On Clustering Histograms with k-Means by Using Mixed α-Divergences

Entropy 16(6): 3273-3301 (2014)

Frank Nielsen1,2, Richard Nock3, Shun-ichi Amari4

1 Sony Computer Science Laboratories, Japan
 E-Mail: Frank.Nielsen@acm.org
2 École Polytechnique, France
3 NICTA/ANU, Australia
4 RIKEN Brain Science Institute, Japan

2014
Clustering histograms

- Information Retrieval systems (IRs) based on **bag-of-words** paradigm (bag-of-textons, bag-of-features, bag-of-X)
- The rôle of distances:
 - Initially, create a dictionary of “words” by quantizing using \(k \)-means clustering (depends on the underlying distance)
 - At query time, find “closest” (histogram) document by querying with the histogram query
- Notation: Positive arrays \(h \) (counting histogram) versus frequency histograms \(\tilde{h} \) (normalized counting) \(d \) bins

For IRs, prefer **symmetric distances** (not necessarily metrics) like the Jeffreys divergence or the Jensen-Shannon divergence (unified by a one parameterized family of divergences in [11])
Ali-Silvey-Csiszár f-divergences

An important class of divergences: f-divergences [10, 1, 7] defined for a convex generator f (with $f(1) = f'(1) = 0$ and $f''(1) = 1$):

$$I_f(p : q) = \sum_{i=1}^{d} q^i f \left(\frac{p^i}{q^i} \right)$$

Those divergences preserve information monotonicity [3] under any arbitrary transition probability (Markov morphisms). f-divergences can be extended to positive arrays [3].
Mixed divergences

Defined on three parameters:

$$M_\lambda(p : q : r) \doteq \lambda D(p : q) + (1 - \lambda) D(q : r)$$

for $\lambda \in [0, 1]$.

Mixed divergences include:

- the sided divergences for $\lambda \in \{0, 1\}$,
- the symmetrized (arithmetic mean) divergence for $\lambda = \frac{1}{2}$.
Mixed divergence-based k-means clustering

k distinct seeds from the dataset with $l_i = r_i$.

Input: Weighted histogram set \mathcal{H}, divergence $D(\cdot, \cdot)$, integer $k > 0$, real $\lambda \in [0, 1]$;

Initialize left-sided/right-sided seeds $C = \{(l_i, r_i)\}_{i=1}^k$;

repeat

 // Assignment
 for $i = 1, 2, \ldots, k$ do
 $C_i \leftarrow \{h \in \mathcal{H} : i = \text{arg min}_j M_\lambda(l_j : h : r_j)\}$;

 // Dual-sided centroid relocation
 for $i = 1, 2, \ldots, k$ do
 $r_i \leftarrow \text{arg min}_x D(C_i : x) = \sum_{h \in C_i} w_j D(h : x)$;
 $l_i \leftarrow \text{arg min}_x D(x : C_i) = \sum_{h \in C_i} w_j D(x : h)$;

until convergence;

Output: Partition of \mathcal{H} into k clusters following C;

→ different from the k-means clustering with respect to the symmetrized divergences
\(\alpha\)-divergences

For \(\alpha \in \mathbb{R} \neq \pm 1\), define \(\alpha\)-divergences [6] on positive arrays [18]:

\[
D_\alpha(p : q) \doteq \sum_{i=1}^{d} \frac{4}{1 - \alpha^2} \left(\frac{1 - \alpha}{2} p^i + \frac{1 + \alpha}{2} q^i - (p^i)^{\frac{1-\alpha}{2}} \left(q^i \right)^{\frac{1+\alpha}{2}} \right)
\]

with \(D_\alpha(p : q) = D_{-\alpha}(q : p)\) and in the limit cases \(D_{-1}(p : q) = KL(p : q)\) and \(D_1(p : q) = KL(q : p)\), where \(KL\) is the extended Kullback–Leibler divergence:

\[
KL(p : q) \doteq \sum_{i=1}^{d} p^i \log \frac{p^i}{q^i} + q^i - p^i.
\]
\(\alpha \)-divergences belong to \(f \)-divergences

The \(\alpha \)-divergences belong to the class of Csiszár \(f \)-divergences with the following generator:

\[
f(t) = \begin{cases}
\frac{4}{1-\alpha^2}(1 - t^{(1+\alpha)/2}), & \text{if } \alpha \neq \pm 1, \\
t \ln t, & \text{if } \alpha = 1, \\
-\ln t, & \text{if } \alpha = -1
\end{cases}
\]

