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Abstract. Mixtures of Gaussians are a crucial statistical modeling tool
at the heart of many challenging applications in computer vision and
machine learning. In this paper, we first describe a novel and efficient al-
gorithm for simplifying Gaussian mixture models using a generalization
of the celebrated k-means quantization algorithm tailored to relative en-
tropy. Our method is shown to compare experimentally favourably well
with the state-of-the-art both in terms of time and quality performances.
Second, we propose a practical enhanced approach providing a hierarchi-
cal representation of the simplified GMM while automatically computing
the optimal number of Gaussians in the simplified mixture. Application
to clustering-based image segmentation is reported.

1 Introduction and prior work

A mixture model is a powerful framework to estimate the probability den-
sity function of a random variable. For instance, the Gaussian mixture models
(GMMs for short) – also known as mixture of Gaussians (MoGs) – have been
widely used in many different area domains such as image processing. For a given
mixture model f , the probability density function evaluated at x ∈ Rd is given
by

f(x) =
n∑
i=1

αifi(x) (1)

where 0 ≤ αi ≤ 1 denotes the weight of each mixture component fi such as∑n
i=1 αi = 1. Given a GMM f , each function fi is a multivariate Gaussian

function

fi(x) =
1

(2π)d/2|Σi|1/2
exp

(
− (x− µi)TΣ−1

i (x− µi)
2

)
(2)

parametrized by its mean µi ∈ Rd and its covariance symmetric positive-definite
matrixΣi � 0. It is common to estimate model parameters from independent and
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identically-distributed observations using the expectation-maximization (EM)
algorithm [1].
A typical operation on mixture models is the estimation of statistical measures
such as Shannon entropy or the Kullback-Leibler divergence. With large number
of components in the mixture model (e.g. arising from a kernel-based Parzen
density estimation [2]), the estimation of these measures is prohibitive in terms
of computation time. The computational time can be strongly decreased by
reducing the number of components in the mixture model. The simplest method
to obtain a compact representation of f is to re-learn the mixture model directly
from the source dataset. However, this may not be applicable for two reasons.
First, the estimation of a mixture model is computationally expensive if we
consider large datasets. Second, the source dataset can be unavailable. Thus,
the most appropriated solution is to simplify the initial mixture model f .
Given a mixture model f composed of n components (see equation (1)), the
problem of mixture model simplification consists in computing a simpler mixture
model g

g(x) =
m∑
j=1

α′jgj(x) (3)

with m components (1 ≤ m < n) such as g is the “best” approximation of f
with respect to a similarity measure.

Some GMM simplification methods have been proposed in the last decade.
Zhang and Kwok [3] have proposed to simplify a GMM by first grouping similar
components together and then performing local fitting through function approx-
imation. By using the squared loss to measure the distance between mixture
models, their algorithm naturally combines the two different tasks of component
clustering and model simplification. Goldberger et al. [4] have proposed a fast
GMM simplification algorithm named UTAC (Unscented Transform Approxi-
mation Clustering) based on the Unscented Transform (UT) method [5] [6]. The
UTAC algorithm proceeds by maximizing the UTA (Unscented Transform Ap-
proximation of the negative cross-entropy) criterion computed between the two
GMMs f and g. The authors have shown that the UTA criterion can be maxi-
mized with a standard EM-like algorithm. Davis and Dhillon [7] have proposed a
hard clustering algorithm based on the decomposition of the relative entropy as
the sum of a Burg matrix divergence with a Mahalanobis distance parametrized
by the covariance matrices. Goldberger and Roweis [8] have proposed a GMM
simplification algorithm based on the k-means hard clustering.
These methods have two disadvantages. First, they only consider the problem
of GMM simplification. However, other kind of mixture models have been suc-
cessfully used in different applications such as multinomial mixture models in
text classification [9]. Proposing a simplification algorithm working not only
on GMMs but on a generic wider class of mixture models, called exponential
families, is necessary. Second, they require the user to specify the number of
Gaussians (denoted m) used in the simplified model g, the optimal value of m
depending both on the initial GMM and on the application.
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In this paper, we first describe a novel and efficient algorithm for simplifying
GMMs using a generalization of the celebrated k-means quantization algorithm
tailored to relative entropy (see section 2). Our algorithm extends easily to arbi-
trary mixture of exponential families. The proposed method is shown to compare
favourably well with the state-of-the-art UTAC algorithm both in terms of time
and quality performances. Second, we describe an algorithm based on the G-
means algorithm [10] who (1) allows to automatically learn the optimal number
of Gaussians m in the simplified model and (2) provides a progressive represen-
tation of the GMM (see section 3).

