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Abstract

Finding mean of matrices becomes increasingly im-
portant in modern signal processing problems that in-
volve matrix-valued images. In this paper, we define
the mean for a set of symmetric positive definite (SPD)
matrices based on information-theoretic divergences as
the unique minimizer of the averaged divergences, and
compare it with the means computed using the Rieman-
nian and Log-Euclidean metrics. For the class of diver-
gences induced by the convexity gap of a matrix func-
tional, we present a fast iterative concave-convex op-
timization scheme with guaranteed convergence to effi-
ciently approximate those divergence-based means.

1 Introduction

A recent trend in image processing is to consider
matrix-valuedimages, where the whole image or each
pixel of the image is represented as a matrix of coeffi-
cients instead of a traditional intensity value. Typical
applications include diffusion magnetic resonance im-
age analysis [12, 14], radar signal processing [13], elas-
ticity tensors [7] in mechanical engineering, and struc-
ture tensors [3] in computer vision. In these applica-
tions, a SPD matrix is anchored at each voxel and re-
flects the underlying organization properties.

Due to the use of matrix based images, the conven-
tional intensity-based image processing toolbox (e.g.,
inpainting, interpolation, segmentation etc.) needs to
be extended to matrix-valued images. In this paper,
we consider calculating the mean of matrices that is re-
quired for example in interpolation and clustering.

The mean of matrices is in general defined
as follows: Given a collection of SPD matrices
{M1, ...,Mn} ⊂ Sym⋆

+(d), whereSym⋆
+(d) represents

the set ofd × d SPD matrices. The mean̄M is defined

as

M̄ = arg min
M∈Sym⋆

+
(d)

1

n

n
∑

i=1

D(Mi,M)2, (1)

whereD is a distance function. Different distance func-
tions give different means. For instance ifD is the
Frobenius norm distance, i.e.,D(P,Q) = ‖P − Q‖2F ,
thenM̄ becomes the arithmetic matrix mean, andM̄ =
1
n

∑n
i=1 Mi. However, the arithmetic matrix mean is

not robust to outliers, and it may have a determinant
larger than the input which is physically not plausi-
ble in many applications [1]. The Log-Euclidean (LE)
distance is defined asD(P,Q) = ‖ logQ − logP‖F ,
where logM is the principal logarithm of matrixM .
In [1], Arsigny et al. showed that theLE meanin-
herits a vector space structure, and has a closed-form
M̄LE = exp[(

∑

i logMi)/n]. The Riemannian dis-
tance is defined asD(P,Q) = [tr(log2(P−1Q))]1/2

and the mean is shown to be theuniquematrix satisfy-
ing
∑n

i=1 log(M
−1
i M̄R) = 0, which has a closed-form

solution whenn = 2 [11]. Forn > 2, Fiori et al. pro-
posed an optimization scheme to approximate the mean
[8].

In [5], Ando et al. summarized ten properties for a
“good” matrix mean. Bathia and Holbrook [2] investi-
gated properties of Riemannian matrix means. Bini and
Iannazzo [4] recently proposed another geometric ma-
trix mean definition that satisfies most but not all of the
ten Ando-Li-Mathias properties.

In this work, we study the SPD mean with respect to
a non-metricdistance function, called adivergence. A
divergence may not be symmetric or satisfy the triangle
inequality as regular metrics.

2 Divergences from Jensen convexity gaps

Let (PQ)λ denote the linear interpolant(1− λ)P +
λQ for λ ∈ (0, 1). From the (open cone) convexity of



Figure 1. A family of divergences built
from a convexity gap.

the domain ofSym∗
+, it follows that

∀P,Q ∈ Sym∗
+, (PQ)λ ∈ Sym∗

+. (2)

We build afamilyof divergences from a strictly convex
generatorF : Sym∗

+ → R
+ as follows:

J
(α,β)
F (P,Q) = (F (P )F (Q))β − F ((PQ)α), (3)

for 0 < α, β < 1. Figure 1 depicts the divergence as a
line segment lying inside the convexity gap induced by
F . Common convex matrix generators are

• F (X) = tr(XTX) (quadratic matrix entropy),

• F (X) = − log detX (matrix Burg entropy),

• F (X) = tr(X logX −X) (von Neumann entropy).

In particular, the Burbea-Rao divergence [6] is ob-
tained by choosingα = β = 1

2 , i.e.,

BRF (P,Q) =
F (P ) + F (Q)

2
− F

(

P +Q

2

)

≥ 0.

