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1. Introduction and prior work

Finding the unique smallest enclosing ball (SEB) of a finite Euclidean point set P = {p1, . . . , pn} is a fundamental
problem that was first posed by Sylvester [19]. This problem has been thoroughly investigated in the computational ge-
ometry community by Welzl [21] and Nielsen and Nock [13], where it is also known as the minimum enclosing ball
(MEB), the 1-center problem, or the minimax optimization problem in operations research. In practice, since computing
the SEB exactly is intractable in high dimensions, efficient approximation algorithms have been proposed. An algorith-
mic breakthrough was achieved by Bădoiu and Clarkson [7] that proved the existence of a core-set C ⊆ P of optimal
size |C | = � 1

ε � so that r(C) � (1 + ε)r(P ) (for any arbitrary ε > 0), where r(S) denotes the radius of the SEB of S .
Let c(S) denote the ball center, i.e. the minimax center. Since the size of the core-set depends only on the approx-
imation precision ε and is independent of the dimension, core-sets have become widely popular in high-dimensional
applications such as supervised classification in machine learning (see for example, the core vector machines of Tsang
et al. [20]). In the work of Bădoiu and Clarkson [6], a fast and simple approximation algorithm is designed as algorithm
BC-ALG.

It can be proved that a (1 + ε)-approximation of the SEB is obtained after � 1
ε2 � iterations, thereby showing the existence

of a core-set C = { f1, f2, . . .} of a size at most � 1
ε2 �: r(C) � (1 + ε)r(P ). This simple algorithm runs in time O ( dn

ε2 ), and has
been generalized to Bregman divergences by Nock and Nielsen [15] which include the (squared) Euclidean distance, and are
the canonical distances of dually flat spaces, including the particular case of self-dual Euclidean geometry. (Note that if we
start from the optimal center c1 = c(S), the first iteration yields a center c2 away from c(S) but it will converge in the long
run to c(S).) Bădoiu and Clarkson [7] proved the existence of optimal ε-core-set of size � 1

ε �. Since finding tight core-sets
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BC-ALG:

• Initialize the center c1 ∈ P , and
• Iteratively update the current center using the rule

ci+1 ← ci + f i − ci

i + 1
,

where f i denotes the farthest point of P to ci .

requires as a black box primitive the computation of the exact smallest enclosing balls of small-size point sets, we rather
consider the Riemmanian generalization of the BC-ALG, although that even in the Euclidean case it does not deliver optimal
size core-sets.

Many data-sets arising in medical imaging (see [17]) or in computer vision (refer to [16]) cannot be considered as
emanating from vectorial spaces but rather as lying on curved manifolds. For example, the space of rotations or the space
of invertible matrices are not flat, as the arithmetic average of two elements does not necessarily lie inside the space.

In this work, we extend the Euclidean BC-ALG algorithm to Riemannian geometry. In the remainder, we assume the
reader familiar with basic notions of Riemannian geometry (see [4] for an introductory textbook) in order not to burden the
paper with technical Riemannian definitions. However in Appendix A, we recall some specific notions which play a key role
in the paper, such as geodesics, sectional curvature, injectivity radius, Alexandrov and Toponogov theorems, and cosine laws
for triangles. Furthermore, we consider probability measures instead of finite point sets1 so as to study the most general
setting.

Let M be a complete Riemannian manifold and ν a probability measure on M . Denote by ρ(x, y) the Riemannian distance
from x to y on M that satisfies the metric axioms. Assume the measure support supp(ν) is included in a geodesic ball
B(o, R).

Recall that if p ∈ [1,∞) and f : M →R is a measurable function then

‖ f ‖L p(ν) =
(∫

M

∣∣ f (y)
∣∣p

ν(dy)

)1/p

and

‖ f ‖L∞(ν) = inf
{

a > 0, ν
({

y ∈ M,
∣∣ f (y)

∣∣ > a
}) = 0

}
.

Let

Rα,p =
{

1
2 min{inj(M), π

2α } if 1 � p < 2,

1
2 min{inj(M), π

α } if 2 � p � ∞ (1)

where inj(M) is the injectivity radius (see Appendix A) and α > 0 is such that α2 is an upper bound for the sectional
curvatures in M (in fact replacing M by B(o,2R) is sufficient, so that we can always assume that α > 0). For p ∈ [1,∞],
under the assumption that

R < Rα,p (2)

it has been proved by Afsari [2] that there exists a unique point cp which minimizes the following cost function

H p : M → [0,∞]
x �→ ∥∥ρ(x, ·)∥∥L p(ν)

(3)

with cp ∈ B(o, R) (in fact, lying inside the closure of the convex hull of the support of ν).
For a discrete uniform measure viewed as a “point cloud” in a Euclidean space and p ∈ [1,∞), we have H p(x) =

( 1
n

∑n
i=1 ‖pi − x‖p

p)1/p , with ‖ · ‖p denoting the L p-norm, and H∞(x) is the distance from x to its farthest point in the
cloud.