2 Entropic quantization of GMMs

2.1 Relative entropy and Bregman divergence

The fundamental measure between statistical distributions is the relative en-
tropy, also called the Kullback-Leibler divergence (denoted by KLD). Given two
distributions fi and fj , the KLD is an oriented distance (asymmetric) and is
defined as

KLD(fi||fj) =
∫
fi(x) log

fi(x)
fj(x)

dx. (4)

This fastidious integral computation yields for multivariate normal distributions

KLD(fi||fj) =
1
2

log
(

detΣj
detΣi

)
+

1
2

tr
(
Σ−1
j Σi

)
+

1
2

(µj − µi)TΣ−1
j (µj − µi)−

d

2
(5)

where tr(Σ) is the matrix trace operator. We can avoid the integral computation
using the canonical form of exponential families [11]

fF (x|Θ̃) = exp
{
〈Θ̃, t(x)〉 − F (Θ̃) + C(x)

}
(6)

where Θ̃ are the natural parameters associated with the sufficient statistics t(x).
The log normalizer F (Θ̃) is a strictly convex and differentiable function that
specifies uniquely the exponential family, and the function C(x) is the carrier
measure. The relative entropy between two distribution members of the same
exponential family is equal to the Bregman divergence defined for the log nor-
malizer F on the natural parameter space:

KLD(fi||fj) = DF (Θ̃j ||Θ̃i) (7)

where
DF (Θ̃j ||Θ̃i) = F (Θ̃j)− F (Θ̃i)− 〈Θ̃j − Θ̃i,∇F (Θ̃i)〉. (8)

The 〈·, ·〉 denotes the inner product and ∇F is the gradient operator. For mul-
tivariate Gaussian distributions, we consider mixed-type vector/matrix param-
eters (µ,Σ). The sufficient statistics is stacked into a two-part d-dimensional



4 V. Garcia, F. Nielsen, and R. Nock

vector/matrix entity t(x) = (x,− 1
2xx

T ) associated with the natural parame-
ters Θ̃ = (θ,Θ) = (Σ−1µ, 1

2Σ
−1). The log normalizer specifying the exponential

family is [12]

F (Θ̃) =
1
4

tr(Θ−1θθT )− 1
2

log detΘ +
d

2
log π. (9)

The inner product 〈Θ̃p, Θ̃q〉 is then a composite inner product obtained as the
sum of two inner products of vectors and matrices: 〈Θ̃p, Θ̃q〉 = 〈Θp, Θq〉+〈θp, θq〉.
For matrices, the inner product is defined by the trace of the matrix product
ΘpΘ

T
q : 〈Θp, Θq〉 = tr(ΘpΘTq ). The gradient ∇F is given by

∇F (Θ̃) =
(

1
2
Θ−1θ , −1

2
Θ−1 − 1

4
(Θ−1θ)(Θ−1θ)T

)
. (10)

2.2 Bregman k-means

Banerjee et al. [11] extended Lloyd’s k-means algorithm to the class of Bregman
divergences, generalizing also the former Linde-Buzo-Gray clustering algorithm.
They proved that the simple Lloyd’s iterative algorithm minimizes monotonically
the Bregman (right-sided) loss function:

LossFunctionF ({x1, ..., xn}; k) = min
c1,...,ck

∑
k

∑
i

DF (xi||ck).

where xi are the source point sets and ck the respective cluster centroids. A
right-sided Bregman k-means is a left-sided differential entropic (i.e. KLD) clus-
tering, and vice-versa. Thus, we propose a GMM simplification algorithm based
on Bregman k-means. The k-means algorithm is the repetition until conver-
gence of two steps: First, determine membership in clusters (repartition step);
second, recompute the centroids. The algorithms 1 and 2 respectively present
our right-sided and left-sided Bregman k-means clustering algorithms (denoted
BKMC). For these algorithms, Θ̃ and Θ̃′ denote natural parameters respectively
for GMMs f and g.