ChoosingF (X) = tr(X logX − X), we get the
Jensen-von Neumanndivergence, the matrix counter-
part of the celebrated Jensen-Shannon divergence. An
interesting property is that asymptotic skew Jensen di-
vergences are equivalent to Bregman divergences:

BF (P,Q) = lim
α→0

1

α
J
(α,α)
F (P,Q),

BF (Q,P ) = lim
α→1

1

1− α
J
(α,α)
F (P,Q), with

BF (P,Q) = F (P )− F (Q)− 〈P −Q,∇F (Q)〉,

where〈X,Y 〉 = tr(XY ) is the matrix inner product.
The von Neuman divergence

DvN(P,Q) = tr(P (logP − logQ)− P +Q) (4)

belongs to a broader parametric family of matrix diver-
gences:

Dα(P,Q) =
4

1− α2
tr

(

1− α

2
P +

1 + α

2
Q− P

1−α

2 Q
1+α

2

)

,

with DvN(P,Q) = limα→1 Dα(P,Q), and
DvN(P,Q) = limα→−1 Dα(P,Q).

3 Concave-convex minimization for
Jensen-based matrix means

By definition, the divergence-based (right-sided)
means on a set of SPD matrices{M1, ...,Mn}, are ob-
tained by minimizing the average distortion measure:

l(X) =
1

n

n
∑

i=1

J
(α,β)
F (Mi, X). (5)

Note the left-sided mean can be calculated as a right
sided-mean for parametersα′ = 1−α andβ′ = 1− β.
The matrix mean is solved according to

M̄ = argX∈Sym∗

+
min l(X). (6)

Removing the constant terms independent ofX in
l(X), we get theequivalentoptimization problem,

l′(X) = βF (X)−

n
∑

i=1

F ((1− α)Mi + αX). (7)

This loss functionl′(X) = A(X)+B(X) is a sum of a
convex functionA(X) = βF (X) plus a concave func-
tionB(X) = −

∑n
i=1 F ((1−α)Mi +αX). It follows

that we can apply the concave-convex procedure [15] to
get the following iterative scheme: We start from an ini-
tial estimateC0 of the mean (say, the arithmetic mean
C0 = 1

n

∑n
i=1 Mi), and update iteratively the current

meanCt using the concave-convex procedure optimiza-
tion step [15] (that does not require to set up a learning
rate):

∇A(Ct+1) = −∇B(Ct), (8)

and get

Ct+1 = (∇F )−1

(

α

β

n
∑

i=1

∇F ((1 − α)Mi + αCt)

)

.

This iterative scheme isguaranteedto converge to a
minimizer [15], and avoids to tune a learning step pa-
rameter as it is customary in gradient descent methods.

3.1 Matrix α-log-det divergence

If the convex generator isF (X) = − log detX , it
gives us theα-log-det divergence, forα ∈ (−1, 1):

J
(α)
LD(X,Y ) =

4

1− α2

(

1− α

2
F (X) +

1 + α

2
F (Y )

−F

(

1− α

2
X +

1 + α

2
Y

))

2



The matrix mean of{M1, ...,Mn} is defined as the
minimizer of the following optimization problem:

M̄α = arg min
X∈Sym∗

+

1

n

n
∑

i=1

J
(α)
LD(X,Mi). (9)

This can be solved by removing all terms independent
of X , and applying the concave-convex procedure. We
initializeC0 = 1

n

∑n
i=1 Mi and update iteratively using

the CCCP rule [15]

Ct+1 =

(

n
∑

i=1

1

n

(

1− α

2
Ct +

1 + α

2
Mi

)−1
)−1

.

Note that we can swap arguments in theα-log-det di-
vergence by turningα into−α:

Jα
LD(X,Y ) = J−α

LD(Y,X) (10)

Furthermore, theα-log-det divergence is invariant un-
der inversion and invertible transformations, i.e.,

Jα
LD(X,Y ) = Jα

LD(X−1, Y −1),

Jα
LD(CXCT , CY CT ) = Jα

LD(X,Y ), ∀C ∈ GL(d),

whereGL(d) is the set of invertible transformations.
These properties are very important in many applica-
tions [12].

3.2 Symmetrized matrix α-log-det divergence

The symmetrized matrixα-log-det divergence is

sJ
(α)
LD(X,Y ) =

1

2

(

J
(α)
LD(X,Y ) + J

(α)
LD(Y,X)

)

.