In the general situation the point cp that realizes the minimum represents a notion of centrality of the measure (e.g.,
median for p = 1, mean for p = 2, and minimax center for p = ∞). This center is a global minimizer (not only in B(o, R)),
and this explains why a bound for the sectional curvature is required on the whole manifold M (in fact B(o,2R) is sufficient,
see [2]).

1 We view finite point sets as discrete uniform probability measures.
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Deterministic subgradient algorithms for finding cp have been considered by Yang [22] for the median case (p = 1).
Stochastic algorithms have been investigated by Arnaudon et al. [3] for the case p ∈ [1,∞), and a central limit theorem
(CLT) for the suitably renormalized process is derived (in fact a convergence in law to a diffusion process). See also for
similar algorithms minimizing other cost functions, the work of Bonnabel [5].

In this work, we consider the case p = ∞, with c∞ denoting the minimax center. Hereafter we use c for c∞ , H for H∞
and Rα for Rα,∞ . In this case there is no canonical deterministic algorithm which generalizes the gradient descent algo-
rithms considered for p ∈ [1,∞). Following Eq. (3), H(x) denotes the farthest distance from x to a point of the support of
the measure (L∞-norm).

To give an example of a Riemannian manifold, consider the space of symmetric positive definite matrices with associated
Riemannian distance (see Section 4)

ρ(P , Q ) = ∥∥log
(

P−1 Q
)∥∥

F =
√∑

i

log2 λi (4)

where λi are the eigenvalues of matrix P−1 Q . This is a non-compact Riemannian symmetric space of nonpositive curvature
(Cartan–Hadamard manifold, see [11], Ch. 12). In this context any measure ν with bounded support satisfies Eq. (2) (since
we can take α > 0 as small as we like), and consequently the minimizer c of H exists and is unique. We call it the 1-center
or minimax center of ν .

We generalized the BC-ALG by noticing that the iterative update is a barycenter of the current minimax center with the
current farthest point. Thus the new position of the minimax center falls along the straight line joining these two points in
Euclidean geometry. In Riemannian geometry, the shortest path linking two points is called a geodesic (for example, arc of
a great circle for spherical geometry). Instead of walking on a straight line, we instead walk on the geodesic to the farthest
point as follows:

GEO-ALG:

• Initialize the center with c1 ∈ P , and
• Iteratively update the current minimax center as

ci+1 = Geodesic

(
ci, f i,

1

i + 1

)
,

where f i denotes the farthest point of P to ci , and Geodesic(p,q, t) denotes the intermediate point m on
the geodesic passing through p and q such that ρ(p,m) = t × ρ(p,q).

Note that GEO-ALG generalized BC-ALG by taking the Euclidean distance ρ(p,q) = ‖p − q‖.
The paper is organized as follows: Section 2 gives and proves a crucial lemma. It is followed by the description and

convergence rate analysis of our generic Riemannian algorithm in Section 3. Section 4 instantiates the algorithm for the
particular cases of the hyperbolic manifold and the manifold of symmetric positive definite matrices. Section 5 concludes
the paper and hints at further perspectives. To make the paper self-contained, Appendix A recalls the fundamental notions
of Riemannian geometry used throughout the paper.

2. A key lemma

In this section, we assume2 that supp(ν) ⊂ B(o, R) and

R < Rα = 1

2
min

{
inj(M),

π

α

}

with α > 0 such that α2 is an upper bound for the sectional curvatures in M . The following lemma is essential for proving
the convergence of the algorithm determining the minimax of ν .

Lemma 1. There exists τ > 0 such that for all x ∈ B(o, R),

H(x) − H(c) � τρ2(x, c). (5)

Proof. The point c is the center of the smallest ball which contains supp(ν) and the radius of this ball is exactly r∗ := H(c)
(see [1]). An immediate consequence is that r∗ � R . Denoting by S(c, r∗) the boundary of this ball and by Sc M the set of
unitary vectors in Tc M , for all v ∈ Sc M there exists y ∈ S(c, r∗) ∩ supp(ν) such that

2 Any bounded measure on a Cartan–Hadamard manifold satisfies this assumption.
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〈−→cy, v〉 � 0 (6)

where t �→ γt(c, y) is the geodesic from c to y in time one, γ̇t(c, y) denotes derivative with respect to t and −→cy = γ̇0(c, y).
Indeed, if this was not true it would contradict the minimality of S(c, r∗) (refer to [1]).

