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Abstract

A wide variety of distortion functions, such as squared Euclidean distance, Mahalanobis distance,
Itakura-Saito distance and relative entropy, have been used for clustering. In this paper, we pro-
pose and analyze parametric hard and soft clustering algorithms based on a large class of distortion
functions known as Bregman divergences. The proposed algorithms unify centroid-based paramet-
ric clustering approaches, such as classicalkmeans, the Linde-Buzo-Gray (LBG) algorithm and
information-theoretic clustering, which arise by specialchoices of the Bregman divergence. The
algorithms maintain the simplicity and scalability of the classicalkmeans algorithm, while gener-
alizing the method to a large class of clustering loss functions. This is achieved by first posing
the hard clustering problem in terms of minimizing the loss in Bregman information, a quantity
motivated by rate distortion theory, and then deriving an iterative algorithm that monotonically de-
creases this loss. In addition, we show that there is a bijection between regular exponential families
and a large class of Bregman divergences, that we call regular Bregman divergences. This result
enables the development of an alternative interpretation of an efficient EM scheme for learning mix-
tures of exponential family distributions, and leads to a simple soft clustering algorithm for regular
Bregman divergences. Finally, we discuss the connection between rate distortion theory and Breg-
man clustering and present an information theoretic analysis of Bregman clustering algorithms in
terms of a trade-off between compression and loss in Bregmaninformation.

Keywords: clustering, Bregman divergences, Bregman information, exponential families, expectation maxi-
mization, information theory

1. Introduction

Data clustering is a fundamental “unsupervised” learning procedure that has been extensively stud-
ied across varied disciplines over several decades (Jain and Dubes,1988). Most of the existing
parametric clustering methods partition the data into a pre-specified number of partitions with a
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cluster representativecorresponding to every cluster, such that a well-defined cost functioninvolv-
ing the data and the representatives is minimized. Typically, these clustering methods come in two
flavors: hard andsoft. In hard clustering, one obtains a disjoint partitioning of the data such that
each data point belongs to exactly one of the partitions. In soft clustering,each data point has a
certain probability of belonging to each of the partitions. One can think of hardclustering as a
special case of soft clustering where these probabilities only take values0 or 1. The popularity of
parametric clustering algorithms stems from their simplicity and scalability.

Several algorithms for solving particular versions of parametric clusteringproblems have been
developed over the years. Among the hard clustering algorithms, the most well-known is the it-
erative relocation scheme for the Euclideankmeans algorithm (MacQueen, 1967; Jain and Dubes,
1988; Duda et al., 2001). Another widely used clustering algorithm with a similar scheme is the
Linde-Buzo-Gray (LBG) algorithm (Linde et al., 1980; Buzo et al., 1980) based on the Itakura-Saito
distance, which has been used in the signal-processing community for clustering speech data. The
recently proposed information theoretic clustering algorithm (Dhillon et al., 2003) for clustering
probability distributions also has a similar flavor.

The observation that for certain distortion functions, e.g., squared Euclidean distance, KL-
divergence (Dhillon et al., 2003), Itakura-Saito distance (Buzo et al., 1980) etc., the clustering
problem can be solved using appropriatekmeans type iterative relocation schemes leads to a natu-
ral question:what class of distortion functions admit such an iterative relocation scheme where a
global objective function based on the distortion with respect to cluster centroids1 is progressively
decreased?In this paper, we provide an answer to this question: we show thatsuch a scheme works
for arbitrary Bregman divergences. In fact, it can be shown (Banerjee et al., 2005) that such a sim-
ple scheme worksonlywhen the distortion is a Bregman divergence. The scope of this result is vast
since Bregman divergences include a large number of useful loss functions such as squared loss,
KL-divergence, logistic loss, Mahalanobis distance, Itakura-Saito distance, I-divergence, etc.

We pose the hard clustering problem as one of obtaining an optimal quantization in terms of
minimizing the loss inBregman information, a quantity motivated by rate distortion theory. A sim-
ple analysis then yields a version of the loss function that readily suggests anatural algorithm to
solve the clustering problem for arbitrary Bregman divergences. Partitional hard clustering to min-
imize the loss inmutual information, otherwise known as information theoretic clustering (Dhillon
et al., 2003), is seen to be a special case of our approach. Thus, this paper unifies several parametric
partitional clustering approaches.

Several researchers have observed relationships between Bregmandivergences and exponen-
tial families (Azoury and Warmuth, 2001; Collins et al., 2001). In this paper,we formally prove
an observation made by Forster and Warmuth (2000) thatthere exists a unique Bregman diver-
gence corresponding to every regular exponential family. In fact, we show that there is a bijection
between regular exponential families and a class of Bregman divergences, that we call regular Breg-
man divergences. We show that, with proper representation, the bijection provides an alternative
interpretation of a well known efficient EM scheme (Redner and Walker, 1984) for learning mixture
models of exponential family distributions. This scheme simplifies the computationallyintensive
maximization step of the EM algorithm, resulting in a general soft-clustering algorithm for all regu-
lar Bregman divergences. We also present an information theoretic analysis of Bregman clustering
algorithms in terms of a trade-off between compression and loss in Bregman information.

1. We use the term “cluster centroid” to denote the expectation of the data points in that cluster.
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1.1 Contributions

We briefly summarize the main contributions of this paper:

1. In the context of hard clustering, we introduce the concept ofBregman Information(Sec-
tion 3) that measures the minimum expected loss incurred by encoding a set of data points
using a constant, where loss is measured in terms of a Bregman divergence. Variance and
mutual information are shown to be special cases of Bregman information. Further, we show
a close connection between Bregman information and Jensen’s inequality.

2. Hard clustering with Bregman divergences is posed as a quantization problem that involves
minimizing loss of Bregman information. We show (Theorem 1 in Section 3) that for any
given clustering, the loss in Bregman information is equal to the expected Bregman diver-
gence of data points to their respective cluster centroids. Hence, minimizing either of these
quantities yields the same optimal clustering.

3. Based on our analysis of the Bregman clustering problem, we present ameta hard clustering
algorithm that is applicable toall Bregman divergences (Section 3). The meta clustering
algorithm retains the simplicity and scalability ofkmeans and is a direct generalization of all
previously known centroid-based parametric hard clustering algorithms.

4. To obtain a similar generalization for the soft clustering case, we show (Theorem 4, Section 4)
that there is a uniquely determined Bregman divergence corresponding toevery regular ex-
ponential family. This result formally proves an observation made by Forster and Warmuth
(2000). In particular, in Section 4.3, we show that the log-likelihood of anyparametric ex-
ponential family is equal to the negative of the corresponding Bregman divergence to the
expectation parameter, up to a fixed additive non-parametric function. Further, in Section 4.4,
we define regular Bregman divergences using exponentially convex functions and show that
there is a bijection between regular exponential families and regular Bregmandivergences.

5. Using the correspondence between exponential families and Bregman divergences, we show
that the mixture estimation problem based on regular exponential families is identical to a
Bregman soft clustering problem (Section 5). Further, we describe an EM scheme to effi-
ciently solve the mixture estimation problem. Although this particular scheme for learning
mixtures of exponential families was previously known (Redner and Walker, 1984), the Breg-
man divergence viewpoint explaining the efficiency is new. In particular,we give a correctness
proof of the efficient M-step updates using properties of Bregman divergences.

6. Finally, we study the relationship between Bregman clustering and rate distortion theory (Sec-
tion 6). Based on the results in Banerjee et al. (2004a), we observe thatthe Bregman hard and
soft clustering formulations correspond to the “scalar” and asymptotic ratedistortion prob-
lems respectively, where distortion is measured using a regular Bregman divergence. Further,
we show how each of these problems can be interpreted as a trade-off between compression
and loss in Bregman information. The information-bottleneck method (Tishby etal., 1999)
can be readily derived as a special case of this trade-off.

A word about the notation: bold faced variables, e.g.,x,µ, are used to represent vectors. Sets
are represented by calligraphic upper-case alphabets, e.g.,X ,Y . Random variables are represented
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by upper-case alphabets, e.g.,X,Y. The symbolsR,N,Z andRd denote the set of reals, the set of
natural numbers, the set of integers and thed-dimensional real vector space respectively. Further,
R+ andR++ denote the set of non-negative and positive real numbers. Forx,y ∈ Rd, ‖x‖ denotes
theL2 norm, and〈x,y〉 denotes the inner product. Unless otherwise mentioned, log will represent
the natural logarithm. Probability density functions (with respect to the Lebesgue or the counting
measure) are denoted by lower case alphabets such asp,q. If a random variableX is distributed
according toν, expectation of functions ofX are denoted byEX[·], or by Eν[·] when the random
variable is clear from the context. The interior, relative interior, boundary, closure and closed convex
hull of a setX are denoted by int(X ), ri(X ), bd(X ), cl(X ) and co(X ) respectively. The effective
domain of a functionf , i.e., set of allx such thatf (x) < +∞ is denoted by dom( f ) while the range
is denoted by range( f ). The inverse of a functionf , when well-defined, is denoted byf−1.

2. Preliminaries

In this section, we define the Bregman divergence corresponding to a strictly convex function and
present some examples.

Definition 1 (Bregman, 1967; Censor and Zenios, 1998) Letφ : S 7→ R,S = dom(φ) be a strictly
convex function defined on a convex setS ⊆ Rd such thatφ is differentiable on ri(S), assumed to
be nonempty. TheBregman divergence dφ : S × ri(S) 7→ [0,∞) is defined as

dφ(x,y) = φ(x)−φ(y)−〈x−y,∇φ(y)〉 ,

where∇φ(y) represents the gradient vector ofφ evaluated aty.

Example 1 Squared Euclidean distance is perhaps the simplest and most widely used Bregman
divergence. The underlying functionφ(x) = 〈x,x〉 is strictly convex, differentiable onRd and

dφ(x,y) = 〈x,x〉−〈y,y〉−〈x−y,∇φ(y)〉
= 〈x,x〉−〈y,y〉−〈x−y,2y〉
= 〈x−y,x−y〉= ‖x−y‖2.

Example 2 Another widely used Bregman divergence is the KL-divergence. Ifp is a discrete prob-
ability distribution so that∑d

j=1 p j = 1, the negative entropyφ(p) = ∑d
j=1 p j log2 p j is a convex

function. The corresponding Bregman divergence is

dφ(p,q) =
d

∑
j=1

p j log2 p j −
d

∑
j=1

q j log2q j −〈p−q,∇φ(q)〉

=
d

∑
j=1

p j log2 p j −
d

∑
j=1

q j log2q j −
d

∑
j=1

(p j −q j)(log2q j + log2e)

=
d

∑
j=1

p j log2

(

p j

q j

)

− log2e
d

∑
j=1

(p j −q j)

= KL(p‖q) ,

the KL-divergence between the two distributions as∑d
j=1q j = ∑d

j=1 p j = 1.
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Table 1: Bregman divergences generated from some convex functions.
Domain φ(x) dφ(x,y) Divergence
R x2 (x−y)2 Squared loss
R+ xlogx xlog( x

y)− (x−y)

[0,1] xlogx+(1−x) log(1−x) xlog( x
y)+(1−x) log( 1−x

1−y) Logistic loss3

R++ − logx x
y− log( x

y)−1 Itakura-Saito distance

R ex ex−ey− (x−y)ey

Rd ‖x‖2 ‖x−y‖2 Squared Euclidean distance
Rd xTAx (x−y)TA(x−y) Mahalanobis distance4

d-Simplex ∑d
j=1 x j log2 x j ∑d

j=1 x j log2(
x j

y j
) KL-divergence

Rd
+ ∑d

j=1 x j logx j ∑d
j=1 x j log(

x j

y j
)−∑d

j=1(x j −y j ) Generalized I-divergence

Example 3 Itakura-Saito distance is another Bregman divergence that is widely usedin signal pro-
cessing. IfF(ejθ) is the power spectrum2 of a signalf (t), then the functionalφ(F)=− 1

2π
R π
−π log(F(ejθ))dθ

is convex inF and corresponds to the negative entropy rate of the signal assuming it was generated
by a stationary Gaussian process (Palus, 1997; Cover and Thomas, 1991). The Bregman divergence
betweenF(ejθ) andG(ejθ) (the power spectrum of another signalg(t)) is given by

dφ(F,G) =
1
2π

Z π

−π

(

− log(F(ejθ))+ log(G(ejθ))− (F(ejθ)−G(ejθ))

(

− 1
G(ejθ)

))

dθ

=
1
2π

Z π

−π

(

− log

(

F(ejθ)

G(ejθ)

)

+
F(ejθ)

G(ejθ)
−1

)

dθ,

which is exactly the Itakura-Saito distance between the power spectraF(ejθ) andG(ejθ) and can
also be interpreted as the I-divergence (Csiszár, 1991) between the generating processes under the
assumption that they are equal mean, stationary Gaussian processes (Kazakos and Kazakos, 1980).

