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Fisher Information Metric (FIM)

Consider a statistical model p(x |Θ) of order D. The FIM
(Hotelling29,Rao45) I(Θ) = (Iij) is defined by a D × D positive
semi-definite matrix

Iij = Ep

[
∂l

∂Θi

∂l

∂Θj

]
, (1)

where l(Θ) = log p(x |Θ) denotes the log-likelihood.
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Equivalent Expressions

Iij = Ep

[
∂l

∂Θi

∂l

∂Θj

]
= −Ep

[
∂2l

∂Θi∂Θj

]
= 4

∫
∂
√

p(x |Θ)

∂Θi

∂
√
p(x |Θ)

∂Θj
d x .

Observed FIM (Efron & Hinkley, 1978) With respect to
Xn = {xk}nk=1,

Î = −∇2l(Θ |Xn) = −
n∑

i=1

∂2 log p(xi |Θ)

∂Θ∂Θᵀ .
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FIM and Statistical Learning

I Any parametric learning is inside a corresponding parameter
manifoldMΘ

θ
TθMΘ: a tangent space with

a local inner product g(θ)

MΘ

a learning curve

I FIM gives an invariant Riemannian metric g(Θ) = I(Θ) for
any loss function based on standard f-divergence (KL,
cross-entropy, . . . )

S. Amari. Information Geometry and Its Applications. 2016.
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Invariance

The FIM is not invariant and depends on the parameterization:

gΘ(Θ) = JᵀgΛ(Λ)J

where J is the Jacobian matrix Jij = ∂Λi
∂Θj

.

However its measurements such as 〈δΘ, δΘ〉g(Θ) is invariant:

〈δΘ, δΘ〉g(Θ) = δΘᵀg(Θ)δΘ

= δΘᵀJᵀgΛ(Λ)JδΘ
= δΛᵀgΛ(Λ)δΛ

= 〈δΛ, δΛ〉g(Λ).

Regardless of the choice of the coordinate system, it is essentially
the same metric!



5/29

Statistical Formulation of a Multilayer Perceptron
(MLP)

p(y | x ,Θ) =
∑

h1,··· ,hL−1

p(y |hL−1,θL) · · · p(h2 |h1,θ2)p(h1 | x ,θ1),

x1 x2 x3 x4 x5x

y1 y2 y3 y4 y5y

h1

hL−1

θ1

θL
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The FIM of a MLP

The FIM of a MLP has the following expression

g(Θ) = Ex∼p̂(Xn), y∼p(y | x ,Θ)

[
∂l

∂Θ

∂l

∂Θᵀ

]
=

1
n

n∑
i=1

Ep(y | xi ,Θ)

[
∂li
∂Θ

∂li
∂Θᵀ

]
where

I p̂(Xn) is the empirical distribution of the samples Xn = {xi}ni=1
I li (Θ) = log p(y | xi , Θ) is the conditional log-likelihood
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Meaning of the FIM of a MLP

Consider a learning step onMΘ from Θ to Θ + δΘ. The step size

〈δΘ, δΘ〉g(Θ) = δΘᵀg(Θ)δΘ

= δΘᵀ

{
1
n

n∑
i=1

Ep(y | xi ,Θ)

[
∂li
∂Θ

∂li
∂Θᵀ

]}
δΘ

=
1
n

n∑
i=1

Ep(y | xi ,Θ)

[
δΘᵀ ∂li

∂Θ

]2

measures how much δΘ is statistically along ∂l
∂Θ .

Will δΘ make a significant change to the mapping x → y or not?
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Natural Gradient: Seeking a Short Path

Consider minΘ∈MΘ
L(Θ). At Θt ∈MΘ, the target is to minimize

wrt δΘ

L(Θt + δΘ)︸ ︷︷ ︸
Loss function

+
1
2γ
〈δΘ, δΘ〉g(Θt)︸ ︷︷ ︸
Squared step size

(γ: learning rate)

≈L(Θt) + δΘᵀ 5 L(Θt) +
1
2γ
δΘᵀg(Θt)δΘ,

giving a learning step

δΘt = −γ g−1(Θt)5 L(Θt)︸ ︷︷ ︸
natural gradient

I Equivalence with mirror descent (Raskutti & Mukherjee
2013)



9/29

Natural Gradient: Intrinsics

δΘt = −γg−1(Θt)5 L(Θt)

This Riemannnian metric is a property of the parameter space that
is independent of the loss function L(Θ).