Now letting t �→ γt(v) = expx(tv) the geodesic satisfying γ̇0(v) = v , we prove Eq. (5) for x = γt(v). We have

H
(
γt(v)

) − H(c) � ρ
(
γt(v), y

) − ρ(c, y) = ρ
(
γt(v), y

) − r∗ (7)

by definition of H .
Then we consider a 2-dimensional sphere S2

α2 with constant curvature α2, distance function ρ̃ , and in S2
α2 a comparison

triangle γ̃t(ṽ) ỹc̃ such that ρ̃( ỹ, c̃) = r∗ , ṽ is a unitary vector in Tc̃ S2
α2 satisfying

〈−→̃c ỹ, ṽ〉 = 〈−→cy, v〉. (8)

Let us prove that

ρ̃
(
γ̃t(ṽ), ỹ

) − r∗ = ρ̃
(
γ̃t(ṽ), ỹ

) − ρ(c̃, ỹ) � ταρ̃2(γ̃t(ṽ), c̃
)

(9)

for some τα > 0 provided condition (6) is realized: for simplicity we will write d̃ = ρ̃(γ̃t(ṽ), ỹ). Using Eq. (6) and the first
law of cosines (Theorem 4 in Appendix A), we get

0 � cos(
−→̃
c ỹ, ṽ) = cos(αd̃) − cos(αr∗) cos(αt)

sin(αr∗) sin(αt)
(10)

which yields

cos(αd̃) − cos
(
αr∗) cos(αt) � 0.

On the other hand since 0 < αr∗ < π
2 and 0 � αd̃ < π we have

0 � 2 sin(αd̃) cos
(
αr∗) sin

(
αr∗).

So we get

cos(αd̃) − cos
(
αr∗) cos(αt) � 2 sin(αd̃) cos

(
αr∗) sin

(
αr∗)

which is equivalent to

cos2(αr∗) cos(αd̃) + cos
(
αr∗) sin

(
αr∗) sin(αd̃) − cos

(
αr∗) cos(αt)

� sin(αd̃) cos
(
αr∗) sin

(
αr∗) − sin2(αr∗) cos(αd̃)

and this in turn implies

sin
(
α

(
d̃ − r∗)) � cotan

(
αr∗)(cos

(
α

(
d̃ − r∗)) − cos(αt)

)
so

lim inf
t↘0

ρ̃(γ̃t(ṽ), ỹ) − r∗

t2
� α

2
cotan

(
αr∗) � α

2
cotan(αRα)

uniformly in ṽ . Consequently Eq. (9) is true for γ̃t(ṽ) in a neighborhood of c̃, and since ρ̃(γ̃t(ṽ), ỹ) − r∗ does not vanish
outside this neighborhood, by a compactness argument we prove that Eq. (9) is true in any compact included in B̃(c̃, Rα),
if τα is sufficiently small.

To finish the proof we are left to use the Alexandrov comparison theorem (Theorem 2 in Appendix A) with triangles
γt(v)yc and γ̃t(ṽ) ỹc̃ to check that the right-hand side of Eq. (7) in M is larger than the left-hand side of Eq. (9). This
proves Eq. (5) in B(c, R) ∩ B(o, R), and for proving it in B(o, R) we just have to notice that H is continuous and positive on
the compact set B̄(o, R)\B(c, R), hence it has a positive lower bound. �
3. Riemannian approximation algorithm

For x ∈ B(o, R), denote by t �→ γt(v(x, ν)) a unit speed geodesic from γ0(v(x, ν)) = x to one point y = γH(x)(v(x, ν))

in supp(ν) which realizes the maximum of the distance from x to supp(ν). So v = 1
H(x) exp−1

x (y). A measurable choice is
always possible. Note that if ν has finite support, when there is a finite number of possibilities for y it is natural to make a
random uniform choice. However in a generic situation this should never happen, there should be only one choice.

We consider the following stochastic algorithm.
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RIE-ALG:
Fix some δ > 0.
Step 1 Choose a starting point x0 ∈ supp(ν) and let k = 0.
Step 2 Choose a step size tk+1 ∈ (0, δ] and let xk+1 = γtk+1 (v(xk, ν)), then do again step 2 with k ← k + 1.

This algorithm generalizes the Euclidean scheme of Bădoiu and Clarkson [6] and algorithm GEO-ALG for probability
measures. Indeed, if GEO-ALG is initialized with ck0 ∈ P with k0 the first integer larger than 1/δ, then it suffices to take
tk = 1/k for k � k0 in RIE-ALG.