Table 1 contains a list of some common convex functions and their corresponding Bregman diver-
gences. Bregman divergences have several interesting and usefulproperties, such as non-negativity,
convexity in the first argument, etc. For details see Appendix A.

3. Bregman Hard Clustering

In this section, we introduce a new concept called the Bregman information ofa random variable
based on ideas from Shannon’s rate distortion theory. Then, we motivatethe Bregman hard cluster-
ing problem as a quantization problem that involves minimizing the loss in Bregman information
and show its equivalence to a more direct formulation, i.e., the problem of finding a partitioning and
a representative for each of the partitions such that the expected Bregman divergence of the data

2. Note thatF(·) is a function and it is possible to extend the notion of Bregman divergencesto the space of func-
tions (Csisźar, 1995; Gr̈unwald and Dawid, 2004).

3. For x ∈ {0,1} (Bernoulli) andy ∈ (0,1) (posterior probability forx = 1), we havexlog( x
y) + (1− x) log( 1−x

1−y) =

log(1+exp(− f (x)g(y))), i.e., the logistic loss withf (x) = 2x−1 andg(y) = log( y
1−y).

4. The matrixA is assumed to be positive definite;(x− y)TA(x− y) is called the Mahalanobis distance whenA is the
inverse of the covariance matrix.
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points from their representatives is minimized. We then present a clustering algorithm that gen-
eralizes the iterative relocation scheme ofkmeans to monotonically decrease the loss in Bregman
information.

3.1 Bregman Information

The dual formulation of Shannon’s celebrated rate distortion problem (Cover and Thomas, 1991;
Grünwald and Vit́anyi, 2003) involves finding a coding scheme with a given rate, i.e., average
number of bits per symbol, such that the expected distortion between the source random variable
and the decoded random variable is minimized. The achieved distortion is calledthe distortion
rate function, i.e., the infimum distortion achievable for a given rate. Now consider a random
variableX that takes values in a finite setX = {xi}ni=1⊂ S ⊆ Rd (S is convex) following a discrete
probability measureν. Let the distortion be measured by a Bregman divergencedφ. Consider a
simple encoding scheme that represents the random variable by a constantvectors, i.e., codebook
size is one, or rate is zero. The solution to the rate-distortion problem in this case is the trivial
assignment. The corresponding distortion-rate function is given byEν[dφ(X,s)] that depends on the
choice of the representatives and can be optimized by picking the right representative. We call this
optimal distortion-rate function theBregman informationof the random variableX for the Bregman
divergencedφ and denote it byIφ(X), i.e.,

Iφ(X) = min
s∈ri(S)

Eν[dφ(X,s)] = min
s∈ri(S)

n

∑
i=1

νi dφ(xi ,s) . (1)

The optimal vectors that achieves the minimal distortion will be called theBregman representative
or, simply therepresentativeof X. The following theorem states that this representative always ex-
ists, is uniquely determined and, surprisingly,does not dependon the choice of Bregman divergence.
In fact, the minimizer is just the expectation of the random variableX.

Proposition 1 Let X be a random variable that take values inX = {xi}ni=1 ⊂ S ⊆ Rd following
a positive probability measureν such that Eν[X] ∈ ri(S).5 Given a Bregman divergence dφ : S ×
ri(S) 7→ [0,∞), the problem

min
s∈ri(S)

Eν[dφ(X,s)] (2)

has a unique minimizer given bys† = µ = Eν[X].

Proof The function we are trying to minimize isJφ(s) = Eν[dφ(X,s)] = ∑n
i=1 νidφ(xi ,s). Since

µ = Eν[X] ∈ ri(S), the objective function is well-defined atµ. Now,∀s∈ ri(S),

Jφ(s)−Jφ(µ) =
n

∑
i=1

νidφ(xi ,s)−
n

∑
i=1

νidφ(xi ,µ)

= φ(µ)−φ(s)−
〈

n

∑
i=1

νixi−s,∇φ(s)

〉

+

〈

n

∑
i=1

νixi−µ,∇φ(µ)

〉

= φ(µ)−φ(s)−〈µ−s,∇φ(s)〉
= dφ(µ,s)≥ 0,

5. The assumption thatEν[X] ∈ ri(S) is not restrictive since a violation can occur only when co(X ) ⊂ bd(S), i.e., the
entire convex hull ofX is on the boundary ofS.
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with equality only whens= µ by the strict convexity ofφ (Appendix A, Property 1). Hence,µ is
the unique minimizer ofJφ.

Note that the minimization in (2) is with respect to the second argument ofdφ. Proposition 1 is
somewhat surprising since Bregman divergences are not necessarilyconvex in the second argument
as the following example demonstrates.

Example 4 Considerφ(x) = ∑3
j=1x3

j defined onR3
+ so thatdφ(x,s) = ∑3

j=1(x
3
j −s3

j −3(x j−sj)s2
j ).

For the random variableX distributed uniformly over the setX = {(1,1,1),(2,2,2),(3,3,3),(4,4,4),
(5,5,5)},

E[dφ(X,s)] = 135+2
3

∑
j=1

s3
j −9

3

∑
j=1

s2
j ,

which is clearly not convex inssince the Hessian∇2Jφ(s) = diag(12s−18) is not positive definite.
However,Jφ(s) is uniquely minimized bys= (3,3,3), i.e., the expectation of the random variable
X.

Interestingly, the converse of Proposition 1 is also true, i.e., for all random variablesX, if E[X]
minimizes the expected distortion ofX to a fixed point for a smooth distortion functionF(x,y) (see
Appendix B for details), thenF(x,y) has to be a Bregman divergence (Banerjee et al., 2005). Thus,
Bregman divergences areexhaustivewith respect to the property proved in Proposition 1.

Using Proposition 1, we can now give a more direct definition of Bregman information as fol-
lows:

Definition 2 Let X be a random variable that takes values inX = {xi}ni=1 ⊂ S following a proba-
bility measureν. Let µ = Eν[X] = ∑n

i=1 νixi ∈ ri(S) and letdφ : S × ri(S) 7→ [0,∞) be a Bregman
divergence. Then theBregman Informationof X in terms ofdφ is defined as

Iφ(X) = Eν[dφ(X,µ)] =
n

∑
i=1

νi dφ(xi ,µ) .

Example 5 (Variance) Let X = {xi}ni=1 be a set inRd, and consider the uniform measure, i.e.,
νi = 1

n, overX . The Bregman information ofX with squared Euclidean distance as the Bregman
divergence is given by

Iφ(X) =
n

∑
i=1

νidφ(xi ,µ) =
1
n

n

∑
i=1

‖xi−µ‖2,

which is just the sample variance.

Example 6 (Mutual Information ) By definition, the mutual informationI(U ;V) between two dis-
crete random variablesU andV with joint distribution{{p(ui ,v j)}ni=1}mj=1 is given by

I(U ;V) =
n

∑
i=1

m

∑
j=1

p(ui ,v j) log
p(ui ,v j)

p(ui)p(v j)
=

n

∑
i=1

p(ui)
m

∑
j=1

p(v j |ui) log
p(v j |ui)

p(v j)

=
n

∑
i=1

p(ui)KL( p(V|ui) ‖ p(V) ) .
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Consider a random variableZu that takes values in the set of probability distributionsZu = {p(V|ui)}ni=1
following the probability measure{νi}ni=1 = {p(ui)}ni=1 over this set. The mean (distribution) ofZu

is given by

µ = Eν[p(V|u)] =
n

∑
i=1

p(ui)p(V|ui) =
n

∑
i=1

p(ui ,V) = p(V) .

Hence,

I(U ;V) =
n

∑
i=1

νidφ(p(V|ui),µ) = Iφ(Zu) ,

i.e., mutual information is the Bregman information ofZu whendφ is the KL-divergence. Similarly,
for a random variableZv that takes values in the set of probability distributionsZv = {p(U |v j)}mj=1
following the probability measure{ν j}mj=1 = {p(v j)}mj=1 over this set, one can show thatI(U ;V) =
Iφ(Zv). The Bregman information ofZu andZv can also be interpreted as the Jensen-Shannon diver-
gence of the setsZu andZv (Dhillon et al., 2003).

Example 7 The Bregman information corresponding to Itakura-Saito distance also hasa useful
interpretation. LetF = {Fi}ni=1 be a set of power spectra corresponding ton different signals, and
let ν be a probability measure onF . Then, the Bregman information of a random variableF that
takes values inF following ν, with Itakura-Saito distance as the Bregman divergence, is given by

Iφ(F) =
n

∑
i=1

νidφ(Fi , F̄) =
n

∑
i=1

νi

2π

Z π

−π

(

− log

(

Fi(ejθ)

F̄(ejθ)

)

+
Fi(ejθ)

F̄(ejθ)
−1

)

dθ

= − 1
2π

Z π

−π

n

∑
i=1

νi log

(

Fi(ejθ)

F̄(ejθ)

)

dθ,

where F̄ is the marginal average power spectrum. Based on the connection betweenthe corre-
sponding convex functionφ and the negative entropy of Gaussian processes (Cover and Thomas,
1991; Palus, 1997), it can be shown that the Bregman informationIφ(F) is the Jensen-Shannon
divergence of the generating processes under the assumption that theyare equal mean, stationary
Gaussian processes. Further, consider an-class signal classification problem where each class of
signals is assumed to be generated by a certain Gaussian process. Now, ifPe(t) is the optimal Bayes
error for this classification problem averaged upto timet, thenPe(t) is bounded above and below by
functions of the Chernoff coefficientB(t) (Kazakos and Kazakos, 1980) of the generating Gaussian
processes. The asymptotic value of this Chernoff coefficient ast tends to∞ is a function of the
Bregman information ofF , i.e.,

lim
t→∞

B(t) = exp(−1
2

Iφ(F)).

and is directly proportional to the optimal Bayes error.

