Bag-of-components: an online algorithm for batch learning of mixture models

Olivier Schwander Frank Nielsen

Université Pierre et Marie Curie, Paris, France
École polytechnique, Palaiseau, France

October 29, 2015
Exponential families

Definition

\[p(x; \lambda) = p_F(x; \theta) = \exp \left(\langle t(x)|\theta \rangle - F(\theta) + k(x) \right) \]

- \(\lambda \) source parameter
- \(t(x) \) sufficient statistic
- \(\theta \) natural parameter
- \(F(\theta) \) log-normalizer
- \(k(x) \) carrier measure

\(F \) is a strictly convex and differentiable function
\(\langle \cdot | \cdot \rangle \) is a scalar product
Multiple parameterizations: dual parameter spaces

Multiple source parameterizations

Source Parameters (not unique)
\[\lambda_1 \in \Lambda_1, \lambda_2 \in \Lambda_2, \ldots, \lambda_n \in \Lambda_n \]

Legendre Transform
\[(F, \Theta) \leftrightarrow (F^*, H) \]

\[\theta \in \Theta \quad \text{Natural Parameters} \]
\[\eta \in H \quad \text{Expectation Parameters} \]

Two canonical parameterizations

\[\theta = \nabla F^*(\eta) \quad \eta = \nabla F(\theta) \]
Bregman divergences

Definition and properties

\[B_F (x \| y) = F(x) - F(y) - \langle x - y, \nabla F(y) \rangle \]

- F is a strictly convex and differentiable function
- No symmetry!

Contains a lot of common divergences

- Squared Euclidean, Mahalanobis, Kullback-Leibler, Itakura-Saito...
Bregman centroids

Left-sided centroid

$$\min_c \sum_i \omega_i B_F (c \| x_i)$$

Closed-form

$$c^L = \nabla F^* \left(\sum_i \omega_i \nabla F(x_i) \right)$$

Right-sided centroid

$$\min_c \sum_i \omega_i B_F (x_i \| c)$$

$$c^R = \sum_i \omega_i x_i$$
Link with exponential families

[Banerjee 2005]

Bijection with exponential families

\[
\log p_F(x|\theta) = -B_{F^*}(t(x)||\eta) + F^*(t(x)) + k(x)
\]

Kullback-Leibler between exponential families

- between members of the same exponential family

\[
KL(p_F(x, \theta_1), p_F(x, \theta_2)) = B_F(\theta_2||\theta_1) = B_{F^*}(\eta_1||\eta_2)
\]

Kullback-Leibler centroids

- In closed-form through the Bregman divergence
Maximum likelihood estimator

A Bregman centroid

\[\hat{\eta} = \arg \max_{\eta} \sum_{i} \log p_F(x_i, \eta) \]

\[= \arg \min_{\eta} \sum_{i} B_{F^*} (t(x_i) \mid \eta) - F^* (t(x_i)) - k(x_i) \]

\[= \arg \min_{\eta} \sum_{i} B_{F^*} (t(x_i) \mid \eta) \]

\[= \sum_{i} t(x_i) \]

And \[\hat{\theta} = \nabla F^*(\hat{\eta}) \]
Mixtures of exponential families

\[m(x; \omega, \theta) = \sum_{1 \leq i \leq k} \omega_i p_F(x; \theta_i) \]

Fixed

- Family of the components \(P_F \)
- Number of components \(k \)
 (model selection techniques to choose)

Parameters

- Weights \(\sum_i \omega_i = 1 \)
- Component parameters \(\theta_i \)

Learning a mixture

- Input: observations \(x_1, \ldots, x_N \)
- Output: \(\omega_i \) and \(\theta_i \)
Bregman Soft Clustering: EM for exponential families

[Banerjee 2005]

E-step

\[p(i, j) = \frac{\omega_j p_F(x_i, \theta_j)}{m(x_i)} \]