Let a ∧ b denote the minimum operator a ∧ b = min(a,b).
Let

R0 = Rα − R

2
∧ R

2
. (11)

Theorem 1. Assume α,β > 0 are such that −β2 is a lower bound and α2 an upper bound of the sectional curvatures in M.
If the step sizes (tk)k�1 satisfy

δ � R0

2
∧ 2

β
arctanh

(
tanh(βR0/2) cos(αR) tan(αR0/4)

)
, (12)

lim
k→∞

tk = 0,

∞∑
k=1

tk = +∞ and
∞∑

k=1

t2
k < ∞ (13)

then the sequence (xk)k�1 generated by the algorithm satisfies

lim
k→∞

ρ(xk, c) = 0. (14)

Remark 1. In practice ν is given and one takes any ball B(o, R) which contains its support. We need the condition R < Rα .
One should take R as small as possible for R0 and then δ being not too small. The best choice is o = c and R = H(c) but
they are not known a priori. If ν has a finite support one can take for o a point of the support of ν and for R the maximal
distance from this point to another point of the support. It always works in a simply connected manifold of negative
curvature since in this case α can be taken as small as we want. This is the case in our two main examples considered
in Section 4, namely the hyperbolic space and the set of positive definite symmetric matrices with our specific choice of
metric. Note that in this situation R0 and δ can also be taken as large as we want.

Proof. First we prove that for all r ∈ [R0, R], if xk ∈ B(c, r) then xk+1 ∈ B(c, r): if ρ(xk, c) � R0/2 it is clear since δ � R0/2.
If ρ(xk, c) � R0/2 we prove that ρ(xk+1, c) � ρ(xk, c). Let yk+1 = γH(xk)(v(xk, ν)): yk+1 ∈ supp(ν) is such that H(xk) =
ρ(xk, yk+1); consider the triangle cxk yk+1. Let a = ρ(xk, yk+1), b = ρ(yk+1, c) and r = ρ(c, xk), x̂k the angle corresponding
to the point xk . By Alexandrov comparison theorem (in fact Corollary 1 in Appendix A) x̂k is smaller than the same in
constant curvature α2. This together with the law of cosines in spherical geometry (Theorem 4 in Appendix A) yields

cos x̂k � cosαb − cosαr cosαa

sinαr sinαa
.

Now r � R0/2, b � r∗ and a � r∗ so

cos x̂k � cosαr∗(1 − cos(αR0/2))

sin(αR0/2)
= cosαr∗ tan(αR0/4) � cosαR tan(αR0/4). (15)

Consider now the triangle cxkxk+1 and let f = ρ(c, xk+1). Recall ρ(xk, xk+1) = tk+1. Now by Toponogov theorem (Theorem 3
in Appendix A) f is smaller than the same in constant curvature −β2. This together with first law of cosines in hyperbolic
geometry (Theorem 4 in Appendix A) yields

cosh β f � cosh βr cosh βtk+1 − cos x̂k sinh βr sinh βtk+1 (16)

which implies by Eq. (15)

cosh β f � cosh(βr) cosh βtk+1 − cosαR tan(αR0/4) sinh(βr) sinh βtk+1. (17)

Let us check that the condition on δ implies that the right-hand side is smaller than cosh βr: we want to prove

cosh(βr)(cosh βtk+1 − 1) � cosαR tan(αR0/4) sinh(βr) sinh βtk+1

or equivalently
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cosh βtk+1 − 1

sinh βtk+1
� cosαR tan(αR0/4) tanh(βr). (18)

But

cosh βtk+1 − 1

sinh βtk+1
= tanh

(
βtk+1

2

)

and tk+1 � δ, r � R0/2, so that Eq. (18) is implied by

tanh

(
βδ

2

)
� cosαR tan(αR0/4) tanh

(
βR0

2

)
. (19)

Now clearly the condition on δ implies Eq. (19).
So we have proved that ρ(c, xk+1) � ρ(c, xk).
Then we prove that there exists η > 0 such that if xk ∈ B(c, R)\B(c, R0) then

cosh(βρ(c, xk+1))

cosh(βρ(c, xk))
� 1 − ηtk+1. (20)

From Eq. (17), we obtain

cosh β f

cosh βr
� cosh βtk+1 − cosαR tan(αR0/4) tanh(βr) sinh βtk+1

� cosh βtk+1 − cosαR tan(αR0/4) tanh(βR0) sinh βtk+1

� 1 − 2
(
cosαR tan(αR0/4) tanh(βR0) cosh(βtk+1/2)