3.1.1 JENSEN’ S INEQUALITY AND BREGMAN INFORMATION

An alternative interpretation of Bregman information can also be made in terms ofJensen’s inequal-
ity (Cover and Thomas, 1991). Given any convex functionφ, for any random variableX, Jensen’s
inequality states that

E[φ(X)]≥ φ(E[X]) .
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A direct calculation using the definition of Bregman information shows that (Banerjee et al., 2004b)

E[φ(X)]−φ(E[X])
(a)
= E[φ(X)]−φ(E[X])−E[〈X−E[X],∇φ(E[X])〉]
(b)
= E[φ(X)−φ(E[X])−〈X−E[X],∇φ(E[X])〉]
= E[dφ(X,E[X])] = Iφ(X) ≥ 0 ,

where (a) follows since the last term is 0, and (b) follows from the linearity of expectation. Thus the
difference between the two sides of Jensen’s inequality is exactly equal tothe Bregman information.

3.2 Clustering Formulation

Let X be a random variable that takes values inX = {xi}ni=1 following the probability measureν.
WhenX has a large Bregman information, it may not suffice to encodeX using a single represen-
tative since a lower quantization error may be desired. In such a situation, anatural goal is to split
the setX into k disjoint partitions{Xh}kh=1, each with its own Bregman representative, such that
a random variableM over the partition representatives serves as an appropriate quantizationof X.
Let M = {µh}kh=1 denote the set of representatives, andπ = {πh}kh=1 with πh = ∑xi∈Xh

νi denote
the induced probability measure onM . Then the induced random variableM takes values inM
following π.

The quality of the quantizationM can be measured by the expected Bregman divergence be-
tweenX andM, i.e., EX,M[dφ(X,M)]. SinceM is a deterministic function ofX, the expectation is
actually over the distribution ofX, so that

EX[dφ(X,M)] =
k

∑
h=1

∑
xi∈Xh

νidφ(xi ,µh) =
k

∑
h=1

πh ∑
xi∈Xh

νi

πh
dφ(xi ,µh) = Eπ[Iφ(Xh)] ,

whereXh is the random variable that takes values in the partitionXh following a probability dis-
tribution νi

πh
, andIφ(Xh) is the Bregman information ofXh. Thus, the quality of the quantization is

equal to the expected Bregman information of the partitions.
An alternative way of measuring the quality of the quantizationM can be formulated from

an information theoretic viewpoint. In information-theoretic clustering (Dhillon et al., 2003), the
quality of the partitioning is measured in terms of the loss in mutual information resulting from the
quantization of the original random variableX. Extending this formulation, we can measure the
quality of the quantizationM by the loss in Bregman information due to the quantization, i.e., by
Iφ(X)− Iφ(M). Fork = n, the best choice is of courseM = X with no loss in Bregman information.
For k = 1, the best quantization is to pickEν[X] with probability 1, incurring a loss ofIφ(X). For
intermediate values ofk, the solution is less obvious.

Interestingly the two possible formulations outlined above turn out to be identical (see Theo-
rem 1 below). We choose the information theoretic viewpoint to pose the problem, since we will
study the connections of both the hard and soft clustering problems to rate distortion theory in Sec-
tion 6. Thus we define theBregman hard clustering problemas that of finding a partitioning of
X , or, equivalently, finding the random variableM, such thatthe loss in Bregman informationdue
to quantization,Lφ(M) = Iφ(X)− Iφ(M), is minimized. Typically, clustering algorithms assume a
uniform measure, i.e.,νi = 1

n,∀i, over the data, which is clearly a special case of our formulation.
The following theorem shows that the loss in Bregman information and the expected Bregman

information of the partitions are equal.
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Theorem 1 Let X be a random variable that takes values inX = {xi}ni=1 ⊂ S ⊆ Rd following
the positive probability measureν. Let{Xh}kh=1 be a partitioning ofX and letπh = ∑xi∈Xh

νi be the
induced measureπ on the partitions. Let Xh be the random variable that takes values inXh following
νi
πh

for xi ∈ Xh, for h= 1, . . . ,k. LetM = {µh}kh=1 with µh ∈ ri(S) denote the set of representatives

of {Xh}kh=1, and M be a random variable that takes values inM following π. Then,

Lφ(M) = Iφ(X)− Iφ(M) = Eπ[Iφ(Xh)] =
k

∑
h=1

πh ∑
xi∈Xh

νi

πh
dφ(xi ,µh) .

Proof By definition,

Iφ(X) =
n

∑
i=1

νidφ(xi ,µ) =
k

∑
h=1

∑
xi∈Xh

νidφ(xi ,µ)

=
k

∑
h=1

∑
xi∈Xh

νi {φ(xi)−φ(µ)−〈xi−µ,∇φ(µ)〉}

=
k

∑
h=1

∑
xi∈Xh

νi {φ(xi)−φ(µh)−〈xi−µh,∇φ(µh)〉+ 〈xi−µh,∇φ(µh)〉

+φ(µh)−φ(µ)−〈xi−µh +µh−µ,∇φ(µ)〉}

=
k

∑
h=1

∑
xi∈Xh

νi
{

dφ(xi ,µh)+dφ(µh,µ)+ 〈xi−µh,∇φ(µh)−∇φ(µ)〉
}

=
k

∑
h=1

πh ∑
xi∈Xh

νi

πh
dφ(xi ,µh)+

k

∑
h=1

∑
xi∈Xh

νidφ(µh,µ)

+
k

∑
h=1

πh ∑
xi∈Xh

νi

πh
〈xi−µh,∇φ(µh)−∇φ(µ)〉

=
k

∑
h=1

πhIφ(Xh)+
k

∑
h=1

πhdφ(µh,µ)+
k

∑
h=1

πh

〈

∑
xi∈Xh

νi

πh
xi−µh,∇φ(µh)−∇φ(µ)

〉

= Eπ[Iφ(Xh)]+ Iφ(M),

since∑xi∈Xh

νi
πh

xi = µh.

Note thatIφ(X) can be interpreted as the “total Bregman information”, andIφ(M) can be interpreted
as the “between-cluster Bregman information” since it is a measure of divergence between the clus-
ter representatives, whileLφ(M) can be interpreted as the “within-cluster Bregman information”.
Thus Theorem 1 states that the total Bregman information equals the sum of thewithin-cluster
Bregman information and between-cluster Bregman information. This is a generalization of the
corresponding result for squared Euclidean distances (Duda et al., 2001).

Using Theorem 1, the Bregman clustering problem of minimizing the loss in Bregman informa-
tion can be written as

min
M

(

Iφ(X)− Iφ(M)
)

= min
M

(

k

∑
h=1

∑
xi∈Xh

νidφ(xi ,µh)

)

. (3)
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Algorithm 1 Bregman Hard Clustering

Input: SetX = {xi}ni=1 ⊂ S ⊆ Rd, probability measureν overX , Bregman divergencedφ : S × ri(S) 7→ R,
number of clustersk.

Output: M †, local minimizer ofLφ(M ) = ∑k
h=1 ∑xi∈Xh

νidφ(xi ,µh) whereM = {µh}kh=1, hard partitioning
{Xh}kh=1 of X .

Method:
Initialize {µh}kh=1 with µh ∈ ri(S) (one possible initialization is to chooseµh ∈ ri(S) at random)
repeat
{The Assignment Step}
SetXh← /0, 1≤ h≤ k
for i = 1 ton do

Xh← Xh∪{xi}
whereh = h†(xi) = argmin

h′
dφ(xi ,µh′)

end for
{The Re-estimation Step}
for h = 1 tok do

πh← ∑xi∈Xh
νi

µh← 1
πh

∑xi∈Xh
νixi

end for
until convergence
returnM†←{µh}kh=1

Thus, the loss in Bregman information is minimized if the set of representativesM is such that the
expected Bregman divergence of points in the original setX to their corresponding representatives
is minimized. We shall investigate the relationship of this formulation to rate distortion theory in
detail in Section 6.

3.3 Clustering Algorithm

The objective function given in (3) suggests a natural iterative relocation algorithm for solving
the Bregman hard clustering problem (see Algorithm 1). It is easy to see that classicalkmeans,
the LBG algorithm (Buzo et al., 1980) and the information theoretic clustering algorithm (Dhillon
et al., 2003) are special cases of Bregman hard clustering for squared Euclidean distance, Itakura-
Saito distance and KL-divergence respectively. The following propositions prove the convergence
of the Bregman hard clustering algorithm.

Proposition 2 The Bregman hard clustering algorithm (Algorithm 1) monotonically decreases the
loss function in (3).

Proof Let {X (t)
h }kh=1 be the partitioning ofX after thetth iteration and letM (t) = {µ(t)

h }kh=1 be the
corresponding set of cluster representatives. Then,

Lφ(M
(t)) =

k

∑
h=1

∑
xi∈X

(t)
h

νidφ(xi ,µ
(t)
h )

(a)

≥
k

∑
h=1

∑
xi∈X

(t)
h

νidφ(xi ,µ
(t)
h†(xi)

)

(b)

≥
k

∑
h=1

∑
xi∈X

(t+1)
h

νidφ(xi ,µ
(t+1)
h ) = Lφ(M

(t+1)),
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where (a) follows from the assignment step, and (b) follows from the re-estimation step and Propo-
sition 1. Note that if equality holds, i.e., if the loss function value is equal at consecutive iterations,
then the algorithm will terminate.

Proposition 3 The Bregman hard clustering algorithm (Algorithm 1) terminates in a finite number
of steps at a partition that is locally optimal, i.e., the total loss cannot be decreased by either (a) the
assignment step or by (b) changing the means of any existing clusters.

Proof The result follows since the algorithm monotonically decreases the objectivefunction value,
and the number of distinct clusterings is finite.

In addition to local optimality, the Bregman hard clustering algorithm has the following inter-
esting properties.

Exhaustiveness:The Bregman hard clustering algorithm with cluster centroids as optimal repre-
sentatives works forall Bregman divergences andonly for Bregman divergences since the
arithmetic mean is the best predictoronly for Bregman divergences (Banerjee et al., 2005).
However, it is possible to have a similar alternate minimization based clustering algorithm
for distance functions that are not Bregman divergences, the primary difference being that
the optimal cluster representative, when it exists, will no longer be the arithmetic mean or
the expectation. Theconvex-kmeans clustering algorithm (Modha and Spangler, 2003) and
the generalizations of the LBG algorithm (Linde et al., 1980) are examples ofsuch alternate
minimization schemes where a (unique) representative exists because of convexity.

Linear Separators: For all Bregman divergences, the partitions induced by the Bregman hard
clustering algorithm are separated by hyperplanes. In particular, the locus of points that are
equidistant to two fixed pointsµ1,µ2 in terms of a Bregman divergence is given byX =
{x | dφ(x,µ1) = dφ(x,µ2)}, i.e., the set of points,

{x | 〈x,∇φ(µ2)−∇φ(µ1)〉= (φ(µ1)−〈µ1,∇φ(µ1)〉)− (φ(µ2)−〈µ2,∇φ(µ2)〉)} ,

which corresponds to a hyperplane.

Scalability: The computational complexity of each iteration of the Bregman hard clustering algo-
rithm is linear in the number of data points and the number of desired clusters for all Bregman
divergences, which makes the algorithm scalable and appropriate for large clustering prob-
lems.

Applicability to mixed data types: The Bregman hard clustering algorithm is applicable to mixed
data types that are commonly encountered in machine learning. One can choose different
convex functions that are appropriate and meaningful for different subsets of the features.
The Bregman divergence corresponding to a convex combination of the component convex
functions can then be used to cluster the data.

4. Relationship with Exponential Families

We now turn our attention tosoftclustering with Bregman divergences. To accomplish our goal, we
first establish that there is a unique Bregman divergence corresponding to every regular exponential
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family distribution. Later, we make this relation more precise by establishing a bijection between
regular exponential families andregular Bregman divergences. The correspondence will be used to
develop the Bregman soft clustering algorithm in Section 5. To present ourresults, we first review
some background information on exponential families and Legendre duality inSections 4.1 and 4.2
respectively.