M-step

\[\eta_j = \arg \max_\eta \sum_i p(i, j) \log p_F(x_i, \theta_j) \]

\[= \arg \min_\eta \sum_i p(i, j) \left(B_{F^*}(t(x_i) \| \eta) - F^*(t(x_i)) - k(x_i) \right) \]

\[= \sum_i \frac{p(i, j)}{\sum_u p(u, j)} t(x_u) \]
Joint estimation of mixture models

Exploit shared information between multiple pointsets

- to improve quality
- to improve speed

Inspiration

- Dictionary methods
- Transfer learning

Efficient algorithms

- Building
- Comparing
Co-Mixtures

Sharing components of all the mixtures

\[m_1(x|\omega^{(1)}, \eta) = \sum_{i=1}^{k} \omega_i^{(1)} p_F(x|\eta_j) \]

\[\ldots \]

\[m_S(x|\omega^{(S)}, \eta) = \sum_{i=1}^{k} \omega_i^{(S)} p_F(x|\eta_j) \]

- Same \(\eta_1 \ldots \eta_k \) everywhere
- Different weights \(\omega^{(l)} \)
co-Expectation-Maximization

Maximize the mean of the likelihoods on each mixtures

E-step

- A posterior matrix for each dataset

\[
p^{(l)}(i, j) = \frac{\omega_j^{(l)} p_F(x_i, \theta_j)}{m(x_i^{(l)} | \omega^{(l)}, \eta)}
\]

M-step

- Maximization on each dataset

\[
\eta_j^{(l)} = \sum_i \frac{p(i, j)}{\sum_u p^{(l)}(u, j)} t(x_u^{(l)})
\]

- Aggregation

\[
\eta_j = \frac{1}{S} \sum_{l=1}^{S} \eta_j^{(l)}
\]
Variational approximation of Kullback-Leibler

[Hershey Olsen 2007]

\[
\widetilde{KL}_{\text{Variational}}(m_1, m_2) = \sum_{i=1}^{K} \omega_{i}^{(1)} \log \frac{\sum_{j} \omega_{j}^{(1)} e^{-KL(p_F(\cdot; \theta_i)||p_F(\cdot; \theta_j))}}{\sum_{j} \omega_{j}^{(2)} e^{-KL(p_F(\cdot; \theta_i)||p_F(\cdot; \theta_j))}}
\]

With shared parameters

- Precompute \(D_{ij} = e^{-KL(p_F(\cdot|\eta_i), p_F(\cdot|\eta_j))} \)

Fast version

\[
KL_{\text{var}}(m_1||m_2) = \sum_{i} \omega_{i}^{(1)} \log \frac{\sum_{j} \omega_{j}^{(1)} e^{-D_{ij}}}{\sum_{j} \omega_{j}^{(2)} e^{-D_{ij}}}
\]
co-Segmentation

Segmentation from 5D RGBxy mixtures

Original

EM

Co-EM
Transfer learning

Increase the quality of one particular mixture of interest

- First image: only 1% of the points
- Two other images: full set of points

- Not enough points for EM
Bag of Components

Training step

- Comix on some training set
- Keep the parameters
- Costly but offline

\[\mathcal{D} = \{\theta_1, \ldots, \theta_K\} \]

Online learning of mixtures

- For a new pointset
- For each observation arriving:

\[
\arg\max_{\theta \in \mathcal{D}} p_F(x_j, \theta) \quad \text{or} \quad \arg\min_{\theta \in \mathcal{D}} B_F(t(x_j), \theta)
\]
Nearest neighbor search

Naive version

- Linear search
- $O(\text{number of samples} \times \text{number of components})$
- Same order of magnitude as one step of EM

Improvement

- Computational Bregman Geometry to speed-up the search
- Bregman Ball Trees
- Hierarchical clustering
- Approximate nearest neighbor
Image segmentation

Segmentation on a random subset of the pixels

100% 10% 1%

EM BoC
Computation times
Summary

Comix
- Mixtures with shared components
- Compact description of a lot of mixtures
- Fast KL approximations
- Dictionary-like methods

Bag of Components
- Online method
- Predictable time (no iteration)
- Works with only a few points
- Fast