The good performance of natural gradient relies on that L(Θ) is
similarly curved as log p(x |Θ) (x ∼ p(x |Θ)).

Natural gradient is not universally good for any loss functions.
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Natural Gradient: Pros and Cons

Pros

I Invariant (intrinsic) gradient
I Not trapped in plateaus
I Achieve Fisher efficiency in online learning

Cons

I Too expensive to compute (no closed-form FIM; need matrix
inversion)
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Relative FIM — Informal Ideas

I Decompose the learning system into subsystems

I The subsystems are interfaced with each other through hidden
variables hi

I Some subsystems are interfaced with the I/O environment
through xi and yi

I Compute the subsystem FIM by integrating out its interface
variables hi , so that the intrinsics of this subsystem can be
discussed regardless of the remaining parts



12/29

From FIM to Relative FIM (RFIM)

FIM

θ
(parameter vector)

log p(x |θ)
(likelihood scalar)

How sensitive is x wrt tiny movements of θ onMθ?

RFIM

θ
(parameter vector)

log p(r |θ,θf )
(likelihood scalar)

Given θf , how sensitive is r wrt tiny movements of θ?
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Relative FIM — Definition

Given θf (the reference), the Relative Fisher Information Metric
(RFIM) of θ wrt h (the response) is

gh (θ |θf ) = Ep(h |θ,θf )

[
∂

∂θ
ln p(h |θ, θf )

∂

∂θᵀ
ln p(h |θ, θf )

]
,

or simply gh (θ).

Meaning: given θf , how variations of θ will affect the response h.
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Different Subsystems – Simple Examples

θ

hi

Figure: Generator

θ

h′i

hi
Figure: Discriminator or Regressor
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A Dynamic Geometry

MΘ

Θ yx

Mθ1

x

x+ ∆x

θ1x

Mθ2h1

h1 + ∆h1

θ2h1

Mθ3

h2

h2 + ∆h2

θ3h2 y

Model:

Manifold:

Computational graph:

Metric:

Θ

Θ I(Θ)

θ3 h2

θ3

h2

gy(θ3)

θ2 h1

θ2

h1

gh2(θ2)

θ1

θ1 gh1(θ1)

p(y |Θ,x) =
∑
h1

∑
h2

p(h1 |θ1,x) p(h2 |θ2,h1) p(y |θ3,h2)

I As the interface hidden variables hi are changing, the
subsystem geometry is not absolute but is relative to its
reference variables provided by adjacent subsystems
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RFIM of One tanh Neuron

Consider a neuron with input x , weights w , a hyperbolic tangent
activation function, and a stochastic output y ∈ {−1, 1}, given by

p(y = 1) =
1 + tanh(wᵀx̃)

2
, tanh(t) =

exp(t)− exp(−t)

exp(t) + exp(−t)
.

x̃ = (xᵀ, 1)ᵀ denotes the augmented vector of x

g y (w | x) = νtanh(w , x)x̃ x̃ᵀ, νtanh(w , x) = sech2(wᵀx̃).
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RFIM of Parametric Rectified Linear Unit

p(y |w , x) = G (y | relu(wᵀx̃), σ2), (G is for Gaussian)

relu(t) =

{
t if t ≥ 0
ιt if t < 0.

(0 ≤ ι < 1)

By certain assumptions,

g y (w | x) = νrelu(w , x)x̃ x̃ᵀ,

νrelu(w , x) =
1
σ2

ι+ (1− ι) sigm︸︷︷︸
sigmoid

(
1− ι
ω

wᵀx̃
)

2

.