− sinh(βtk+1/2)
)

sinh(βtk+1/2)

� 1 − (
cosαR tan(αR0/4) tanh(βR0) cosh(βtk+1/2) − sinh(βtk+1/2)

)
βtk+1

� 1 − (
cosαR tan(αR0/4) tanh(βR0)

− cosαR tan(αR0/4) tanh(βR0/2)
)

cosh(βtk+1/2)βtk+1

where we used Eq. (12) in the last inequality. So

cosh βρ(c, xk+1)

cosh βρ(c, xk)
� 1 − (

cosαR tan(αR0/4) tanh(βR0)

− cosαR tan(αR0/4) tanh(βR0/2)
)
βtk+1 (21)

and this gives Eq. (20).
At this stage, since

∑∞
k=1 tk = ∞, we can conclude that there exists k0 such that cosh(βρ(c, xk0 )) � cosh(βR0) so xk0 ∈

B(c, R0). Moreover from the first part of the proof we have that for all k � k0, xk ∈ B(c, R0).
Now we use the fact that on B(c, R0), H is convex and satisfies Eq. (5). By boundedness of the Hessian of square distance

to c (see [22] Lemma 1.1 for details), we have for k � k0

ρ2(c, xk+1) � ρ2(c, xk) − 2tk+1
〈
exp−1

xk
c, γ̇0

(
v(xk, ν)

)〉 + C

(
Rα + R

2
, β

)
t2
k+1 (22)

with

C(r, β) = 2rβ cotanh(2βr). (23)

Now letting yk+1 = γH(xk)(v(xk, ν)) we have H � ρ(·, yk+1) since yk+1 ∈ supp(ν). We remark that ρ2(·, yk+1) is convex
on B(c, R0) by the fact that for all z ∈ B(c, R0) and y ∈ supp(ν), ρ(z, y) < Rα . Moreover we have H(xk) = ρ(xk, yk+1). As a
consequence, we get

H(c) − H(xk) � ρ2(c, yk+1) − ρ2(xk, yk+1)

� −2
〈
exp−1

xk
c, γ̇0

(
v(xk, ν)

)〉
and this implies by Lemma 1

−2
〈
exp−1

xk
c, γ̇0

(
v(xk, ν)

)〉
� −τρ2(c, xk). (24)

Plugging into Eq. (22) yields
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ρ2(c, xk+1) � (1 − τ tk+1)ρ
2(c, xk) + C

(
Rα + R

2
, β

)
t2
k+1. (25)

We recall from here the standard argument to prove that ρ2(c, xk) converges to 0. Let

a = lim sup
k→∞

ρ2(c, xk).

Iterating Eq. (25) yields for 
 � 1

ρ2(c, xk+
) �

∏

j=1

(1 − τ tk+ j)ρ
2(c, xk) + C


∑
j=1

t2
k+ j

with C = C( Rα+R
2 , β). Letting 
 → ∞ and using the fact that

∑∞
j=1 tk+ j = ∞, which implies

∞∏
j=1

(1 − τ tk+ j) = 0,

we get

a � C
∞∑
j=1

t2
k+ j.

Finally using
∑∞

j=1 t2
j < ∞ we obtain that limk→∞

∑∞
j=1 t2

k+ j = 0, so a = 0. �
Remark 2. In Theorem 1, it looks difficult to find a larger δ. The choice is almost optimal to have ρ(c, xk+1) � ρ(c, xk)

outside B(c, R0). On the other hand Eq. (21) yields an explicit value for η in Eq. (20) and this in turn can be used to find
an explicit η′ > 0 such that

ρ2(c, xk+1) �
(
1 − η′tk+1

)
ρ2(c, xk), tk+1 � δ ∧ 1/η′. (26)

For the speed of convergence, taking tk = r
k+1 , we proceed as in Proposition 4.10 of [22]. We use the following lemma,

borrowed from the paper of [12]:

Lemma 2. Let (uk)k�1 be a sequence of nonnegative real numbers such that

uk+1 �
(

1 − λ

k + 1

)
uk + ξ

(k + 1)2

where λ and ξ are positive constants. Then

uk+1 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(k+1)λ

(u0 + 2λξ(2−λ)
1−λ

) if 0 < λ < 1;
ξ(1+ln(k+1))

k+1 if λ = 1;
1

(λ−1)(k+2)
(ξ + (λ−1)u0−ξ

(k+2)λ−1 ) if λ > 1.