With initialization C0 = 1
n

∑n
i=1 Mi, the mean can

also be solved using the CCCP rule,

Ct+1 = (∇F )−1(

n
∑

i=1

1

n
(1− α)∇F (αMi + (1 − α)Ct)

+ α∇F (αCt + (1 − α)Mi))).

4 Experiments

We have implemented the Jensen-based matrix
concave-convex iteration algorithm in JavaTM using the
JAMA1 matrix package. Our open source implementa-
tion is readily available2 for reproducible research. We
evaluated our method on both synthetic dataset and real
shape dataset.

1http://math.nist.gov/javanumerics/jama/
2www.informationgeometry.org/SPD/

Entropy name F (X) ∇F (∇F )−1

Quadratic 1

2
trXXT X X

log-det − log detX −X−1
−X−1

von Neumann tr(X logX −X) logX expX

Table 1. Gradients and inverse gradients
of several convex matrix generators.

4.1 Synthetic dataset

To get an SPD matrixM , we randomly draw a lower
triangle matrixL and letM = LLT . Table 1 reports the
gradients and inverse gradients for several commonly
used convex generators .

The Log-Euclidean-based, Riemannian-based and
divergence-based methods all report the identity matrix
for the mean ofM with M−1. We observed that our
divergence-based algorithm converges fast to a unique
global minimum in practice for the Jensen-von Neu-
mann divergence: 10 iterations are enough to get a
0.1%-error-approximation to the minimum. As the di-
mension grows, the computational bottleneck is to cal-
culate the eigendecomposition of the matrix for per-
forming the log/exp operations required for comput-
ing ∇F and(∇F )−1. Indeed, eigendecomposition of
d-dimensional square matrices requires roughly cubic
time with a naive implementation.

4.2 Shape clustering

Shape clustering is an important step for shape re-
trieval in a large database. Shape clustering enables hi-
erarchical shape retrieval which is more efficient than
brute force shape retrieval. We evaluated Jensen di-
vergence based clustering on the MPEG-7 database [9],
which consists of 70 different categories with 20 shapes
per category, for a total of 1400 shapes. For each shape,
we first extract its boundary points, align them using
affine alignment, and then use the covariance matrix,
which is an SPD matrix, of the aligned boundary points
to represent this shape [10]. The SPD matrix is also the
covariance matrix of the the Gaussian distribution esti-
mated from the boundary points. The above process is
portrayed using the flow chart shown below

Shape → Aligned boundary points → Covariance matrix

The hard clustering algorithm [10] is used to per-
form clustering. The clustering accuracy is measured
according to a method proposed in [10], which is the
optimal number of categories per cluster (denoted by
|S|∗, |S| represents the cardinality ofS, i.e., the num-
ber of categories inS), divided by the average num-
ber of categories in each cluster (denoted byAvg(|S|)).

3



For example, it there there are 10 clusters{Si}
10
i=1,

with an average of 140 shapes per cluster, and thus,

|S|∗ = 140/20 = 7; Avg(|S|) =
∑

10
i=1

|Si|

10 . The clus-
tering accuracy describes the accuracy of separation of
different categories. The optimal clustering accuracy is
1. Figure 2 compares the clustering accuracy of using
Log-Euclidean, Riemannian and our proposed Jensen
divergence. The parametersα andβ are set to be those
which maximizes the clustering accuracy. In this exper-
iment, the result achieves the best whenα = 0.4 and
β = 0.45 (this means that the center has more weight
than each single element in the cluster). The results
show that Jensen divergence enables much higher clus-
tering accuracy, implying substantial capability to dis-
tinguish shapes from different categories.
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Figure 2. Shape clustering using Rieman-
nian, LE, and Jensen divergence.

We also used the symmetrized matrixα-log-det di-
vergence to do clustering. By changing theα, we get
different clustering accuracy, which is shown in Figure
3. The results illustrate that whenα = 0.5, the cluster-
ing achieves better accuracy.
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Figure 3. Clustering using symmetrized
matrix α-log-det divergence for various
αs.

5 Concluding remarks

We introduced divergence-based matrix means as
minimizers of average divergences. We consider
the class of matrix divergences induced by a convex
functional, and described a novel efficient concave-
convex iteration method to compute those means. The
divergence-based mean depends on a convex matrix
functional which may be tuned according to specific ap-
plication domains.
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