The Pearson and Neyman \(\chi^2 \) distances are obtained for \(\alpha = -3 \) and \(\alpha = 3 \):

\[
D_3(\tilde{p} : \tilde{q}) = \frac{1}{2} \sum_i \frac{(\tilde{q}_i - \tilde{p}_i)^2}{\tilde{p}_i},
\]

\[
D_{-3}(\tilde{p} : \tilde{q}) = \frac{1}{2} \sum_i \frac{(\tilde{q}_i - \tilde{p}_i)^2}{\tilde{q}_i}.
\]
Squared Hellinger symmetric distance is a $\alpha = 0$-divergence

Divergence D_0 is the squared Hellinger symmetric distance (scaled by 4) extended to positive arrays:

$$D_0(p : q) = 2 \int \left(\sqrt{p(x)} - \sqrt{q(x)} \right)^2 dx = 4H^2(p, q),$$

with the Hellinger distance:

$$H(p, q) = \sqrt{\frac{1}{2} \int \left(\sqrt{p(x)} - \sqrt{q(x)} \right)^2 dx}$$
Mixed α-divergences

- Mixed α-divergence between a histogram x to two histograms p and q:

$$M_{\lambda,\alpha}(p : x : q) = \lambda D_\alpha(p : x) + (1 - \lambda) D_\alpha(x : q),$$
$$= \lambda D_{-\alpha}(x : p) + (1 - \lambda) D_{-\alpha}(q : x),$$
$$= M_{1-\lambda,-\alpha}(q : x : p),$$

- α-Jeffreys symmetrized divergence is obtained for $\lambda = \frac{1}{2}$:

$$S_{\alpha}(p, q) = M_{\frac{1}{2},\alpha}(q : p : q) = M_{\frac{1}{2},\alpha}(p : q : p)$$

- Skew symmetrized α-divergence is defined by:

$$S_{\lambda,\alpha}(p : q) = \lambda D_\alpha(p : q) + (1 - \lambda) D_\alpha(q : p)$$
Coupled k-Means++ α-Seeding

Algorithm 1: Mixed α-seeding; $\text{MAS}(\mathcal{H}, k, \lambda, \alpha)$

Input: Weighted histogram set \mathcal{H}, integer $k \geq 1$, real $\lambda \in [0, 1]$, real $\alpha \in \mathbb{R}$;

Let $\mathcal{C} \leftarrow h_j$ with uniform probability;

for $i = 2, 3, \ldots, k$ do

Pick at random histogram $h \in \mathcal{H}$ with probability:

$$\pi_{\mathcal{H}}(h) \doteq \frac{w_h M_{\lambda, \alpha}(c_h : h : c_h)}{\sum_{y \in \mathcal{H}} w_y M_{\lambda, \alpha}(c_y : y : c_y)}, \quad (1)$$

//where $(c_h, c_h) \doteq \text{arg min}_{(z, z) \in \mathcal{C}} M_{\lambda, \alpha}(z : h : z)$;

$\mathcal{C} \leftarrow \mathcal{C} \cup \{(h, h)\}$;

Output: Set of initial cluster centers \mathcal{C};
A guaranteed probabilistic initialization

Let $C_{\lambda,\alpha}$ denote for short the cost function related to the clustering type chosen (left-, right-, skew Jeffreys or mixed) in MAS and $C_{\lambda,\alpha}^{\text{opt}}$ denote the optimal related clustering in k clusters, for $\lambda \in [0, 1]$ and $\alpha \in (-1, 1)$. Then, on average, with respect to distribution (1), the initial clustering of MAS satisfies:

$$E_\pi[C_{\lambda,\alpha}] \leq 4 \left\{ \begin{array}{ll}
 f(\lambda)g(k)h^2(\alpha)C_{\lambda,\alpha}^{\text{opt}} & \text{if } \lambda \in (0, 1) \\
 g(k)z(\alpha)h^4(\alpha)C_{\lambda,\alpha}^{\text{opt}} & \text{otherwise}
\end{array} \right..$$

Here, $f(\lambda) = \max \left\{ \frac{1-\lambda}{\lambda}, \frac{\lambda}{1-\lambda} \right\}$, $g(k) = 2(2 + \log k)$, $z(\alpha) = \left(\frac{1+|\alpha|}{1-|\alpha|} \right) \frac{8|\alpha|^2}{(1-|\alpha|)^2}$, $h(\alpha) = \max_i p_i |\alpha| / \min_i p_i |\alpha|$; the min is defined on strictly positive coordinates, and π denotes the picking distribution.
Mixed α-hard clustering: $\text{MAhC}(\mathcal{H}, k, \lambda, \alpha)$