4.1 Exponential Families

Consider a measurable space(Ω,B) whereB is a σ-algebra on the setΩ. Let t be a measurable
mapping fromΩ to a setT ⊆ Rd, whereT may be discrete (e.g.,T ⊂ N). Let p0 : T 7→ R+

be any function such that if(Ω,B) is endowed with a measuredP0(ω) = p0(t(ω))dt(ω), then
R

ω∈Ω dP0(ω) < ∞. The measureP0 is absolutely continuous with respect to the Lebesgue mea-
suredt(ω). WhenT is a discrete set,dt(ω) is the counting measure andP0 is absolutely continuous
with respect to the counting measure.6

Now, t(ω) is a random variable from(Ω,B,P0) to (T ,σ(T )), whereσ(T ) denotes theσ-algebra
generated byT . Let Θ be defined as the set of all parametersθ ∈ Rd for which

Z

ω∈Ω
exp(〈θ, t(ω)〉)dP0(ω) < ∞ .

Based on the definition ofΘ, it is possible to define a functionψ : Θ 7→ R such that

ψ(θ) = log

(

Z

ω∈Ω
exp(〈θ, t(ω)〉)dP0(ω)

)

. (4)

A family of probability distributionsFψ parameterized by ad-dimensional vectorθ ∈Θ⊆Rd such
that the probability density functions with respect to the measuredt(ω) can be expressed in the form

f (ω;θ) = exp(〈θ, t(ω)〉−ψ(θ)) p0(t(ω)) (5)

is called anexponential familywith natural statistict(ω), natural parameterθ andnatural param-
eter spaceΘ. In particular, if the components oft(ω) are affinely independent, i.e.,@ non-zero
a∈ Rd such that〈a, t(ω)〉= c (a constant)∀ω ∈ Ω, then this representation is said to beminimal.7

For a minimal representation, there exists a unique probability densityf (ω;θ) for every choice of
θ ∈ Θ (Wainwright and Jordan, 2003).Fψ is called afull exponential familyof order d in such a
case. In addition, if the parameter spaceΘ is open, i.e.,Θ = int(Θ), thenFψ is called aregular
exponential family.

It can be easily seen that ifx ∈Rd denotes the natural statistict(ω), then the probability density
functiong(x;θ) (with respect to the appropriate measuredx) given by

g(x;θ) = exp(〈θ,x〉−ψ(θ))p0(x) (6)

is such thatf (ω;θ)/g(x;θ) does not depend onθ. Thus,x is a sufficient statistic (Amari and Na-
gaoka, 2001) for the family, and in fact, can be shown (Barndorff-Nielsen, 1978) to be minimally

6. For conciseness, we abuse notation and continue to use the Lebesgueintegral sign even for counting measures. The
integral in this case actually denotes a sum overT . Further, the use of absolute continuity in the context of counting
measure is non-standard. We say the measureP0 is absolutely continuous with respect to the counting measureµc if
P0(E) = 0 for every set withµc(E) = 0, whereE is a discrete set.

7. Strictly speaking,@ non-zeroa such thatP0({ω : 〈t(ω),a〉= c}) = 1.
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sufficient. For instance, the natural statistic for the one-dimensional Gaussian distributions denoted
by f (ω;σ,µ) = 1√

2πσexp(− (ω−µ)2

2σ2 ) is given byx = [ω,ω2] and the corresponding natural parameter

turns out to beθ = [ µ
σ2 ,− 1

2σ2 ], which can be easily verified to be minimally sufficient. For our anal-
ysis, it is convenient to work with the minimal natural sufficient statisticx and hence, we redefine
regular exponential families in terms of the probability density ofx ∈ Rd, noting that the original
probability space can actually be quite general.

Definition 3 A multivariate parametric familyFψ of distributions{p(ψ,θ)|θ∈Θ = int(Θ)= dom(ψ)⊆
Rd} is called a regular exponential family if each probability density is of the form

p(ψ,θ)(x) = exp(〈x,θ〉−ψ(θ))p0(x), ∀x ∈ Rd,

wherex is a minimal sufficient statistic for the family.

The functionψ(θ) is known as thelog partition functionor thecumulant functioncorresponding
to the exponential family. Given a regular exponential familyFψ, the log-partition functionψ is
uniquely determined up to a constant additive term. It can be shown (Barndorff-Nielsen, 1978) that
Θ is a non-empty convex set inRd andψ is a convex function. In fact, it is possible to prove a
stronger result that characterizesψ in terms of a special class of convex functions called Legendre
functions, which are defined below.

Definition 4 (Rockafellar (1970)) Let ψ be a proper, closed8 convex function withΘ = int(dom(ψ)).
The pair(Θ,ψ) is called a convex function of Legendre type or a Legendre function if thefollowing
properties are satisfied:

(L1) Θ is non-empty,

(L2) ψ is strictly convex and differentiable onΘ,

(L3) ∀θb ∈ bd(Θ), lim
θ→θb

‖∇ψ(θ)‖→ ∞ whereθ ∈Θ.

Based on this definition, we now state a critical property of the cumulant function of any regular
exponential family.

Lemma 1 Let ψ be the cumulant function of a regular exponential family with natural parameter
spaceΘ = dom(ψ). Thenψ is a proper, closed convex function withint(Θ) = Θ and (Θ,ψ) is a
convex function of Legendre type.

The above result directly follows from Theorems 8.2, 9.1 and 9.3 of Barndorff-Nielsen (1978).

4.2 Expectation Parameters and Legendre Duality

Consider ad-dimensional real random vectorX distributed according to a regular exponential family
densityp(ψ,θ) specified by the natural parameterθ ∈Θ. The expectation ofX with respect top(ψ,θ),
also called theexpectation parameter, is given by

µ = µ(θ) = Ep(ψ,θ)
[X] =

Z

Rd
xp(ψ,θ)(x)dx. (7)

8. A convex functionψ is proper if dom(ψ) is non-empty and∀x ∈ dom(ψ),ψ(x) > −∞. A convex function is closed
if it is lower semi-continuous.
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It can be shown (Barndorff-Nielsen, 1978; Amari, 1995) that the expectation and natural parameters
have a one-one correspondence with each other and span spaces that exhibit a dual relationship. To
specify the duality more precisely, we first define conjugate functions.

Definition 5 (Rockafellar (1970)) Let ψ be a real-valued function onRd. Then itsconjugate func-
tion ψ∗ is given by

ψ∗(t) = sup
θ∈dom(ψ)

{〈t,θ〉−ψ(θ)}. (8)

Further, if ψ is a proper closed convex function,ψ∗ is also a proper closed convex function and
ψ∗∗ = ψ.

Whenψ is strictly convex and differentiable overΘ = int(dom(ψ)), we can obtain the uniqueθ†

that corresponds to the supremum in (8) by setting the gradient of〈t,θ〉−ψ(θ) to zero, i.e.,

∇(〈t,θ〉−ψ(θ)) |θ=θ† = 0 ⇒ t = ∇ψ(θ†) . (9)

The strict convexity ofψ implies that∇ψ is monotonic and it is possible to define the inverse
function(∇ψ)−1 : Θ∗ 7→ Θ, whereΘ∗ = int(dom(ψ∗)). If the pair (Θ, ψ) is of Legendre type, then
it can be shown (Rockafellar, 1970) that (Θ∗, ψ∗) is also of Legendre type, and(Θ,ψ) and(Θ∗,ψ∗)
are called Legendre duals of each other. Further, the gradient mappings are continuous and form a
bijection between the two open setsΘ andΘ∗. The relation between(Θ,ψ) and(Θ∗,ψ∗) result is
formally stated below.

Theorem 2 (Rockafellar (1970))Let ψ be a real-valued proper closed convex function with con-
jugate functionψ∗. LetΘ = int(dom(ψ)) andΘ∗ = int(dom(ψ∗)). If (Θ,ψ) is a convex function of
Legendre type, then

(i) (Θ∗,ψ∗) is a convex function of Legendre type,

(ii) (Θ,ψ) and(Θ∗,ψ∗) are Legendre duals of each other,

(iii) The gradient function∇ψ : Θ 7→ Θ∗ is a one-to-one function from the open convex setΘ onto
the open convex setΘ∗,

(iv) The gradient functions∇ψ,∇ψ∗ are continuous, and∇ψ∗ = (∇ψ)−1.

Let us now look at the relationship between the natural parameterθ and the expectation parameterµ

defined in (7). Differentiating the identity
R

p(ψ,θ)(x)dx = 1 with respect toθ gives usµ = µ(θ) =
∇ψ(θ), i.e., the expectation parameterµ is the image of the natural parameterθ under the gradient
mapping∇ψ. Let φ be defined as the conjugate ofψ, i.e.,

φ(µ) = sup
θ∈Θ
{〈µ,θ〉−ψ(θ)}. (10)

Since(Θ,ψ) is a convex function of Legendre type (Lemma 1), the pairs(Θ,ψ) and(int(dom(φ)),φ)
are Legendre duals of each other from Theorem 2, i.e.,φ = ψ∗ and int(dom(φ)) = Θ∗. Thus, the
mappings between the dual spaces int(dom(φ)) andΘ are given by the Legendre transformation

µ(θ) = ∇ψ(θ) and θ(µ) = ∇φ(µ) . (11)

Further, the conjugate functionφ can be expressed as

φ(µ) = 〈θ(µ),µ〉−ψ(θ(µ)), ∀µ ∈ int(dom(φ)) . (12)
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4.3 Exponential Families and Bregman Divergences

We are now ready to explicitly state the formal connection between exponential families of distri-
butions and Bregman divergences. It has been observed in the literature that exponential families
and Bregman divergences have a close relationship that can be exploitedfor several learning prob-
lems. In particular, Forster and Warmuth (2000)[Section 5.1] remarked that the log-likelihood of
the density of an exponential family distributionp(ψ,θ) can be written as the sum of the negative
of a uniquely determined Bregman divergencedφ(x,µ) and a function that does not depend on the
distribution parameters. In our notation, this can be written as

log(p(ψ,θ)(x)) =−dφ(x,µ(θ))+ log(bφ(x)) , (13)

whereφ is the conjugate function ofψ andµ = µ(θ) = ∇ψ(θ) is the expectation parameter cor-
responding toθ. The result was later used by Collins et al. (2001) to extend PCA to exponential
families. However, as we explain below, a formal proof is required to showthat (13) holds for all
instancesx of interest. We focus on the case whenp(ψ,θ) is aregularexponential family.

To get an intuition of the main result, observe that the log-likelihood of any exponential family,
considering only the parametric terms, can be written as

〈x,θ〉−ψ(θ) = (〈µ,θ〉−ψ(θ))+ 〈x−µ,θ〉
= φ(µ)+ 〈x−µ,∇φ(µ)〉 ,

from (11) and (12), whereµ ∈ int(dom(φ)). Therefore, for anyx ∈ dom(φ), θ ∈ Θ, andµ ∈
int(dom(φ)), one can write

〈x,θ〉−ψ(θ) = −dφ(x,µ)+φ(x) .

Then considering the density of an exponential family with respect to the appropriate measuredx,
we have

log(p(ψ,θ)(x)) = 〈x,θ〉−ψ(θ)+ logp0(x) = −dφ(x,µ)+ log(bφ(x)) ,

wherebφ(x) = exp(φ(x))p0(x).
Thus (13) follows directly from Legendre duality forx∈ dom(φ). However, for (13) to be useful,

one would like to ensure that it is true for all individual “instances”x that can be drawn following
the exponential distributionp(ψ,θ). Let Iψ denote the set of such instances. Establishing (13) can be
tricky for all x ∈ Iψ since the relationship betweenIψ and dom(φ) is not apparent. Further, there are
distributions for which the instances spaceIψ and the expectation parameter space int(dom(φ)) are
disjoint, as the following example shows.