Proposition 1. Choosing tk = r
k+1 , letting k0 such that for all k � k0 , xk ∈ B(c, R0),

ρ2(xk0+k, c) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
(k+1)λ

(R2
0 + 2λξ(2−λ)

1−λ
) if 0 < λ < 1;

ξ(1+ln(k+1))
k+1 if λ = 1;
1

(λ−1)(k+2)
(ξ + (λ−1)R2

0−ξ

(k+2)λ−1 ) if λ > 1,

where λ = τ r (with τ given in Lemma 1) and ξ = r2C( Rα+R
2 , β).

Proof. This is a direct consequence of Lemma 2 and inequality (25), valid for k � k0. �
Remark 3. From the estimate of η given by Eq. (21) one can get an estimate of k0. Another possibility is to replace τ by
τ ∧ η′ in Eq. (25) with η′ defined in Eq. (26). Then Proposition 1 is valid for all k � 1 without the condition xk ∈ B(c, R0).
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Remark 4. The proof of Theorem 1 works for R0 defined in Eq. (11). It also works for any smaller positive value. It is better
to have R0 large so that xk rapidly enters the ball B(c, R0). On the other hand when R0 is small and xk is already in this
ball then one can take τ close to α

2 cotan(αRα). Again explicit estimates are possible.

4. Two case studies

In order to implement algorithm GEO-ALG (a specialization of RIE-ALG for point clouds with step sizes ti = 1
i+1 ), we need

to describe the geodesics of the underlying manifold, and find an intermediate point m = Geodesic(p,q, t) on the geodesic
passing through p and q such that ρ(p,m) = tρ(p,q).

4.1. Hyperbolic manifold

A hyperbolic manifold is a complete Riemannian d-dimensional manifold of constant sectional curvature −1 that is
isometric to the real hyperbolic space. There exist several models of hyperbolic geometry. Here, we consider the planar non-
conformal Klein model where geodesics are straight lines. See [14]. Although there exists no known closed-form formula
for the hyperbolic centroid (p = 2), Welzl’s minimax algorithm generalizes to the Klein disk as described in [14] to compute
exactly the hyperbolic 1-center. The Klein Riemannian distance on the unit disk is defined by

ρ(p,q) = arccosh
1 − p�q√

(1 − p�p)(1 − q�q)
(27)

where arccosh(x) = log(x + √
x2 − 1 ), and the geodesic passing through p and q is the straight line segment

γt(p,q) = (1 − t)p + tq, t ∈ [0,1]. (28)

Finding m such that ρ(p,m) = tρ(p,q) cannot be solved in closed-form solution (except for t = 1
2 , see [14]), so that we

rather proceed by a bisection search algorithm on parameter t up to machine precision. Fig. 1 shows the snapshots of our
implementation in Java Processing.3

Fig. 2 plots the convergence rate of the GEO-ALG algorithm. The code is publicly available on-line for reproducible
research.

4.2. Manifold of symmetric positive definite matrices

A d ×d matrix M with real entries is said symmetric positive definite (SPD) iff it is symmetric (M = M�), and that for all
x �= 0, x�Mx > 0. The set of d × d SPD matrices forms a smooth manifold of dimension d(d+1)

2 . We refer to [11] (Chapter 12)
for a description of the geometry of SPD matrices. See also the work of Ji [10] for optimization on matrix manifolds. The
geodesic linking (matrix) point P to point Q is given by

γt(P , Q ) = P
1
2
(

P− 1
2 Q P− 1

2
)t

P
1
2 , (29)

where the matrix function h(M) is computed from the singular value decomposition M = U D V � (with U and V unitary
matrices and D = diag(λ1, . . . , λd) a diagonal matrix of eigenvalues) as h(M) = U diag(h(λ1), . . . ,h(λd))V � . For example, the

square root function of a matrix is computed as M
1
2 = U diag(

√
λ1, . . . ,

√
λd )V � .

In this case, finding t such that

∥∥log
(

P−1 Q
)t∥∥2

F = r
∥∥log P−1 Q

∥∥2
F , (30)

where ‖ · ‖F denotes the Fröbenius norm yields to t = r. Indeed, consider λ1, . . . , λd the eigenvalues of P−1 Q , then Eq. (30)
amounts to find

d∑
i=1

log2 λt
i = t2

d∑
i=1

log2 λi = r2
d∑

i=1

log2 λi . (31)

That is t = r.
Fig. 3 displays the plots of the convergence rate of the algorithm for the SPD manifold.

3 processing.org.

http://processing.org


M. Arnaudon, F. Nielsen / Computational Geometry 46 (2013) 93–104 101
Fig. 1. Snapshots of the GEO-ALG algorithm implemented for the hyperbolic Klein disk: The large black disk and the white disk denote the current center
and farthest point, respectively. The linked path shows the trajectory of the centers as the number of iterations increase. On-line demo available at http:
//www.informationgeometry.org/RiemannMinimax/.