Input: Weighted histogram set \mathcal{H}, integer $k > 0$, real $\lambda \in [0, 1]$, real $\alpha \in \mathbb{R}$;

Let $C = \{(l_i, r_i)\}_{i=1}^k \leftarrow \text{MAS}(\mathcal{H}, k, \lambda, \alpha)$;

repeat

//Assignment

for $i = 1, 2, \ldots, k$ do

$\mathcal{A}_i \leftarrow \{ h \in \mathcal{H} : i = \arg\min_j M_{\lambda, \alpha}(l_j : h : r_j) \}$;

// Centroid relocation

for $i = 1, 2, \ldots, k$ do

$r_i \leftarrow \left(\sum_{h \in \mathcal{A}_i} w_i h^{\frac{1-\alpha}{2}} \right)^{\frac{2}{1-\alpha}}$;

$l_i \leftarrow \left(\sum_{h \in \mathcal{A}_i} w_i h^{\frac{1+\alpha}{2}} \right)^{\frac{2}{1+\alpha}}$;

until convergence;

Output: Partition of \mathcal{H} in k clusters following C;
Sided Positive α-Centroids [14]

The left-sided l_α and right-sided r_α positive weighted α-centroid coordinates of a set of n positive histograms h_1, \ldots, h_n are weighted α-means:

$$r^i_\alpha = f^{-1}_\alpha \left(\sum_{j=1}^{n} w_j f_\alpha(h^i_j) \right),\quad l^i_\alpha = r^i_{-\alpha}$$

with $f_\alpha(x) = \begin{cases}
 x^{\frac{1-\alpha}{2}} & \alpha \neq \pm 1, \\
 \log x & \alpha = 1.
\end{cases}$
Sided Frequency α-Centroids [2]

Theorem (Amari, 2007)

The coordinates of the sided frequency α-centroids of a set of n weighted frequency histograms are the normalised weighted α-means.
Positive and Frequency α-centroids

Summary:

$\triangleright r^i_\alpha = \begin{cases}
(\sum_{j=1}^{n} w_j (h^i_j)^{1-\alpha/2})^{2/(1-\alpha)} & \alpha \neq 1 \\
1 & \alpha = 1
\end{cases}$

$\triangleright l^i_\alpha = r^i_{-\alpha} = \begin{cases}
(\sum_{j=1}^{n} w_j (h^i_j)^{1+\alpha/2})^{2/(1+\alpha)} & \alpha \neq -1 \\
l^i_{-1} = \prod_{j=1}^{n} (h^i_j)^{w_j} & \alpha = -1
\end{cases}$

$\triangleright \tilde{r}^i_\alpha = \frac{r^i_\alpha}{w(\tilde{r}_\alpha)}$

$\triangleright \tilde{l}^i_\alpha = \tilde{r}^i_{-\alpha} = \frac{r^i_{-\alpha}}{w(\tilde{r}_{-\alpha})}$
Mixed α-Centroids

Two centroids minimizer of:

$$\sum_j w_j M_{\lambda, \alpha}(l : h_j : r)$$

Generalizing mixed Bregman divergences [16]:

Theorem

The two mixed α-centroids are the left-sided and right-sided α-centroids.
Symmetrized Jeffreys-Type α-Centroids

\[S_\alpha(p, q) = \frac{1}{2} (D_\alpha(p : q) + D_\alpha(q : p)) = S_{-\alpha}(p, q), \]
\[= M_{\frac{1}{2}}(p : q : p), \]

For $\alpha = \pm 1$, we get half of Jeffreys divergence:

\[S_{\pm 1}(p, q) = \frac{1}{2} \sum_{i=1}^{d} (p^i - q^i) \log \frac{p^i}{q^i} \]
Jeffreys α-divergence and Heinz means

When p and q are frequency histograms, we have for $\alpha \neq \pm 1$:

$$J_{\alpha} (\tilde{p} : \tilde{q}) = \frac{8}{1 - \alpha^2} \left(1 + \sum_{i=1}^{d} H_{\frac{1-\alpha}{2}} (\tilde{p}^i, \tilde{q}^i) \right)$$

where $H_{\frac{1-\alpha}{2}} (a, b)$ a symmetric Heinz mean [8, 5]:

$$H_\beta (a, b) = \frac{a^\beta b^{1-\beta} + a^{1-\beta} b^\beta}{2}$$

Heinz means interpolate the arithmetic and geometric means and satisfies the inequality:

$$\sqrt{ab} = H_{\frac{1}{2}} (a, b) \leq H_{\alpha} (a, b) \leq H_0 (a, b) = \frac{a + b}{2}.$$
Jeffreys divergence in the limit case