Example 8 A Bernoulli random variableX takes values in{0,1} such thatp(X = 1) = q and
p(X = 0) = 1−q, for someq∈ [0,1]. The instance space forX is just Iψ = {0,1}. The cumulant
function forX is ψ(θ) = log(1+exp(θ)) with Θ = R (see Table 2). A simple calculation shows that
the conjugate functionφ(µ) = µlogµ+(1−µ) log(1−µ), ∀µ∈ (0,1). Sinceφ is a closed function,
we obtainφ(µ) = 0 for µ∈ {0,1} by taking limits. Thus, the effective domain ofφ is [0,1] andµ= q,
whereas the expectation parameter space is given by int(dom(φ)) = (0,1). Hence the instance space
Iψ and the expectation parameter space int(dom(φ)) are disjoint; howeverIψ ⊂ dom(φ).
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In this particular case, since the “instances” lie within dom(φ), the relation (13) does hold for all
x ∈ Iψ. However, it remains to be shown thatIψ ⊆ dom(φ) for all regular exponential family distri-
butions.

In order to establish such a result for all regular exponential family distributions, we need to
formally define the set of instancesIψ. If the measureP0 is absolutely continuous with respect to the
counting measure, thenx∈ Iψ if p(ψ,θ)(x) > 0. On the other hand, ifP0 is absolutely continuous with
respect to the Lebesgue measure, thenx ∈ Iψ if all sets with positive Lebesgue measure that contain
x have positive probability mass. A closer look reveals that the set of instancesIψ is independent of
the choice ofθ. In fact,Iψ is just the support ofP0 and can be formally defined as follows.

Definition 6 Let Iψ denote the set of instances that can be drawn followingp(ψ,θ)(x). Then,x0 ∈ Iψ
if ∀I such thatx0 ∈ I and

R

I dx > 0, we have
R

I dP0(x) > 0, whereP0 is as defined in Section 4.1;
also see footnote 6.

The following theorem establishes the crucial result that the set of instancesIψ is always a subset of
dom(φ).

Theorem 3 Let Iψ be the set of instances as in Definition 6. Then, Iψ ⊆ dom(φ) whereφ is the
conjugate function ofψ.

The above result follows from Theorem 9.1 and related results in Barndorff-Nielsen (1978). We
have included the proof in Appendix C.

We are now ready to formally show that there is a unique Bregman divergence corresponding to
every regular exponential family distribution. Note that, by Theorem 3, it is sufficient to establish
the relationship for allx ∈ dom(φ).

Theorem 4 Let p(ψ,θ) be the probability density function of a regular exponential family distribu-
tion. Letφ be the conjugate function ofψ so that(int(dom(φ)),φ) is the Legendre dual of(Θ,ψ). Let
θ ∈ Θ be the natural parameter andµ ∈ int(dom(φ)) be the corresponding expectation parameter.
Let dφ be the Bregman divergence derived fromφ. Then p(ψ,θ) can be uniquely expressed as

p(ψ,θ)(x) = exp(−dφ(x,µ))bφ(x), ∀x ∈ dom(φ) (14)

where bφ : dom(φ) 7→ R+ is a uniquely determined function.

Proof For allx ∈ dom(φ), we have

p(ψ,θ)(x) = exp(〈x,θ〉−ψ(θ))p0(x)

= exp(φ(µ)+ 〈x−µ,∇φ(µ)〉)p0(x) (using (11) and (12))

= exp(−{φ(x)−φ(µ)−〈x−µ,∇φ(µ)〉}+φ(x))p0(x)

= exp(−dφ(x,µ))bφ(x) ,

wherebφ(x) = exp(φ(x))p0(x)).
We observe thatp(ψ,θ) uniquely determines the log-partition functionψ to a constant additive

term so that the gradient space of all the possible functionsψ is the same, i.e., the expectation pa-
rameterµ = ∇ψ(θ) corresponding toθ is uniquely determined and the corresponding conjugate
functionsφ differ only by a constant additive term. Hence the Bregman divergencedφ(x,µ) derived
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from any of these conjugate functions will be identical since constant additive terms do not change
the corresponding Bregman divergence (Appendix A, Property 4). The Legendre duality between
φ andψ also ensures that no two exponential families correspond to the same Bregman divergence,
i.e., the mapping is one-to-one. Further, sincep(ψ,θ)(x) is well-defined on dom(φ), and the corre-
spondingdφ(x,µ) is unique, the functionbφ(x) = exp(dφ(x,µ))p(ψ,θ)(x) is uniquely determined.

4.4 Bijection with Regular Bregman Divergences

From Theorem 4 we note that every regular exponential family corresponds to a unique and dis-
tinct Bregman divergence (one-to-one mapping). Now, we investigate whether there is a regular
exponential family corresponding to every choice of Bregman divergence (onto mapping).

For regular exponential families, the cumulant functionψ as well as its conjugateφ are convex
functions of Legendre type. Hence, for a Bregman divergence generated from a convex functionφ
to correspond to a regular exponential family, it is necessary thatφ be of Legendre type. Further,
it is necessary that the Legendre conjugateψ of φ to beC∞, since cumulant functions of regular
exponential families areC∞. However, it is not clear if these conditions are sufficient. Instead, we
provide a sufficiency condition using exponentially convex functions (Akhizer, 1965; Ehm et al.,
2003), which are defined below.

Definition 7 A function f : Θ 7→R++, Θ⊆Rd is called exponentially convex if the kernelK f (α,β)=
f (α+β), with α+β ∈Θ, satisfies

n

∑
i=1

n

∑
j=1

K f (θi ,θ j)ui ū j ≥ 0

for any set{θ1, · · · ,θn} ⊆Θ with θi +θ j ∈Θ, ∀i, j, and{u1, · · · ,un} ⊂ C (ū j denotes the complex
conjugate ofu j ), i.e, the kernelK f is positive semi-definite.

Although it is well known that the logarithm of an exponentially convex function is a convex func-
tion (Akhizer, 1965), we are interested in the case where the logarithm is strictly convex with an
open domain. Using this class of exponentially convex functions, we now define a class of Bregman
divergences calledregular Bregman divergences.

Definition 8 Let f : Θ 7→ R++ be a continuous exponentially convex function such thatΘ is open
andψ(θ) = log( f (θ)) is strictly convex. Letφ be the conjugate function ofψ. Then we say that the
Bregman divergencedφ derived fromφ is aregular Bregman divergence.

We will now prove that there is a bijection between regular exponential familiesand regular
Bregman divergences. The crux of the argument relies on results in harmonic analysis connecting
positive definiteness to integral transforms (Berg et al., 1984). In particular, we use a result due
to Devinatz (1955) that relates exponentially convex functions to Laplace transforms of bounded
non-negative measures.

Theorem 5 (Devinatz (1955))Let Θ⊆ Rd be an open convex set. A necessary and sufficient con-
dition that there exists a unique, bounded, non-negative measureν such that f: Θ 7→ R++ can be

1722



CLUSTERING WITH BREGMAN DIVERGENCES

represented as

f (θ) =
Z

x∈Rd
exp(〈x,θ〉)dν(x) (15)

is that f is continuous and exponentially convex.

We also need the following result to establish the bijection.

Lemma 2 Let ψ be the cumulant of an exponential family with base measure P0 and natural pa-
rameter spaceΘ⊆Rd. Then, if P0 is concentrated on an affine subspace ofRd thenψ is not strictly
convex.

Proof Let P0(x) be concentrated on an affine subspaceS= {x ∈ Rd|〈x,b〉 = c} for someb ∈ Rd

andc∈ R. Let I = {θ|θ = αb, α ∈ R}. Then, for anyθ = αb ∈ I , we have〈x,θ〉= αc ∀x ∈ Sand
the cumulant is given by

ψ(θ) = log

(

Z

x∈Rd
exp(〈x,θ〉)dP0(x)

)

= log

(

Z

x∈S
exp(〈x,θ〉)dP0(x)

)

= log

(

Z

x∈S
exp(αc)dP0(x)

)

= log(exp(αc)P0(S)) = αc+ log(P0(S))

= 〈x0,θ〉+ log(P0(S)) ,

for anyx0 ∈ S, implying thatψ is not strictly convex.

There are two parts to the proof leading to the bijection result. Note that we have already established
in Theorem 4 that there is a unique Bregman divergence correspondingto every exponential family
distribution. In the first part of the proof, we show that these Bregman divergences are regular (one-
to-one). Then we show that there exists a unique regular exponential family determined by every
regular Bregman divergence (onto).

Theorem 6 There is a bijection between regular exponential families and regular Bregman diver-
gences.

Proof First we prove the ‘one-to-one’ part, i.e., there is a regular Bregman divergence corresponding
to every regular exponential familyFψ with cumulant functionψ and natural parameter spaceΘ.
SinceFψ is a regular exponential family, there exists a non-negative bounded measureν such that
for all θ ∈Θ,

1 =
Z

x∈Rd
exp(〈x,θ〉−ψ(θ))dν(x)

⇒ exp(ψ(θ)) =
Z

x∈Rd
exp(〈x,θ〉)dν(x).

Thus, from Theorem 5, exp(ψ(θ)) is a continuous exponentially convex function with the open set
Θ as its domain. Further, being the cumulant of a regular exponential family,ψ is strictly convex.
Therefore, the Bregman divergencedφ derived from the conjugate functionφ of ψ is a regular
Bregman divergence.

Next we prove the ‘onto’ part, i.e., every regular Bregman divergencecorresponds to a unique
regular exponential family. Let the regular Bregman divergencedφ be generated byφ and letψ be
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the conjugate ofφ. Sincedφ is a regular Bregman divergence, by Definition 8,ψ is strictly convex
with dom(ψ) = Θ being an open set. Further, the function exp(ψ(θ)) is a continuous, exponentially
convex function. From Theorem 5, there exists a unique non-negativebounded measureν that
satisfies (15). SinceΘ is non-empty, we can choose some fixedb ∈Θ so that

exp(ψ(b)) =
Z

x∈Rd
exp(〈x,b〉)dν(x)

and sodP0(x) = exp(〈x,b〉−ψ(b))dν(x) is a probability density function. The set of allθ ∈Rd for
which

Z

x∈Rd
exp(〈x,θ〉)dP0(x) < ∞

is same as the set{θ ∈ Rd|exp(ψ(θ + b)−ψ(b)) < ∞} = {θ ∈ Rd|θ + b ∈ Θ} which is just a
translated version ofΘ itself. For anyθ such thatθ +b ∈Θ, we have

Z

x∈Rd
exp(〈x,θ +b〉−ψ(θ +b))dν(x) = 1 .

Hence, the exponential familyFψ consisting of densities of the form

p(ψ,θ)(x) = exp(〈x,θ〉−ψ(θ))

with respect to the measureν hasΘ as its natural parameter space andψ(θ) as the cumulant function.

Sinceψ is strictly convex onΘ, it follows from Lemma 2 that the measureP0 is not concentrated
in an affine subspace ofRd, i.e.,x is a minimal statistic forFψ. Therefore, the exponential family
generated byP0 andx is full. SinceΘ is also open, it follows thatFψ is a regular exponential family.