2.3 Symmetric Bregman k-means

The BKMC algorithm can be modified in order to use the symmetric Bregman
divergence instead of a sided one. Indeed, the use of a symmetric similarity mea-
sure is required for common applications such as content-based image retrieval.
Given two Gaussians Θ̃p and Θ̃q (natural parameters), the symmetric Bregman
divergence SDF (used in the repartition step) is defined as the mean of the
right-sided and left-sided Bregman divergences:

SDF (Θ̃p, Θ̃q) =
DF (Θ̃q||Θ̃p) +DF (Θ̃p||Θ̃q)

2
(15)
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Algorithm 1 BKMC right-sided(f ,m)
1: Initialize the GMM g.
2: repeat
3: Compute the cluster C: the Gaussian fi belongs to cluster Cj if and only if

DF (Θ̃i‖Θ̃′j) < DF (Θ̃i‖Θ̃′l), ∀l ∈ [1,m] \ {j} (11)

4: Compute the centroids: the weight and the natural parameters of the j-th cen-
troid (i.e. Gaussian gj) are given by:

α′j =
X

i

αi, θ′j =

P
i αiθiP
i αi

, Θ′j =

P
i αiΘiP

i αi
(12)

The sum
P

i is performed on i ∈ [1,m] such as fi ∈ Cj .
5: until the cluster does not change between two iterations.

Algorithm 2 BKMC left-sided(f ,m)
1: Initialize the GMM g.
2: repeat
3: Compute the cluster C: the Gaussian fi belongs to cluster Cj if and only if

DF (Θ̃′j‖Θ̃i) < DF (Θ̃′l‖Θ̃i), ∀l ∈ [1,m] \ {j}

4: Compute the centroids: the weight and the natural parameters of the j-th cen-
troid (i.e. Gaussian gj) are given by:

α′j =
X

i

αi, Θ̃′j = ∇F−1

 X
i

αi

α′j
∇F

“
Θ̃i

”!
(13)

where

∇F−1(Θ̃) =

„
−
“
Θ + θθT

”−1

θ , −1

2

“
Θ + θθT

”−1
«

(14)

The sum
P

i is performed on i ∈ [1,m] such as fi ∈ Cj .
5: until the cluster does not change between two iterations.
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Similarly, the symmetric centroid cs is computed from the right-sided and left-
sided centroids (respectively denoted cr and cl). The symmetric centroid cs be-
longs to the geodesic link between cr and cl. A point on this link is given by

cλ = ∇F−1 (λ∇F (cr) + (1− λ)∇F (cl)) (16)

where λ ∈ [0, 1]. The symmetric centroid cs = cλ verifies

SDF (cλ, cr) = SDF (cλ, cl). (17)

A standard dichotomy search on λ allows to quickly find the symmetric centroid
cs for a given precision.

