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Fisher Information Metric (FIM)

Consider a statistical model p(x | ®) of order D. The FIM
(Hotelling29,Ra045) Z(®) = (Zj) is defined by a D x D positive
semi-definite matrix
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where /(®) = log p(x | ®) denotes the log-likelihood.



Equivalent Expressions
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Observed FIM (Efron & Hinkley, 1978) With respect to
Xn = {xu}i1,
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FIM and Statistical Learning

» Any parametric learning is inside a corresponding parameter

manifold Mg
Me
X
N
N
ToMeo: a tangent space with =% a learning curve

a local inner product g(0)

» FIM gives an invariant Riemannian metric g(®) = Z(®) for
any loss function based on standard f-divergence (KL,
cross-entropy, ... )

S. Amari. Information Geometry and Its Applications. 2016.



Invariance

The FIM is not invariant and depends on the parameterization:
ge(©) = JTga(A)J

where J is the Jacobian matrix J;j = %.
J

However its measurements such as (00, J®) (@) is invariant:
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— (5A,6A) g(a)-

Regardless of the choice of the coordinate system, it is essentially
the same metric!



Statistical Formulation of a Multilayer Perceptron
(MLP)

p(y1x,©)= Y ply|h1,00)p(h|hi,62)p(hy|x,61),
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The FIM of a MLP

The FIM of a MLP has the following expression
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where
> P(Xn) is the empirical distribution of the samples X,, = {x;}_;
> [i(®) =log p(y | x;, ®) is the conditional log-likelihood



Meaning of the FIM of a MLP

Consider a learning step on Mg from © to © + §@®. The step size

00,00),e) = 0Tg(©)iO
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measures how much 6© is statistically along 8%

Will 6©® make a significant change to the mapping x — y or not?



Natural Gradient: Seeking a Short Path

Consider mingeme L(®). At ©; € Mg, the target is to minimize
wrt 0O

1
L(O; + 6©) +—
—_— 2y

Loss function Squared step size

(60,00)40, (7: learning rate)
—_—

~L(Oy) + 507 7 L(©;) + ;Ya@Tg(@t)ae,

giving a learning step

60 = —y g 1(O¢) v L(©)

~
natural gradient

» Equivalence with mirror descent (Raskutti & Mukherjee
2013)



Natural Gradient: Intrinsics

50 = —vg (©:) vV L(O)

This Riemannnian metric is a property of the parameter space that
is independent of the loss function L(®).

The good performance of natural gradient relies on that L(®) is
similarly curved as log p(x | ®) (x ~ p(x|®)).

Natural gradient is not universally good for any loss functions.



Natural Gradient: Pros and Cons

Pros

» Invariant (intrinsic) gradient
» Not trapped in plateaus

» Achieve Fisher efficiency in online learning

Cons

» Too expensive to compute (no closed-form FIM; need matrix
inversion)



Relative FIM — Informal ldeas

» Decompose the learning system into subsystems

» The subsystems are interfaced with each other through hidden
variables h;

» Some subsystems are interfaced with the 1/O environment
through x; and y;

» Compute the subsystem FIM by integrating out its interface
variables h;, so that the intrinsics of this subsystem can be
discussed regardless of the remaining parts



From FIM to Relative FIM (RFIM)

FIM

log p(x | 0)
/ (likelihood scalar)
(7]
(parameter vector)

How sensitive is x wrt tiny movements of @ on Mg?

RFIM

logp(r|0,605)
/ (likelihood scalar)
0
(parameter vector)

Given O, how sensitive is r wrt tiny movements of 7



Relative FIM — Definition

Given Oy (the reference), the Relative Fisher Information Metric
(RFIM) of @ wrt h (the response) is

0 0
g"(016¢) = Eptnyo,0,) 59 NP(h16, 0r) 0 Inp(h6, 6r))

or simply g (0).

Meaning: given O¢, how variations of @ will affect the response h.