5. Concluding remarks and discussion

We described a generalization of the 1-center algorithm of Bădoiu and Clarkson [6] to arbitrary Riemannian geometry,
and proved the convergence under mild assumptions. This proves the existence of Riemannian core-sets for optimization.
This 1-center building block can be used for k-center clustering. Furthermore, the algorithm can be straightforwardly ex-
tended to sets of geodesic balls.

http://www.informationgeometry.org/RiemannMinimax/
http://www.informationgeometry.org/RiemannMinimax/
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Fig. 2. Convergence rate of the GEO-ALG algorithm for the hyperbolic disk for the first 200 iterations. The horizontal axis denotes the number of iterations
and the vertical axis (a) the relative Klein distance between the current center and the optimal 1-center (approximated for a large number of iterations),
(b) the radius of the smallest enclosing ball anchored at the current center.

Fig. 3. Convergence rate of the GEO-ALG algorithm for the SPD Riemannian manifold (dimension 5) for the first 200 iterations. The horizontal axis denotes
the number of iterations i and the vertical axis (a) the relative Riemannian distance between the current center ci and the optimal 1-center c∗ ( ρ(c∗,ci )

r∗ ,
where ρ∗ and r∗ are approximated for a large number of iterations), (b) the radius ri of the smallest enclosing SPD ball anchored at the current center.

An open-source code implementation in Java™ for reproducible research is available on-line at http://www.
informationgeometry.org/RiemannMinimax/.
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Appendix A. Some notions of Riemannian geometry

In this section, we recall some basic notions of Riemannian geometry used throughout the paper. For a complete presen-
tation, we refer to [9].

We let M be a Riemannian manifold and 〈·,·〉 the Riemannian metric, which is a definite positive bilinear form on each
tangent space Tx M , and depends smoothly on x. The associated norm in Tx M will be denoted by ‖ · ‖: ‖u‖ = 〈u, u〉1/2. We
denote by ρ(x, y) the distance between two points on the manifold M:

ρ(x, y) = inf

{ 1∫ ∥∥ϕ̇(t)
∥∥dt, ϕ ∈ C1([0,1], M

)
, ϕ(0) = x, ϕ(1) = y

}
.

0

http://www.informationgeometry.org/RiemannMinimax/
http://www.informationgeometry.org/RiemannMinimax/
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A geodesic in M is a smooth path which locally minimizes the distance between two points. In general such a curve does
not minimize it globally. However it is true in all the sets we are considering in this paper. Given a vector v ∈ T M with
base point x, there is a unique geodesic started at x with speed v at time 0. It is denoted by t �→ expx(tv) or compactly
by t �→ γt(v). It depends smoothly on v but it has in general finite lifetime. A geodesic defined on a time interval [a,b] is
said to be minimal if it minimizes the distance from the image of a to the image of b. If the manifold is complete, taking
x, y ∈ M , there exists a minimal geodesic from x to y in time 1. In all the scenarios we are considering in this paper, the
minimal geodesic is unique and depends smoothly on x and y, and we denote it by γ·(x, y) : [0,1] → M , t �→ γt(x, y) with
the conditions γ0(x, y) = x and γ1(x, y) = y. A subset U of M is said to be convex if for any x, y ∈ U , there exists a unique
minimal geodesic γ·(x, y) in M from x to y, this geodesic fully lies in U and depends smoothly on x, y, t .

The injectivity radius of M , denoted by inj(M), is the largest r > 0 such that for all x ∈ M , the map expx restricted to the
open ball in Tx M centered at 0 with radius r is an embedding.

Given x ∈ M , u, v two non-collinear vectors in Tx M , the sectional curvature Sect(u, v) = K is a number which gives
information on how the geodesics issued from x behave near x. More precisely the image by expx of the circle centered at
0 of radius r > 0 in Span(u, v) has length

2π S K (r) + o
(
r3) as r → 0

with

S K (r) =

⎧⎪⎪⎨
⎪⎪⎩

sin(
√

Kr)√
K

if K > 0,

r if K = 0,

sinh(
√−Kr)√−K

if K < 0.