Finally we show that the family is unique. Since onlydφ is given, the generating convex function
could beφ̄(x) = φ(x)+ 〈x,a〉+ c for a ∈ Rd and a constantc ∈ R. The corresponding conjugate
function ψ̄(θ) = ψ(θ−a)− c differs fromψ only by a constant. Hence, the exponential family is
exactlyFψ. That completes the proof.

4.5 Examples

Table 2 shows the various functions of interest for some popular exponential families. We now look
at two of these distributions in detail and obtain the corresponding Bregman divergences.

Example 9 The most well-known exponential family is that of Gaussian distributions, in particular
uniform variance, spherical Gaussian distributions with densities of the form

p(x;a) =
1

√

(2πσ2)d
exp

(

− 1
2σ2‖x−a‖2

)

,
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Table 2: Various functions of interest for some popular exponential families. For all the cases shown
in the table,x is the sufficient statistic. Note that for the Gaussian examples the variance
σ is assumed to be constant. The number of trials,N, for the binomial and multinomial
examples is also assumed to be constant.

Distribution p(x;θ) µ φ(µ) dφ(x,µ)

1-D Gaussian 1√
(2πσ2)

exp(− (x−a)2

2σ2 ) a 1
2σ2 µ2 1

2σ2 (x−µ)2

1-D Poisson λx exp(−λ)
x! λ µlogµ−µ xlog( x

µ)− (x−µ)

1-D Bernoulli qx(1−q)1−x q µlogµ+(1−µ) log(1−µ) xlog( x
µ)+(1−x) log( 1−x

1−µ)

1-D Binomial N!
(x)!(N−x)! q

x(1−q)N−x Nq µlog( µ
N )+(N−µ) log( N−µ

N ) xlog( x
µ)+(N−x) log( N−x

N−µ)

1-D Exponential λexp(−λx) 1/λ − logµ−1 x
µ− log

(

x
µ

)

−1

d-D Sph. Gaussian 1√
(2πσ2)d

exp(− ‖x−a‖2
2σ2 ) a 1

2σ2 ‖µ‖2 1
2σ2 ‖x−µ‖2

d-D Multinomial N!
∏d

j=1 x j !
∏d

j=1 q
x j
j [Nqj ]

d−1
j=1 ∑d

j=1 µj log(
µj
N ) ∑d

j=1 x j log(
x j
µj

)

Distribution θ ψ(θ) dom(ψ) dom(φ) Iψ

1-D Gaussian a
σ2

σ2

2 θ2
R R R

1-D Poisson logλ exp(θ) R R+ N

1-D Bernoulli log( q
1−q) log(1+exp(θ)) R [0,1] {0,1}

1-D Binomial log( q
1−q) N log(1+exp(θ)) R [0,N] {0,1, . . . ,N}

1-D Exponential −λ − log(−θ) R−− R++ R++

d-D Sph. Gaussian a
σ2

σ2

2 ‖θ‖2 R
d

R
d

R
d

d-D Multinomial [log(
q j
qd

)]d−1
j=1 N log(1+∑d−1

j=1 exp(θ j )) R
d−1 {µ∈ R

d−1
+ , |µ| ≤ N} {x ∈ Z

d−1
+ , |x| ≤ N}

wherex,a∈Rd andσ ∈R is a constant. As shown below,p(x,a) can be expressed in the canonical
form for exponential families with natural parameterθ = a

σ2 and cumulant functionψ(θ) = σ2

2 ‖θ‖2,

p(x;a) =
1

√

(2πσ2)d
exp

(

− 1
2σ2‖x−a‖2

)

= exp

(

〈x,
a

σ2〉−
1

2σ2‖a‖
2− 1

2σ2‖x‖
2
)

1
√

(2πσ2)d

= exp

(

〈x,θ〉− σ2

2
‖θ‖2

)

exp

(

− 1
2σ2‖x‖

2
)

1
√

(2πσ2)d

= exp(〈x,θ〉−ψ(θ)) p0(x) ,

wherep0(x) is independent ofθ. By (11), the expectation parameter for this distribution is given by

µ = ∇ψ(θ) = ∇
(

σ2

2
‖θ‖2

)

= σ2θ = a .

By using (12), the Legendre dualφ of ψ is

φ(µ) = 〈µ,θ〉−ψ(θ) =
〈

µ,
µ

σ2

〉

− σ2

2
‖θ‖2 =

‖µ‖2
2σ2 .
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The corresponding Bregman divergence equals

dφ(x,µ) = φ(x)−φ(µ)−〈x−µ,∇φ(µ)〉 =
‖x‖2
2σ2 −

‖µ‖2
2σ2 −

〈

x−µ,
µ

σ2

〉

=
‖x−µ‖2

2σ2 .

The functionbφ(x) in Theorem 4 is given by

bφ(x) = exp(φ(x))p0(x) = exp

(‖x‖2
2σ2 −

‖x‖2
2σ2

)

1
√

(2πσ2)d
=

1
√

(2πσ2)d
,

and turns out to be a constant. Thus,p(ψ,θ)(x) = exp(−dφ(x,µ))bφ(x).

Example 10 Another exponential family that is widely used is the family of multinomial distribu-
tions:

p(x;q) =
N!

∏d
j=1x j !

d

∏
j=1

q
x j
j ,

where x j ∈ Z+ are frequencies of events,∑d
j=1x j = N and q j ≥ 0 are probabilities of events,

∑d
j=1q j = 1. As shown below,p(x;q) can be expressed as the density of an exponential distri-

bution in x = {x j}d−1
j=1 with natural parameterθ = {log(

q j

qd
)}d−1

j=1 and cumulant functionψ(θ) =

−N logqd = N log(1+∑d−1
j=1 eθ j ).

p(x;q) =
N!

∏d
j=1x j !

d

∏
j=1

q
x j
j

= exp

(

d

∑
j=1

x j logq j

)

N!

∏d
j=1x j !

= exp

(

d−1

∑
j=1

x j logq j +xd logqd

)

p0(x)

= exp

(

d−1

∑
j=1

x j logq j +(N−
d−1

∑
j=1

x j) logqd

)

p0(x)

= exp

(

d−1

∑
j=1

x j log

(

q j

qd

)

+N logqd

)

p0(x)

= exp(〈x,θ〉+N logqd)p0(x) = exp

(

〈x,θ〉−N log

(

d

∑
j=1

q j

qd

))

p0(x)

= exp

(

〈x,θ〉−N log

(

1+
d−1

∑
j=1

eθ j

))

p0(x) = exp(〈x,θ〉−ψ(θ))p0(x),

wherep0(x) is independent ofθ. The expectation parameterµ is given by

µ = ∇ψ(θ) = ∇

(

N log

(

1+
d−1

∑
j=1

eθ j

))

=

[

Neθ j

1+∑d−1
j=1 eθ j

]d−1

j=1

= [Nqj ]
d−1
j=1
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and the Legendre dualφ of ψ is

φ(µ) = 〈µ,θ〉−ψ(θ) =
d−1

∑
j=1

Nqj log

(

q j

qd

)

+N logqd

=
d

∑
j=1

Nqj logq j = N
d

∑
j=1

(µj

N

)

log
(µj

N

)

,

whereµd = Nqd so that∑d
i=1µj = N. Note thatφ(µ) is a constant multiple of negative entropy

for the discrete probability distribution given by{µj

N }dj=1. From Example 2, we know that the
corresponding Bregman divergence will be a similar multiple of KL-divergence, i.e.,

dφ(x,µ) = φ(x)−φ(µ)−〈x−µ,∇φ(µ)〉

= N
d

∑
j=1

x j

N
log
(x j

N

)

−N
d

∑
j=1

µj

N
log
(µj

N

)

−
d

∑
j=1

(x j −µj)
(

1+ log
(µj

N

))

= N
d

∑
j=1

x j

N
log

(

x j/N

µj/N

)

.

The functionbφ(x) for this case is given by

bφ(x) = exp(φ(x))p0(x) = exp

(

d

∑
j=1

x j log
(x j

N

)

)

N!

∏d
j=1x j !

=
∏d

j=1x
x j
j

NN

N!

∏d
j=1x j !

,

andp(ψ,θ)(x) = exp(−dφ(x,µ))bφ(x).

5. Bregman Soft Clustering

Using the correspondence between regular exponential families and regular Bregman divergences,
we now pose the Bregman soft clustering problem as a parameter estimation problem for mixture
models based on regular exponential family distributions. We revisit the expectation maximization
(EM) framework for estimating mixture densities and develop a Bregman soft clustering algorithm
(Algorithm 3) for regular Bregman divergences. We also present the Bregman soft clustering al-
gorithm for a set of data points with non-uniform non-negative weights (or measure). Finally, we
show how the hard clustering algorithm can be interpreted as a special case of the soft clustering al-
gorithm and also discuss an alternative formulation of hard clustering in termsof a dual divergence
derived from the conjugate function.

5.1 Soft Clustering as Mixture Density Estimation

Given a setX = {xi}ni=1 ⊂ Rd drawn independently from a stochastic source, consider the prob-
lem of modeling the source using a single parametric exponential family distribution. This is the
problem of maximum likelihood estimation, or, equivalently, minimum negative log-likelihood esti-
mation of the parameter(s) of a given exponential family distribution. From Theorem 4, minimizing
the negative log-likelihood is the same as minimizing the corresponding expectedBregman diver-
gence. Using Proposition 1, we conclude that the optimal distribution is the onewith µ = E[X] as
the expectation parameter, whereX is a random variable that takes values inX following (by the
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independence assumption) the empirical distribution overX . Further, note that the minimum neg-
ative log-likelihood ofX under a particular exponential model with log-partition functionψ is the
Bregman information ofX, i.e., Iφ(X), up to additive constants, whereφ is the Legendre conjugate
of ψ.

Now, consider the problem of modeling the stochastic source with a mixture ofk densities
of the same exponential family. The model yields a soft clustering where clusters correspond to
the components of the mixture model, and the soft membership of a data point in each cluster
is proportional to the probability of the data point being generated by the corresponding density
function. For regular Bregman divergences, we define theBregman soft clustering problemas that
of learning the maximum likelihood parametersΓ = {θh,πh}kh=1≡ {µh,πh}kh=1 of a mixture model
of the form

p(x|Γ) =
k

∑
h=1

πhp(ψ,θh)(x) =
k

∑
h=1

πhexp(−dφ(x,µh))bφ(x), (16)

where the last equality follows from Theorem 4. Since the mixture componentsare all assumed to
be from the same family, the above problem is a special case of the generalmaximum likelihood
parameter estimation problem for mixture models and can be solved by applying the EM algorithm.

5.2 EM for Mixture Models Based on Bregman Divergences

Algorithm 2 describes the well known application of EM for mixture density estimation. This
algorithm has the property that the likelihood of the data,LX (Γ) is non-decreasing at each iteration.
Further, if there exists at least one local maximum for the likelihood function, then the algorithm
will converge to a local maximum of the likelihood. For more details, the reader isreferred to
Collins (1997); McLachlan and Krishnan (1996) and Bilmes (1997).

The Bregman soft clustering problem is to estimate the maximum likelihood parameters for the
mixture model given in (16). Using the Bregman divergence viewpoint, we get a simplified version
of the above EM algorithm that we call the Bregman soft clustering algorithm (Algorithm 3). Using
Proposition 1, the computationally intensive M-step turns out to be straightforward to solve. In fact,
the Bregman divergence viewpoint gives an alternative interpretation ofa well known efficient EM
scheme applicable to learning a mixture of exponential distributions (Redner and Walker, 1984).
The resulting update equations are similar to those for learning mixture models ofidentity covari-
ance Gaussians. Note that these equations are applicable to mixtures of anyregular exponential
distributions, as long asx is the (minimal) sufficient statistic vector.