3 Hierarchical GMM representation

Hamerly and Elkan [10] proposed to adapt the k-means clustering algorithm
to learn automatically the number of clusters (parameter k) during the process.
Their algorithm, called G-means for Gaussian-means, starts with a small number
of centroids (usually 1) and splits iteratively the centroids. G-means repeatedly
makes decisions based on the statistical Anderson-Darling test [13]: If the data
currently assigned to a centroid follow a normal distribution, then the data are
represented by their centroid; otherwise, the data are split into two subsets. The
G-means algorithm directly provides a hierarchical clustering of the input data.
In this section, we propose a GMM simplification algorithm based on G-means
and BKMC algorithms. This algorithm, named Bregman G-means clustering
algorithm (BGMC for short) and described in algorithm 3, first allows to auto-
matically learn the optimal number of Gaussians m in the simplified model, and
second provides a progressive representation of the GMM. The problem here is
to determine if a set of Gaussians (GMM) follows a Gaussian distribution. If so,
the set is represented by one Gaussian: its centroid (right-sided, left-sided, or
symmetric). Otherwise, the Gaussian set is divided in two subsets. We reason-
ably assume that a GMM (Gaussian set) is a Gaussian distribution if a large set
of l points drawn from this GMM verify the Anderson-Darling test. In our ex-
periments, l was set to l = 10000 and the confidence level (here denoted β) used
in the Anderson-Darling test was set to β = 95%. The algorithm 3 starts with
BGMC(N , f , c, α) where N is the root of an empty binary tree, f is a GMM, c
is the centroid (right-sided, left-sided, or symmetric) of f , and α =

∑n
i=1 αi = 1.

Nleft and Nright respectively denote the left-child and the right-child of the node
N .
The hierarchical structure of the simplified GMM g allows us to introduce the
notion of resolution, the successive resolutions given a progressive representa-
tion of g. Each node of the tree contains a weighted Gaussian. The resolution r
corresponds to all the weighted Gaussians contained in nodes of depth r. The
resolution 0 corresponds to a GMM containing only one Gaussian: the tree root.
The maximal resolution (i.e. the tree height) contains all the leafs of the tree.
The optimal value of m is given by the GMM size at the maximal resolution.
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Algorithm 3 Calculate BGMC(N , f , c, α)
1: Store the centroid c and the weight α in the node N .
2: Draw a set of l points X = {x1, · · · , xl} from f .
3: Split the centroid c into two centroids c1 and c2.
4: Perform a Bregman k-means on c1 and c2. Let f1 (resp. f2) be the set containing

the weighted Gaussians of f closer to c1 (resp. c2) than c2 (resp. c1). Let α1 (resp.
α2) be the sum of all the weights of the Gaussians contained in f1 (resp. f2).

5: Compute the projection vector v = µ1 − µ2 where µ1 and µ2 are respectively the
mean of c1 and c2.

6: Given X and v, use the Anderson-Darling statistical test [13] to detect if f is a
normal distribution (at confidence level β = 0.95).

7: if f is a normal distribution then
8: Stop the process; the current node N is a leaf (Nleft and Nright are null).
9: else

10: Compute BGMC(Nleft, f1, c1, α1).
11: Compute BGMC(Nright, f2, c2, α2).
12: end if

4 Experiments

4.1 Bregman k-means clustering

In this section, we compare the influence of the Bregman divergence type (right-
sided, left-sided, or symmetric) on the quality of the simplified GMM g. This
quality is evaluated through the standard right-sided Kullback-Leibler diver-
gence (KLD) between f and g estimated with a classical Monte-Carlo algo-
rithm [14] since it does not admit any closed-form solution. For this experiment,
the initial GMM f is composed of 32 Gaussians and is computed from the image
Baboon: First we perform a standard k-means algorithm to gather RGB pixels
in 32 classes, and second we compute each fi with a standard EM algorithm.
The dimension of the Gaussians is 3 (components RGB: red, green, blue).
The figure 1 shows the evolution of the KLD as a function of m (number of
the Gaussians in the simplified GMM) for the different Bregman divergence
types. First, the KLD decreases with m as expected whatever the Bregman di-
vergence type used. Indeed, the quality of the approximation of the initial GMM
f increases with the number of Gaussians in the simplified model g. Second,
the left-sided Bregman divergence gives the best results and the right-sided the
worst. Indeed, the measure used to evaluate the quality of the simplification is
the right-sided KLD. The left-sided Bregman clustering on natural parameters
amounts to compute a right-sided KLD clustering on corresponding probabil-
ity measures. The symmetric BKMC provides better results than right-sided
BKMC but worse than left-sided BKMC. In the paper remainder, we will use
the left-sided BKMC.
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Fig. 1. Evolution of the KLD as a function of m for algorithms right-sided, left-sided,
and symmetric BKMC. The left-sided BKMC provides the best approximation of the
initial GMM.