Different Subsystems — Simple Examples
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Figure: Discriminator or Regressor




A Dynamic Geometry

(Y05, ha)

Model: p(y|©,z) = Yh 2h ph]61,) p(h2 |62,k

Manifold: M e

SR hy + Ahy
Computational graph:

e T S T
0 0, 0, hy
01l g™ (01) 0, |4 (62) 65| 9v(05)
Metric: o| 7(O©) - 2 °’

hy he

» As the interface hidden variables h; are changing, the
subsystem geometry is not absolute but is relative to its
reference variables provided by adjacent subsystems



RFIM of One tanh Neuron

Consider a neuron with input x, weights w, a hyperbolic tangent
activation function, and a stochastic output y € {—1,1}, given by

1+ tanh(w'x)
-y

_ exp(t) — exp(—t)

Ply=1) tanh(t) = exp(t) + exp(—t)

X = (xT,1)7T denotes the augmented vector of x

g7 (w|x) = veann(W, X)XXT,  viann(w, x) = sechz(wT)”().



RFIM of Parametric Rectified Linear Unit

p(y|w,x) = G(y|relu(w'x),0?), (G is for Gaussian)

t ift>0
relu(t):{ i ift<O. (0<e<1)

By certain assumptions,

g7 (W | x) = vpern(w, x)XXT,

2
1 11— _.
Vrelu(W, X) = p) t+(1—1) sigm ( - wa>
sigmoid

Set 0 =1, + =0, it simplifies to

1
Vreln(W, X) = sigm2 <WT)"(> .
w



Generic Expression of One-neuron RFIMs

Denote f € {tanh, sigm, relu, elu} to be an element-wise
nonlinear activation function. The RFIM is

g’ (w|x)=vr(w,x)XXT,

where v¢(w, x) is a positive coefficient with large values in the
linear region, or the effective learning zone of the neuron.



RFIM of a Linear Layer

x: input; W: connection weights; y: stochastic output following
ply | W,x) = G(y | WT%,05°I).
We vectorize W by stacking its columns {w;}. Then
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RFIM of a Non-linear Layer

A nonlinear layer applies an element-wise activation on WTx. We
have

I/f(Wl,X))?)?T
g’ (W]x) = :

V(W X)XXT

where v¢(w;, x) depends on the activation function f.



The RFIMs of single neuron
models, a linear layer, a
non-linear layer, a soft-max
layer, two consecutive layers all
have simple closed form

solutions!.

1See the paper.



List of RFIMs

Subsystem

the RFIM g¥(w)

A tanh neuron
A sigm neuron

A relu neuron
A elu neuron

A linear layer
A non-linear layer

A soft-max layer

Two layers

sech?(wTX)XXT
sigm(wTX) [l — sigm(wTX)] XXT
[+ (1—)sigm (LtwT%)] 2 %7

w

xxT if wix >0
~M\\2 ~ o~ . ~
(aexp(wTX))” XXT if wTXx <0
diag[RXT, - , %XT]
diag [vr(wy, X)XXT, -+ vf(Wp, X)XXT]
(m — n3)%&T —n1n2XXT e —n1nMmXKT
—n2m1 XXT (n2 — n3)%&T .- —n2nmXXT
—Nmn1XXT —Mmm2R&KT - (nm — ng)RKT

see the paper.




Relative Natural Gradient Descent (RNGD)

For each subsystem,

oL

—h -1
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inverse RFIM

where

(gt ‘ ef Zgh(et | Of

By definition, RFIM is a function of the reference variables.
g"(0: | 6¢) is its expectation wrt an empirical distribution of 6.



Proof-of-concept

PLAIN+SGD (train)
—— PLAIN+SGD (valid)
PLAIN+ADAM (train) o
—— PLAIN+ADAM (valid) 3
PLAIN+RNGD (train) [0-970 &
—— PLAIN+RNGD (valid)
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40 60 80 100
#epochs

MLP with shape
784-80-80-80-10
relu activation
Mini batch size 50

Recompute the inverse RFIM
every 100 mini batchs

L, regularization



BNA: batch normalization (BN) after activation
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Change the MLP shape to 784-100-100-100-10
0.5

i
i £0.978
-
0.44i
X
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i
_ 0.31il g
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Novel Viewpoint

Learning is a process where a set of collaborative learners move on
their sub-manifolds, and the geometries of these sub-manifolds are
also evolving with the system.

» Well-suited to parallel computation and distributed learning



Conclusion

» FIM is just a special case of RFIM, where the subsystem is the
whole system

» By looking at smaller subsystems, RFIM can have simpler
closed-form expressions

» RNGD can be implemented without approximation

» This has the potential to improve learning of large neural
networks



codes, updates:

https://www.lix.polytechnique.fr/"nielsen/RFIM/

Thank you!


https://www.lix.polytechnique.fr/~nielsen/RFIM/