For $\alpha = \pm 1$, $S_\alpha(p, q)$ tends to the Jeffreys divergence:

$$J(p, q) = KL(p, q) + KL(q, p) = \sum_{i=1}^{d} (p^i - q^i)(\log p^i - \log q^i)$$

The Jeffreys divergence writes mathematically the same for frequency histograms:

$$J(\tilde{p}, \tilde{q}) = KL(\tilde{p}, \tilde{q}) + KL(\tilde{q}, \tilde{p}) = \sum_{i=1}^{d} (\tilde{p}^i - \tilde{q}^i)(\log \tilde{p}^i - \log \tilde{q}^i)$$
Analytic formula for the positive Jeffreys centroid [12]

Theorem (Jeffreys positive centroid [12])

The Jeffreys positive centroid $c = (c^1, ..., c^d)$ of a set $\{h_1, ..., h_n\}$ of n weighted positive histograms with d bins can be calculated component-wise exactly using the Lambert W analytic function:

\[
c^i = \frac{a^i}{W\left(\frac{a^i}{g^i}e\right)}
\]

where $a^i = \sum_{j=1}^{n} \pi_j h^i_j$ denotes the coordinate-wise arithmetic weighted means and $g^i = \prod_{j=1}^{n} (h^i_j)^{\pi_j}$ the coordinate-wise geometric weighted means.

The Lambert analytic function W [4] (positive branch) is defined by $W(x)e^{W(x)} = x$ for $x \geq 0$.
Jeffreys frequency centroid [12]

Theorem (Jeffreys frequency centroid [12])

Let \tilde{c} denote the Jeffreys frequency centroid and $\tilde{c}' = \frac{c}{w_{\tilde{c}}}$ the normalised Jeffreys positive centroid. Then, the approximation factor $\alpha_{\tilde{c}'} = \frac{S_1(\tilde{c}', \hat{H})}{S_1(\tilde{c}, \hat{H})}$ is such that $1 \leq \alpha_{\tilde{c}'} \leq \frac{1}{w_{\tilde{c}}}$ (with $w_{\tilde{c}} \leq 1$). Better upper bounds in [12].
Reducing a \(n \)-size problem to a 2-size problem

Generalize [17] (symmetrized Kullback–Leibler divergence) and [15] (symmetrized Bregman divergence)

Lemma (Reduction property)

The symmetrized \(J_\alpha \)-centroid of a set of \(n \) weighted histograms amount to computing the symmetrized \(\alpha \)-centroid for the weighted \(\alpha \)-mean and \(-\alpha\)-mean:

\[
\min_x J_\alpha(x, \mathcal{H}) = \min_x \left(D_\alpha(x : r_\alpha) + D_\alpha(l_\alpha : x) \right).
\]
Frequency symmetrized α-centroid

Minimizer of $\min_{\tilde{x} \in \Delta_d} \sum_j w_j S_\alpha(\tilde{x}, \tilde{h}_i)$

Instead of seeking for \tilde{x} in the probability simplex, we can optimize on the unconstrained domain \mathbb{R}^{d-1} by using the natural parameter reparameterization [13] of multinomials.

Lemma

The α-divergence for distributions belonging to the same exponential families amounts to computing a divergence on the corresponding natural parameters:

$$A_\alpha(p : q) = \frac{4}{1 - \alpha^2} \left(1 - e^{-J_F^{(1/2)}(\theta_p : \theta_q)} \right),$$

where $J_F^\beta(\theta_1 : \theta_2) = \beta F(\theta_1) + (1 - \beta) F(\theta_2) - F(\beta\theta_1 + (1 - \beta)\theta_2)$ is a skewed Jensen divergence defined for the log-normaliser F of the family.
Implementation (in processing.org)

Snapshot of the α-clustering software. Here, $n = 800$ frequency histograms of three bins with $k = 8$, and $\alpha = 0.7$ and $\lambda = \frac{1}{2}$.
Soft Mixed α-Clustering

Learn both α and λ (α-EM [9])