4.2 Method comparison

4.3 BKMC versus UTAC

The figure 2 shows the evolution of the KLD as a function of m (number of
components in the simplified GMM) for algorithms UTAC and BKMC (left-
sided). Both algorithms are written in Java. The initial GMM f is computed
as in section 4.1. First, whatever the algorithm used (UTAC and BKMC), the
KLD decreases with m. Second, BKMC provides the best results and is faster
than UTAC: for m = 16, the clustering process is performed in 20 milliseconds
for BKMC and 107 milliseconds for UTAC on a Dell Precision M6400 laptop
(Intel Core 2 duo @ 2.53GHz, 4Go DDR2 memory, Windows Vista 64 bits, Java
1.6). Indeed, BKMC is based on a k-means algorithm which generally quickly
converges. UTAC uses a EM method known to slowly converge (i.e. within a
threshold after a large number of iterations). We automatically stop the UTAC
process after 30 iterations if the process has not converged.

4.4 Clustering-based image segmentation

In this section, we apply the GMM simplification methods in the context of
clustering-based image segmentation problem. Given an image, a pixel x can be
considered as a point in R3. Given a GMM g of m Gaussians, the segmentation
is performed by classifying each pixel x to the most probable class Ci:

gi(x) > gj(x) ∀j ∈ [1,m] \ {i}

This segmentation is illustrated by assigning to the pixel x the value of the
class representative µ′i (see figure 3). The images used for the experiments are
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Fig. 2. Evolution of the KLD as a function of m for algorithms BKMC and UTAC.

Baboon, Lena, Colormap, and Shantytown. The first and second rows show re-
spectively the input image and the segmentation computed from the initial GMM
f composed 32 Gaussians. The third and fourth rows show the segmentations
computed after the simplification of f respectively with the algorithms UTAC
and BKMC. With all images tested, the algorithm BKMC provides the best
results (visually and according to the KLD value).

4.5 Hierarchical GMM representation

In this section, we apply the BGMC algorithm (hierarchical GMM) in the context
of clustering-based image segmentation. The figure 4 shows the segmentation
obtained from different resolution of the hierarchical GMM. The segmentation
quality increases with the resolution. A resolution equal to 0 provides a GMM
composed only of one Gaussian: all the pixel of the input image belongs to
the same class. The optimal value of m is given by the GMM at the maximal
resolution. For each image, we give below this optimal value m, the maximum
resolution, and the KLD between the initial GMM f and the optimal simplified
GMM:
- Baboon: m = 14, max. res.=8, KLD=0.18
- Lena: m = 14, max. res.=7, KLD=0.13
- Colormap: m = 14, max. res.=9, KLD=0.59
- Shantytown: m = 13, max. res.=5, KLD=0.28
On average, the construction of the hierarchical GMM is performed in 466 ms.
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Fig. 3. Application of GMM simplifying algorithms (UTAC and BKMC) to clustering-
based image segmentation. The BKMC algorithm provides the best results (visually
and according to the KLD value).
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Fig. 4. Application of BGMC algorithm to clustering-based image segmentation. The
figure shows (from top to bottom) the simplified GMM from resolution 0 to the maximal
resolution. The GMM simplification quality increases with the resolution.
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5 Concluding remarks

In this paper, we have proposed two algorithms for the simplification of Gaus-
sian mixtures models. The first one, named BKMC, is based on the k-means
algorithm. Experiments corroborate that BKMC yields better results in shorter
computational time in comparison to the state-of-the-art. The second proposed
algorithm, named BGMC, is based on the G-means algorithm. BGMC allows to
automatically learn the optimal number of Gaussians in the simplified model and
provides a progressive representation of the initial GMM. Note that although we
have presented our algorithms to simplify GMM, our framework is generic and
applies to any mixture model of an exponential family. The Java library imple-
menting these algorithms is available at www.lix.polytechnique.fr/∼nielsen/MEF.
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