Set σ = 1, ι = 0, it simplifies to

νrelu(w , x) = sigm2
(
1
ω

wᵀx̃
)
.
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Generic Expression of One-neuron RFIMs

Denote f ∈ {tanh, sigm, relu, elu} to be an element-wise
nonlinear activation function. The RFIM is

g y (w | x) = νf (w , x)x̃ x̃ᵀ,

where νf (w , x) is a positive coefficient with large values in the
linear region, or the effective learning zone of the neuron.
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RFIM of a Linear Layer

x : input; W : connection weights; y : stochastic output following

p(y |W , x) = G (y |W ᵀx̃ , σ2I ).

We vectorize W by stacking its columns {wi}. Then

gy (W | x) =
1
σ2

x̃ x̃ᵀ

. . .
x̃ x̃ᵀ

 .
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RFIM of a Non-linear Layer

A nonlinear layer applies an element-wise activation on W ᵀx̃ . We
have

gy (W | x) =

νf (w1, x)x̃ x̃ᵀ

. . .
νf (wm, x)x̃ x̃ᵀ

 ,
where νf (wi , x) depends on the activation function f .
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The RFIMs of single neuron
models, a linear layer, a

non-linear layer, a soft-max
layer, two consecutive layers all
have simple closed form

solutions1.

1See the paper.
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List of RFIMs

Subsystem the RFIM gy (w)

A tanh neuron sech2(wᵀx̃)x̃ x̃ᵀ

A sigm neuron sigm(wᵀx̃) [1− sigm(wᵀx̃)] x̃ x̃ᵀ

A relu neuron
[
ι+ (1− ι)sigm

(1−ι
ω wᵀx̃

)]2 x̃ x̃ᵀ

A elu neuron
{

x̃ x̃ᵀ if wᵀx̃ ≥ 0
(α exp(wᵀx̃))2 x̃ x̃ᵀ if wᵀx̃ < 0

A linear layer diag [x̃ x̃ᵀ, · · · , x̃ x̃ᵀ]
A non-linear layer diag [νf (w1, x̃)x̃ x̃ᵀ, · · · , νf (wm, x̃)x̃ x̃ᵀ]

A soft-max layer


(η1 − η2
1)x̃ x̃ᵀ −η1η2 x̃ x̃ᵀ · · · −η1ηm x̃ x̃ᵀ

−η2η1 x̃ x̃ᵀ (η2 − η2
2)x̃ x̃ᵀ · · · −η2ηm x̃ x̃ᵀ

.

.

.
.
.
.

. . .
.
.
.

−ηmη1 x̃ x̃ᵀ −ηmη2 x̃ x̃ᵀ · · · (ηm − η2
m)x̃ x̃ᵀ

 .

Two layers see the paper.
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Relative Natural Gradient Descent (RNGD)

For each subsystem,

θt+1 ← θt − γ ·
(
ḡh(θt |θf )

)−1

︸ ︷︷ ︸
inverse RFIM

· ∂L
∂θ

∣∣∣∣
θ=θt

where

ḡh(θt |θf ) =
1
n

n∑
i=1

gh(θt |θif ).

By definition, RFIM is a function of the reference variables.
ḡh(θt |θf ) is its expectation wrt an empirical distribution of θf .
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Proof-of-concept
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I MLP with shape
784-80-80-80-10

I relu activation
I Mini batch size 50
I Recompute the inverse RFIM

every 100 mini batchs
I L2 regularization
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BNA: batch normalization (BN) after activation
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Change the MLP shape to 784-100-100-100-10
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Novel Viewpoint

Learning is a process where a set of collaborative learners move on
their sub-manifolds, and the geometries of these sub-manifolds are

also evolving with the system.

I Well-suited to parallel computation and distributed learning
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Conclusion

I FIM is just a special case of RFIM, where the subsystem is the
whole system

I By looking at smaller subsystems, RFIM can have simpler
closed-form expressions

I RNGD can be implemented without approximation

I This has the potential to improve learning of large neural
networks
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codes, updates:

https://www.lix.polytechnique.fr/~nielsen/RFIM/

Thank you!

https://www.lix.polytechnique.fr/~nielsen/RFIM/

