS)
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Online learning of mixtures

Consider now the online setting
X1, X2y oo o y XNy« o

Denote (V) or ﬁ(N) the parameter estimate after dealing N
observations

Denote §©) or 7(© their initial values

Remark: For a fixed-size dataset y, one may apply multiple
passes (with shuffle) on .

The increase in the likelihood function is no more guaranteed
after an iteration.
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Stochastic approximations of EM(1)

Two main approaches to online EM-like estimation:
o Stochastic M-Step : Recursive EM (1984) [5]

ON) = GIN=1) 4 INI (NN 1 log F(xp; VD)

where I is the Fisher Information matrix for the complete

data: | ( 6)
LGN — _g_ . | 28PZ

A justification for this formula comes from the Fisher’s

Identity:

Vlog f(x; 8) = Eg[log p(x, z; §)|x]

One can recognize a second order Stochastic Gradient Ascent
which requires to update and invert /. after each iteration.
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oa Stochastic approximations of EM(2)

o Stochastic E-Step : Online EM (2009) [7]

A PN

OM(8) = QWD (9)+al™) (B [log plxw, 2: )] — QM 1(0))

In case of a MEF, the algorithm works only with the cond.
expectation of the sufficient statistics for complete data.

Znj = Egiv-n 2y j|xn]

S\ _ (SN L ( 2N ) Sy
A = 4 o . ; — | Av—
SQ(J,N) Séj 2 2nj si(xn) SéjN Y

The M-Step is unchanged:

W) — ) _ g ‘

= (R = 57 18))

2 S
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o©a Stochastic approximations of EM(3)

Some properties:

o Initial values 5 may be used for introducing a " prior":

g0 _ & _ (0
Parameters constraints are automatically respected
No matrix to invert !

Policy for o) has to be chosen (see [7])

Consistent, asymptotically equivalent to the recursive EM !!
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Stochastic approximations of k-MLE(1)

In order to keep previous advantages of online EM for an online

k-MLE, our only choice concerns the way to affect xy to a cluster.

Strategy 1 Maximize the likelihood of the complete data
(XN7 ZN)

Inj = [argmax VT/JSN_I)f(XN; é}/N_l)) =]
J/

Equivalent to Online CEM and similar to Mac-Queen
iterative k-Means.
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Stochastic approximations of k-MLE(2)

Strategy 2 Maximize the likelihood of the complete data
(xn, zn) after the M-Step:

Zy,j = [argmax vAvj(,N)f(XN; 91(-/,\[)) =]l
J/

@ Similar to Hartigan's method for k-means.

o Additional cost: pre-compute all possible
M-Steps for the Stochastic E-Step.
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o©a Stochastic approximations of k-MLE(3)

Strategy 3 Draw Zyj from the categorical distribution

Zy sampled from Catk({p; = Iog(v“vj(N_l)ﬁ(xN; OA(N_I)))}J-)

o Similar to sampling in Stochastic EM 3]
@ The motivation is to try to break the
inconsistency of k-MLE.

For strategies 1 and 3, the M-Step reduces the update of the
parameters for a single component.
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o Experiments

o True distribution m = 0.5N(0,1) + 0.5N (y12, 03)

o Different values for pp, 0o for more or less overlap between
components.

@ A small subset of observations has be taken for initialization
(k-MLE++ / k-MLE).

@ Video illustrating the inconsistency of online k-MLE.
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Experiments on Wishart
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oa Conclusions - Future works

@ On consistency:
o EM, Online EM are consistent
o k-MLE, online k-MLE (Strategies 1,2) are inconsistent
(due to the Bayes error in maximizing the classification
likelihood)
o Online stochastic k-MLE (Strategy 3) : consistency ?

@ So, when components overlap, online EM > k-MLE > online
k-MLE for parameter learning.

@ Need to study how the dimension influences the
inconstancy/convergence rate for online k-MLE.

o Convergence rate is lower for online methods (sub-linear
convergence of the SGD)

@ Time for an update vs sample size:
online k-MLE (1,3) < online EM < online k-MLE (2) << k-MLE
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online EM appears to be the best compromise !!
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