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Abstract

We summarize the paper: Shun-ichi Amari, Integration of Stochastic Models by Minimizing α-
Divergence, Neural Computation (NECO), (19)10:2780-2796, October 2007.
It is proved that weighted α-means are barycenters defined with respect to α-divergences. Ap-
plications to α-risk optimal experts and α-Bayesian predictive distributions are described. We
revisited and extended these results (to β-divergences) using the framework of representational
Bregman divergences (ISVD’09).

Key words: α-mean, α-mixture (ie., centroid of α-representation of distribution), α-integration (ie.,
barycenter), α-risk and α-experts (product or mixture of experts), α-predictive distribution for Bayesian
predictive distribution estimation.

1 Barycenters of α-divergences are weighted α-means.

For a strictly monotonous and differentiable function f (bijective mapping chosen modulo affine
terms ax + b), a weighted f -mean Mf of a population p1, ..., pn is defined by Mf (p1, ..., pn;w) =
f−1(

∑
iwif(pi)) with wi ≥ 0,∀i and

∑
iwi = 1. Generalized means extend the familiar arith-

metic (f(x) = x), geometric (f(x) = log x) and harmonic (f(x) = 1
x) Pythagorean means, among

many others. Linear scale free means further satisfy the essential property Mf (cp1, ..., cpn;w) =
cMf (p1, ..., pn;w), for any nonnegative constant c > 0. Hardy et al. proved in 1952 that linear scale
free f -means are obtained for and only for generators fα(x) = x

1−α
2 with α 6= 1, and f1(x) = log x.

A barycenter is defined as the unique solution of a weighted minimum average optimization prob-
lem (the minimum is called α-information; for Bregman divergences it is the Bregman information
that is a Burbea-Rao divergence. That is, a generalized Jensen-Shannon divergence). Linear scale
free means are α-means that satisfy the composition rule.

The α-means mα (shortcut for fα-means with uniform weight w) of nonnegative numbers are

given by cα(
∑
i p

1−α
2

i )
2

1−α , where cα is a proper constant that yields mα(a, ..., a) = a. The α-mean
is inversely monotone wrt. to α: mα < mβ for β < α.

For a probability density function p(x), define its α-representation fα(p(x)), and the α-family
mixture as pα(x) = cf−1

α ( 1
n

∑
fα(pi(x))), where c is the normalization coefficient. A weighted α-

mixture is called the α-integration (ie., a barycenter of pdfs). For α = −1, we obtain the traditional
linear mixture model. For α = 1, we get the exponential familym1(x) = exp(

∑
iwi log pi(x)−F (w)),
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where c = exp−F (w) is the cumulant generating function (also called log normalizer). The α-
divergence is a parametric family fα of distortion measures that can be derived from Csiszár f -
divergence1 as follows:

Dα(p||q) =


q − p+ p log p

q α = −1,
p− q + q log q

p α = 1,
2

1+αp+ 2
1−αq −

4
1−α2 p

1−α
2 q

1+α
2 α 6= ±1.

Dα divergences are asymmetric except for α = 0, and Dα(p||q) = D−α(q||p). In particular,
D−1(p||q) = KL(p||q) and D1(p||q) = KL(q||p), and D0(p||q) = 2

∫
(
√
p(x) −

√
q(x))dx bears

the name of squared Hellinger2 distance. Let the information radius be defined as Rα(q) =∑
iwiDα(pi||q) (right-side barycenter) and attained for q∗ = arg minRα(q). The α-integration

cf−1
α (

∑
wifα(pi)) is optimal wrt. to divergence Dα.

2 Applications: α-Experts and α-Bayesian predictive distribution

Applications of (1) finite α-integration of experts, and (2) continuous α-integration for α-Bayesian
predictive distributions are then discussed:

Integration of experts. Let wi denote the reliability of expert Ei that given some input signal
s produces a pdf (or a relaxed positive measure) ei(x|s). The α-risk is defined in terms of
α divergence by Rα(q|s) =

∑
wiDα(pi(x|s)||q(x)). The α-expert machine produces a signal

q(s|x) = f−1
α (

∑
wi(x)fα(pi(s|x))) that is optimal wrt. to α-risk. The α-expert machine

generalized former mixture of experts (α = 1) and product of experts (α = −1). A key issue
is to determine the ”‘best”’ α values. Amari addresses this issue on determining the weight
wi(x) when a teacher is provided as an oracle.

Bayesian predictive distribution. In the Bayesian framework, given D = {x1, ..., xn} indepen-
dent observations and π(θ) a prior distribution, the Bayesian predictive distribution p(x|D) =∫
p(x|θ)π(θ)

∏n

i=1
p(xi|θ)∫

p(D,θ)dθ
(a continuously infinite generalized means) is shown optimal wrt.

(minimizing the expectation of) the risk R(q(x|D)) =
∫
π(θ)p(D|θ)KL(p(x|θ)||q(x|D)]dθdD

with dD = dx1...dxn. That is, the Bayesian predictive distribution minimizes
the mean Kullback-Leibler divergence from true distribution p(x|θ) to test distribu-
tion p(x|D). This result is extended to Dα divergence: The α-predictive distribution
pα(x|D) = cf−1

α (
∫
fα(p(x|θ))p(θ|D))dθ is optimal wrt. to the α-risk Rα(q(x|D)) =∫

π(θ)p(D|θ)Dα(p(x|θ)||q(x|D))dθdD.

In human brain, α-integration (ie., barycenter computations) seems to take part. See for ex-
ample, Weber-Fechner and Stevens laws that describe population coding in medial temporal (MT)
and medial superior temporal (MST) cortex areas.

1Csiszár f -divergence are defined by Cf (p||q) =
∫

p(x)f( q(x)
p(x)

)dx, with f convex. The dual Csiszár divergence

Cf∗(p||q) = Cf (q||p) is obtained for generator f∗(x) = xf( 1
x

). It follows that symmetrized Csiszár divergences

are Csiszár divergences for generator sf (x) =
f(x)+xf( 1

x
)

2
. Csiszár divergences satisfy the information monotonicity

property.
2Hellinger distance can be viewed as the L2-norm of space

√
p(x).
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