It is important to note that the simplification of the M-step is applicable only when theparam-
eterization is with respect to the expectation parameter space, i.e., whendφ corresponding to an
exponential family is known. Otherwise, if the parameterization is with respectto the natural pa-
rameter space, i.e., the functional form for a family is known in terms of its cumulant ψ and natural
parametersθ, the problem

φ(x) = sup
θ∈Rd

(〈θ,x〉−ψ(θ)) , (17)

needs to be solved to obtainφ(x). Since the function to be maximized in (17) is precisely the
log-likelihood of the exponential family density (with respect to an appropriatemeasure), the trans-
formation is equivalent to solving a maximum likelihood estimation problem (with a single sample),
which is computationally expensive for several exponential family distributions. In such a situation,
transforming the problem to the expectation space need not lead to any tangible computational bene-
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Algorithm 2 Standard EM for Mixture Density Estimation

Input: SetX = {xi}ni=1⊆ Rd, number of clustersk.
Output: Γ†: local maximizer ofLX (Γ) = ∏n

i=1(∑
k
h=1 πhpψ,θh(xi)) whereΓ = {θh,πh}kh=1, soft

partitioning{{p(h|xi)}kh=1}ni=1.
Method:

Initialize {θh,πh}kh=1 with someθh ∈Θ, and πh≥ 0, ∑k
h=1 πh = 1

repeat
{The Expectation Step (E-step)}
for i = 1 ton do

for h = 1 tok do
p(h|xi)←

πhp(ψ,θh)(xi)

∑k
h′=1 πh′ p(ψ,θh′ )

(xi)

end for
end for
{The Maximization Step (M-step)}
for h = 1 tok do

πh← 1
n ∑n

i=1 p(h|xi)
θh← argmax

θ
∑n

i=1 log(p(ψ,θ)(xi))p(h|xi)

end for
until convergence
returnΓ† = {θh,πh}kh=1

Algorithm 3 Bregman Soft Clustering

Input: SetX = {xi}ni=1⊂ S ⊆ Rd, Bregman divergencedφ : S × ri(S) 7→ R, number of clustersk.
Output: Γ†, local maximizer of∏n

i=1(∑
k
h=1 πhbφ(xi)exp(−dφ(xi ,µh))) whereΓ = {µh,πh}kh=1, soft

partitioning{{p(h|xi)}kh=1}ni=1
Method:

Initialize {µh,πh}kh=1 with someµh ∈ ri(S),πh≥ 0, and∑k
h=1 πh = 1

repeat
{The Expectation Step (E-step)}
for i = 1 ton do

for h = 1 tok do
p(h|xi)← πh exp(−dφ(xi ,µh))

∑k
h′=1 πh′ exp(−dφ(xi ,µh′ ))

end for
end for
{The Maximization Step (M-step)}
for h = 1 tok do

πh← 1
n ∑n

i=1 p(h|xi)

µh← ∑n
i=1 p(h|xi)xi

∑n
i=1 p(h|xi)

end for
until convergence
returnΓ† = {µh,πh}kh=1
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fits. However, if the Bregman divergencedφ corresponding to an exponential family is either known
or easy to compute from the natural parameterization, then Algorithm 3 is computationally much
more efficient. In fact, in some situations it may be easier to design regular Bregman divergences for
mixture modeling of data than to come up with an appropriate exponential family. Such situations
can take full advantage of the computationally efficient Bregman soft clustering algorithm.

The following result shows how Proposition 1 and Theorem 4 can be usedto simplify the M-
step of Algorithm 2. Using this result, we then show that Algorithms 2 and 3 are exactly equivalent
for regular Bregman divergences and exponential families. Note that Proposition 4 has appeared
in various forms in the literature (see, for example, Redner and Walker (1984); McLachlan and
Krishnan (1996)). We give an alternative proof using Bregman divergences.

Proposition 4 For a mixture model with density given by (16), the maximization step for the density
parameters in the EM algorithm (Algorithm 2),∀h,1≤ h≤ k, reduces to:

µh =
∑n

i=1 p(h|xi)xi

∑n
i=1 p(h|xi)

. (18)

Proof The maximization step for the density parameters in the EM algorithm,∀h,1≤ h≤ k, is
given by

θh = argmax
θ

n

∑
i=1

log(p(ψ,θ)(xi))p(h|xi).

For the given mixture density, the component densities,∀h,1≤ h≤ k, are given by

p(ψ,θh)(x) = bφ(x)exp(−dφ(x,µh)).

Substituting the above into the maximization step, we obtain the update equations forthe expectation
parametersµh, 1≤ h≤ k,

µh = argmax
µ

n

∑
i=1

log(bφ(xi)exp(−dφ(xi ,µ)))p(h|xi)

= argmax
µ

n

∑
i=1

(log(bφ(xi))−dφ(xi ,µ))p(h|xi)

= argmin
µ

n

∑
i=1

dφ(xi ,µ)p(h|xi) (asbφ(x) is independent ofµ)

= argmin
µ

n

∑
i=1

dφ(xi ,µ)
p(h|xi)

∑n
i′=1 p(h|xi′)

.

From Proposition 1, we know that the expected Bregman divergence is minimized by the expectation
of x, i.e.,

argmin
µ

n

∑
i=1

dφ(xi ,µ))
p(h|xi)

∑n
i′=1 p(h|xi′)

=
∑n

i=1 p(h|xi) xi

∑n
i=1 p(h|xi)

.

Therefore, the update equation for the parameters is just a weighted averaging step,

µh =
∑n

i=1 p(h|xi)xi

∑n
i=1 p(h|xi)

, ∀h,1≤ h≤ k.
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The update equations for the posterior probabilities (E-step)∀x ∈ X , ∀h,1≤ h≤ k, are given by

p(h|x) =
πhexp(−dφ(x,µh))

∑k
h′=1 πh′ exp(−dφ(x,µh′))

as thebφ(x) factor cancels out. The prior update equations are independent of the parametric form
of the densities and remain unaltered. Hence, for a mixture model with density given by (16), the
EM algorithm (Algorithm 2) reduces to the Bregman soft clustering algorithm (Algorithm 3).

So far we have considered the Bregman soft clustering problem for a set X where all the ele-
ments are equally important and assumed to have been independently sampled from some particular
exponential distribution. In practice, it might be desirable to associate weightsνi with the individual
samples such that∑i νi = 1 and optimize a weighted log-likelihood function. A slight modification
to the M-step of the Bregman soft clustering algorithm is sufficient to address this new optimization
problem. The E-step remains identical and the new update equations for the M-step,∀h,1≤ h≤ k,
are given by

πh =
n

∑
i=1

νi p(h|xi),

µh =
∑n

i=1 νi p(h|xi)xi

∑n
i=1 νi p(h|xi)

.

Finally, we note that the Bregman hard clustering algorithm is a limiting case of the above soft
clustering algorithm. For every convex functionφ and positive constantβ, βφ is also a convex func-
tion with the corresponding Bregman divergencedβφ = βdφ. In the limit, whenβ→∞, the posterior
probabilities in the E-step take values in{0,1} and hence, the E and M steps of the soft clustering
algorithm reduce to the assignment and re-estimation steps of the hard clustering algorithm.

5.3 An Alternative Formulation for Bregman Clustering

In earlier sections, the Bregman divergence was measured with the data points as the first argument
and the cluster representative as the second argument. Since Bregman divergences are not symmet-
ric (with the exception of squared Euclidean distance), we now consider an alternative formulation
of Bregman clustering where cluster representatives are the first argument of the Bregman diver-
gence. Using Legendre duality, we show that this alternate formulation is equivalent to our original
Bregman clustering problem in a dual space using a different, but uniquely determined Bregman
divergence.

We focus on the hard clustering case. LetX be a random variable that takes values inX =
{xi}ni=1 following a positive probability measureν. Then the alternative Bregman hard clustering
problem is to find clusters{Xh}kh=1 and corresponding representatives{µh}kh=1 that solve

min
{µh}kh=1

k

∑
h=1

∑
xi∈Xh

νidφ(µh,xi). (19)

As mentioned earlier, Bregman divergences are convex in the first argument and hence, the resulting
optimization problem for each cluster is convex so there is a unique optimal representative for each
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cluster. However, unlike in the original formulation, the optimal cluster representative is not always
the expectation and depends on the Bregman divergencedφ.

It is interesting to note that this alternative formulation, though seemingly different, reduces to
the original formulation with an appropriate representation. Letφ be the generating convex function
of dφ such that(int(dom(φ)),φ) is a convex function of Legendre type and let(int(dom(ψ)),ψ)
be the corresponding Legendre dual. Then for anyx,y ∈ int(dom(φ)), the Bregman divergence
dφ(x,y) = dψ(θy,θx) wheredψ is the Bregman divergence derived fromψ andθx = ∇φ(x),θy =
∇φ(y) (Appendix A, Property 6). Using the above property, we can restate thealternative Breg-
man clustering problem in the dual space. More specifically, letX θ = {θxi}ni=1 where θxi =
∇φ(xi), ∀xi ,1≤ i ≤ n, and letθh = ∇φ(µh), ∀µh,1≤ h≤ k. Then the hard clustering problem (19)
can be expressed as

min
{θh}kh=1

k

∑
h=1

∑
θxi∈X θ

h

νidψ(θxi ,θh). (20)

whereX θ
h correspond to clusterh in the dual space. It is now straightforward to see that this is our

original Bregman hard clustering problem for the setX θ consisting of the dual data points with the
same measureν and the dual Bregman divergencedψ. The optimal cluster representative in this
dual space is given by the expectation, which is easy to compute. The efficiency of this approach is
based on the same premise as the efficient EM scheme for exponential families, i.e, the M-step can
be simplified if there is an easy transition to the dual space.

6. Lossy Compression and Generalized Loss Functions

In this section, we study the connection between Bregman clustering algorithmsand lossy compres-
sion schemes. In particular, we focus on the relationship of our work with Shannon’s rate distortion
theory, showing connections between learning mixtures of exponential distributions, the Bregman
soft clustering problem and the rate distortion problem where distortion is measured using a reg-
ular Bregman divergence (Banerjee et al., 2004a). Then we show thatall these problems involve
a trade-off between compression and loss in Bregman information. The information bottleneck
method (Tishby et al., 1999) emerges as a special case of this viewpoint. Werestrict our attention
to regular exponential families and regular Bregman divergences in this section.