For instance, if K > 0, expx(Span(u, v)) is near x approximatively a 2-dimensional sphere with radius 1√
K

. In fact, if M

is simply connected and all the sectional curvatures are equal to the same K > 0, then M is a d-dimensional sphere with
radius 1√

K
, where d is the dimension of M . If M is simply connected and all the sectional curvatures are equal to the same

K < 0, we say that M is a d-dimensional hyperbolic space with curvature K .
An upper bound (resp. lower bound) of sectional curvatures is a number a such that for all non-collinear u, v in the

same tangent space, Sect(u, v) � a (resp. Sect(u, v) � a). In the paper, we used a positive upper bound α2 and a negative
lower bound −β2, α,β > 0.

The existence of the upper bound α2 for sectional curvatures makes possible to compare geodesic triangles, by Alexandrov
theorem (see [8]).

Theorem 2. Let x1, x2, x3 ∈ M satisfy x1 �= x2 , x1 �= x3 and

ρ(x1, x2) + ρ(x2, x3) + ρ(x3, x1) < 2 min

{
inj M,

π

α

}

where α > 0 is such that α2 is an upper bound of sectional curvatures. Let the minimizing geodesic from x1 to x2 and the minimizing
geodesic from x1 to x3 make an angle θ at x1 . Denoting by S2

α2 the 2-dimensional sphere of constant curvature α2 (hence of radius

1/α) and ρ̃ the distance in S2
α2 , we consider points x̃1, x̃2, x̃3 ∈ S2

α2 such that ρ(x1, x2) = ρ̃(x̃1, x̃2), ρ(x1, x3) = ρ̃(x̃1, x̃3). Assume
that the minimizing geodesic from x̃1 to x̃2 and the minimizing geodesic from x̃1 to x̃3 also make an angle θ at x̃1 .

Then we have ρ(x2, x3) � ρ̃(x̃2, x̃3).

Instead of prescribing the angle in the comparison triangle in the sphere, it is possible to prescribe the third distance:

Corollary 1. The assumption are the same as in Theorem 2 except that we assume that ρ(x2, x3) = ρ̃(x̃2, x̃3) (all the distances are
equal), but the minimizing geodesic from x̃1 to x̃2 and the minimizing geodesic from x̃1 to x̃3 now make an angle θ̃ at x̃1 .

Then we have θ̃ � θ .

There also exists a comparison result in the other direction, called Topogonov’s theorem.

Theorem 3. Assume β > 0 is such that −β2 is a lower bound for sectional curvatures in M. Let x1, x2, x3 ∈ M satisfy x1 �= x2 , x1 �= x3 .
Let the minimizing geodesic from x1 to x2 and the minimizing geodesic from x1 to x3 make an angle θ at x1 . Denoting by H2

−β2 the

hyperbolic 2-dimensional space of constant curvature −β2 and ρ̃ the distance in H2
−β2 , we consider points x̃1, x̃2, x̃3 ∈ H2

−β2 such

that ρ(x1, x2) = ρ̃(x̃1, x̃2), ρ(x1, x3) = ρ̃(x̃1, x̃3). Assume that the minimizing geodesic from x̃1 to x̃2 and the minimizing geodesic
from x̃1 to x̃3 also make an angle θ at x̃1 .

Then we have ρ(x2, x3) � ρ̃(x̃2, x̃3).
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Triangles in the sphere S2
α2 and in the hyperbolic space H2

−β2 have explicit relations between distance and angles as

we will see below. This combined with Theorems 2 and 3 and Corollary 1 allow to find related bounds in M , which are
intensively used in our proofs.

In this paper, we only use the first law of cosines in S2
α2 and in H2

−β2 (see e.g., the paper of Ratcliffe [18], Theorems 2.5.3

and 3.5.3).

Theorem 4. If θ1, θ2, θ3 are the angles of a triangle in S2
α2 and x1, x2, x3 are the lengths of the opposite sides, then

cos θ3 = cos(αx3) − cos(αx1) cos(αx2)

sin(αx1) sin(αx2)
.

If θ1, θ2, θ3 are the angles of a triangle in H2
−β2 and x1, x2, x3 are the lengths of the opposite sides, then

cos θ3 = cosh(βx1) cosh(βx2) − cosh(βx3)

sinh(βx1) sinh(βx2)
.

References

[1] B. Afsari, Means and averaging on Riemannian manifolds, PhD thesis, University of Maryland, 2009.
[2] B. Afsari, Riemannian Lp center of mass: existence, uniqueness, and convexity, Proc. Amer. Math. Soc. 139 (February 2011) 655–674.
[3] M. Arnaudon, C. Dombry, A. Phan, L. Yang, Stochastic algorithms for computing means of probability measures, Stochastic Process. Appl. 122 (4) (April

2012) 1437–1455.
[4] M. Berger, A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003.
[5] S. Bonnabel, Stochastic gradient descent on manifolds, arXiv:1111.5280v2, 2011.
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