Input: Histogram set \mathcal{H} with $|\mathcal{H}| = m$, integer $k > 0$, real

$\lambda \leftarrow \lambda_{\text{init}} \in [0, 1]$, real $\alpha \in \mathbb{R}$;

Let $C = \{(l_i, r_i)\}_{i=1}^k \leftarrow \text{MAS}(\mathcal{H}, k, \lambda, \alpha)$;

repeat

//Expectation
for $i = 1, 2, ..., m$ do

for $j = 1, 2, ..., k$ do

$p(j|h_i) = \frac{\pi_j \exp(-M_{\lambda,\alpha}(l_j; h_i:r_j))}{\sum_{j'} \pi_{j'} \exp(-M_{\lambda,\alpha}(l_{j'}; h_i:r_{j'}))};$

//Maximization
for $j = 1, 2, ..., k$ do

$\pi_j \leftarrow \frac{1}{m} \sum_i p(j|h_i);$

$l_i \leftarrow \left(\frac{1}{\sum_j \pi_j} \sum_i p(j|h_i)h_i^{\frac{1+\alpha}{2}} \right)^2 \frac{2}{1+\alpha};$

$r_i \leftarrow \left(\frac{1}{\sum_j \pi_j} \sum_i p(j|h_i)h_i^{\frac{1-\alpha}{2}} \right)^2 \frac{2}{1-\alpha};$

//Alpha - Lambda
$\alpha \leftarrow \alpha - \eta_1 \sum_{j=1}^k \sum_{i=1}^m p(j|h_i) \frac{\partial}{\partial \alpha} M_{\lambda,\alpha}(l_j; h_i : r_j);$

if $\lambda_{\text{init}} \neq 0, 1$ then

$\lambda \leftarrow \lambda - \eta_2 \left(\sum_{j=1}^k \sum_{i=1}^m p(j|h_i)D_{\alpha}(l_j; h_i) - \sum_{j=1}^k \sum_{i=1}^m p(j|h_i)D_{\alpha}(h_i; r_j) \right);$

//for some small η_1, η_2; ensure that $\lambda \in [0, 1].$

until convergence;

Output: Soft clustering of \mathcal{H} according to k densities $p(j|.)$

following $C;$
Summary

1. Mixed divergences, mixed divergence k-means++ seeding, coupled k-means seeding
2. Sided left or right α-centroid k-means
3. Coupled k-means with respect to mixed α-divergences relying on dual α-centroids
4. Symmetrized Jeffreys-type α-centroid (variational) k-means,

All technical proofs and details in:
Entropy 16(6): 3273-3301 (2014)
Bibliographic references I

Syed Mumtaz Ali and Samuel David Silvey.
A general class of coefficients of divergence of one distribution from another.

Shun-ichi Amari.
Integration of stochastic models by minimizing α-divergence.

Shun-ichi Amari.
alpha-divergence is unique, belonging to both f-divergence and Bregman divergence classes.

D. A. Barry, P. J. Culligan-Hensley, and S. J. Barry.
Real values of the W-function.

Ádám Besenyei.
On the invariance equation for Heinz means.

Andrzej Cichocki, Sergio Cruces, and Shun-ichi Amari.
Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization.

Imre Csiszár.
Information-type measures of difference of probability distributions and indirect observation.
Bibliographic references II

Erhard Heinz.
Beiträge zur störungstheorie der spektralzerlegung.

Yasuo Matsuyama.
The alpha-EM algorithm: surrogate likelihood maximization using alpha-logarithmic information measures.

Tetsuzo Morimoto.
Markov processes and the h-theorem.

Frank Nielsen.
A family of statistical symmetric divergences based on Jensen’s inequality.

Frank Nielsen.
Jeffreys centroids: A closed-form expression for positive histograms and a guaranteed tight approximation for frequency histograms.

Frank Nielsen and Vincent Garcia.
arXiv.org:0911.4863.

Frank Nielsen and Richard Nock.
The dual Voronoi diagrams with respect to representational Bregman divergences.
In International Symposium on Voronoi Diagrams (ISVD) pages 71–78, DTU Lyngby, Denmark, June 2009. IEEE.
Frank Nielsen and Richard Nock.
Sided and symmetrized Bregman centroids.

Richard Nock, Panu Luosto, and Jyrki Kivinen.
Mixed Bregman clustering with approximation guarantees.

Raymond N. J. Veldhuis.
The centroid of the symmetrical Kullback-Leibler distance.

Huaiyu Zhu and Richard Rohwer.
Measurements of generalisation based on information geometry.