6.1 Rate Distortion Theory for Bregman Divergences

Rate distortion theory (Berger, 1971; Berger and Gibson, 1998) dealswith the fundamental limits
of quantizing a stochastic sourceX ∼ p(x), x∈ X , using a random variablêX over a reproduction
alphabetX̂ typically assumed to embed the source alphabetX , i.e., X ⊆ X̂ . In the rate distortion
setting, the performance of a quantization scheme is determined in terms of the rate, i.e., the average
number of bits for encoding a symbol, and the expected distortion between thesource and the
reproduction random variables based on an appropriate distortion function d : X × X̂ 7→ R+. The
central problem in rate distortion theory (Cover and Thomas, 1991) is to compute the rate distortion
function R(D), which is defined as the minimum achievable rate for a specified level of expected
distortionD, and can be mathematically expressed as

R(D) = min
p(x̂|x):EX,X̂ [d(X,X̂)]≤D

I(X; X̂) , (21)
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whereI(X; X̂) is the mutual information ofX andX̂.
The rate distortion problem is a convex problem that involves optimizing over the probabilistic

assignmentsp(x̂|x) and can be theoretically solved using the Blahut-Arimoto algorithm (Arimoto,
1972; Blahut, 1972; Csiszár, 1974; Cover and Thomas, 1991). However, numerical computation
of the rate distortion function through the Blahut-Arimoto algorithm is often infeasible in practice,
primarily due to lack of knowledge of the optimal support of the reproduction random variable.
An efficient solution for addressing this problem is the mapping approach (Banerjee et al., 2004a;
Rose, 1994), where one solves a related problem that assumes cardinality k for the support of the
reproduction random variable. In this setting, the optimization is over the assignments as well as
the support set, i.e.,

min
X̂s, p(x̂|x)
|X̂s|=k

I(X; X̂)+βDEX,X̂[d(X, X̂)] , (22)

whereβD is the optimal Lagrange multiplier that depends on the chosen tolerance levelD of the
expected distortion and̂Xs is the optimal support of the reproduction random variable with cardinal-
ity k. We shall refer to the above problem (22) as the rate distortion problem with asupport set of
finite cardinality (RDFC). It can be shown (Berger, 1971) that the RDFCproblem and the original
rate distortion problem have identical solutions when the cardinality of the optimal support set is
less than or equal tok, which is known to be true for cases without an analytical solution (Banerjee
et al., 2004a).

Our analysis connects the Bregman soft clustering problem to the RDFC problem following
results from Banerjee et al. (2004a), which extend previous work (Rose, 1994; Gray and Neuhoff,
1998) that relatedkmeans clustering to vector quantization and rate-distortion based on squared
Euclidean distortion. LetZ, Ẑ denote suitable sufficient statistic representations ofX, X̂ so that the
distortion can be measured by a Bregman divergencedφ in the sufficient statistic space. The RDFC
problem can now be stated directly in terms ofZ andẐ as

min
Ẑs, p(ẑ|z)
|Ẑs|=k

I(Z; Ẑ)+βDEZ,Ẑ[dφ(Z, Ẑ)] , (23)

whereẐs is the optimal support of the reproduction random variable with cardinalityk.
Unlike the basic rate distortion problem (21), the RDFC problem (23) is no longer a convex

problem since it involves optimization over bothẐs andp(ẑ|z). However, when either of the argu-
ments is fixed, the resulting sub-problem can be solved exactly. In particular, whenẐs is known,
then the RDFC problem reduces to that of optimizing overp(ẑ|z), which is a feasible convex prob-
lem and can be exactly solved by the Blahut-Arimoto algorithm (Csiszár, 1974). Similarly, when
the assignmentsp(ẑ|z) are known, the RDFC problem only involves minimizing the expected dis-
tortion measured in terms of a Bregman divergence and can be exactly solved using Proposition 1.
Thus the objective function in (23) can be greedily minimized by alternately optimizing over the
individual arguments, yielding a solution that is locally optimal. The details of this analysis and
resulting algorithm can be found in Banerjee et al. (2004a).

Interestingly, it can be shown (Banerjee et al., 2004a) that the RDFC problem based on a reg-
ular Bregman divergence is exactly equivalent to the the maximum likelihood mixture estimation
problem based on a uniquely determined exponential family when the sourcedistribution in the rate
distortion setting equals the empirical distribution over the sampled data points.
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Theorem 7 (Banerjee et al. (2004a))Consider a source Z∼ p(z), where p(z) is the empirical dis-
tribution over the samples. Then the RDFC problem (23) for the source Z withregular Bregman
divergence dφ, variational parameterβD, and reproduction random variablêZ with |Ẑ|= k is equiv-
alent to the maximum likelihood mixture estimation problem based on the regularexponential family
FβDψ with number of mixture components set to k (ψ is the conjugate ofφ).

From Section 5, we know that the maximum likelihood mixture estimation problem for any regu-
lar exponential family is equivalent to the Bregman soft clustering problem for the corresponding
regular Bregman divergence. Using this in conjunction with Theorem 7, weobtain the following
equivalence relation between the RDFC problem and the Bregman soft clustering problem.

Theorem 8 Consider a source Z∼ p(z), where p(z) is the empirical distribution over the samples.
Then the RDFC problem (23) for the source Z with regular Bregman divergence dφ, variational
parameterβD, and reproduction random variablêZ with |Ẑ| = k is equivalent to the Bregman soft
clustering problem (16) based on the Bregman divergence dβDφ with number of clusters set to k.

From the above theorem, it follows that Algorithm 3 can be used to solve the RDFC problem. Note
that the update steps forp(h|x) andπh in Algorithm 3 exactly correspond to the updates ofp(ẑ|z)
andp(ẑ) in the Blahut-Arimoto step in Algorithm 1 of Banerjee et al. (2004a) for solving the RDFC
problem. The update ofµh in Algorithm 3 is equivalent to the update ofẑ in the support estimation
step in Algorithm 1 of Banerjee et al. (2004a). From the viewpoint of alternate minimization,
the order of the three updatesp(ẑ|z), p(ẑ) and ẑ is interchangeable and does not affect the local
optimality guarantees, although different orderings may lead to different solutions.

The Bregman soft clustering problem corresponds to the RDFC problem and not to the basic rate
distortion problem (21). However, as mentioned earlier, both the problems yield the same solution
for the rate distortion function when the optimal support set|Ẑs| is finite andk is sufficiently large.
The solution is the rate distortion function and refers to the asymptotic rate (Cover and Thomas,
1991) that can be achieved for a given distortion, when we are allowed tocode the source symbols
in blocks of sizem with m→ ∞.

It is also possible to consider a related rate distortion problem where the source symbols are
coded using blocks of size 1. The resultant rate distortion function is referred to as the “scalar”
or “order 1” rate distortion functionR1(D) (Gray and Neuhoff, 1998). The problem is solved by
performing hard assignments of the source symbols to the closest codebook members, which is
similar to the assignment step in the Bregman hard clustering problem. In fact, the“order 1” or
“1-shot” rate distortion problem, assuming a known finite cardinality of the optimal reproduction
support set, turns out to be exactly equivalent to the Bregman hard clustering problem.

6.2 Compression vs. Bregman Information Trade-off

We now provide yet another view of the RDFC problem (and hence, Bregman soft clustering) as a
lossy compression problem where the objective is to balance the trade-offbetween compression and
preservation of Bregman information. Intuitively, the reproduction random variableẐ is a coarser
representation of the source random variableZ with less “information” thanZ. In rate distortion
theory, the loss in “information” is quantified by the expected Bregman distortion betweenZ and
Ẑ. The following theorem, which is along the same lines as Theorem 1, providesa direct way of
quantifying the intuitive loss in “information” in terms of Bregman information.
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Theorem 9 (Banerjee et al. (2004a))The expected Bregman distortion between the source and the
reproduction random variables is exactly equal to the loss in Bregman information due to compres-
sion, i.e.,

EZ,Ẑ[dφ(Z, Ẑ)] = Iφ(Z)− Iφ(Ẑ) ,

whereẐ = EZ|Ẑ[Z].

The RDFC problem (23) can, therefore, be viewed as an optimization problem involving a trade-off
between the mutual informationI(Z; Ẑ) that measures the compression, and the loss in Bregman
informationIφ(Z)− Iφ(Ẑ). Since the source random variableZ is known, the Bregman information
Iφ(Z) is fixed and minimizing the expected distortion is equivalent to maximizing the Bregman
information of the compressed random variableẐ. Hence, this constrained form of the RDFC
problem (23) can be written as:

min
p(ẑ|z)
{I(Z; Ẑ)−βIφ(Ẑ)}, (24)

whereβ is the variational parameter corresponding to the desired point in the rate distortion curve
andẐ = EZ|Ẑ[Z]. The variational parameterβ determines the trade-off between the achieved com-
pression and the preserved Bregman information.

6.2.1 INFORMATION BOTTLENECK REVISITED

We now demonstrate how the information bottleneck (IB) method of Tishby et al.(1999) can be
derived from the RDFC problem (24) for a suitable choice of Bregman divergence.

Let Y ∼ p(y), y ∈ Y be a random variable. Let the sufficient statistic random vectorZ cor-
responding to a sourceX be the conditional distribution ofY given X, i.e., Z = p(Y|X). Z is
just a concrete representation of the possibly abstract sourceX. Similarly, the random variable
Ẑ = p(Y|X̂) represents the reproduction random variableX̂. This choice of sufficient statistic map-
ping is appropriate when the joint distribution of the random variablesX andY contains all the
relevant information aboutX. For the above choice of sufficient statistic mapping, an additional
constraint that̂Z is the conditional expectation ofZ leads to the lossy compression problem (24)
where we need to find the optimal assignments that balance the trade-off between compression and
the loss in Bregman information. Now, from Example 6 in Section 3.1, the Bregmaninformation
Iφ(Ẑ) of the random variablêZ that takes values over the set of conditional distributions{p(Y|x̂)}
with probability p(x̂) is the same as the mutual informationI(X̂;Y) of X̂ andY (when the Bregman
divergence is the KL-divergence). Hence, the problem (24) reduces to

min
p(x̂|x)
{I(X; X̂)−βI(X̂;Y)}, (25)

sincep(x̂|x) = p(ẑ|z) andI(X; X̂) = I(Z; Ẑ), whereβ is the variational parameter. This is identical
to the IB formulation (Tishby et al., 1999). Our framework reveals that the IB assumption that the
mutual information with respect to another random variableY holds all the relevant information for
comparing the different source entities is equivalent to assuming that (a)p(Y|X) is the appropriate
sufficient statistic representation, and (b) the KL-divergence betweenthe conditional distributions of
Y is the appropriate distortion measure. Further, the assumption about the conditional independence
of Y andX̂ given X, i.e., the Markov chain conditionY↔ X↔ X̂, is equivalent to the constraint
thatẐ is the conditional expectation ofZ, i.e.,Ẑ = p(Y|X̂) = EX|X̂[p(Y|X)] = EZ|Ẑ[Z].
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Thus the information bottleneck problem is seen to be a special case of the RDFC problem (23),
and hence also of the Bregman soft clustering problem and mixture estimation problem for expo-
nential families. In particular, IB is exactly equivalent to the mixture estimation problem based
on the exponential family corresponding to KL-divergence, i.e., the multinomial family (Collins
et al., 2001). Further, the iterative IB algorithm is the same as the EM algorithmfor multinomial
distributions (Slonim and Weiss, 2002), and also the Bregman soft clustering algorithm using KL-
divergence.

7. Experiments

There are a number of experimental results in existing literature (MacQueen, 1967; Linde et al.,
1980; Buzo et al., 1980; Dhillon et al., 2003; Nigam et al., 2000) that illustrate the usefulness of
specific Bregman divergences and the corresponding Bregman clustering algorithms in important
application domains. The classicalkmeans algorithm, which is a special case of the Bregman hard
clustering algorithm for the squared Euclidean distance has been successfully applied to a large
number of domains where a Gaussian distribution assumption is valid. Besides this, there are at
least two other domains where special cases of Bregman clustering methods have been shown to
provide good results.

The first is the text-clustering domain where the information-theoretic clustering algorithm (Dhillon
et al., 2003) and the EM algorithm on a mixture of multinomials based on the naive Bayes as-
sumption (Nigam et al., 2000) have been applied. These algorithms are, respectively, special cases
of the Bregman hard and soft clustering algorithms for KL-divergence,and have been shown to
provide high quality results on large real datasets such as the 20-Newsgroups, Reuters and Dmoz
text datasets. This success is not unexpected as text documents can be effectively modeled using
multinomial distributions where the corresponding Bregman divergence is just the KL-divergence
between word distributions.

Speech coding is another domain where a special case of the Bregman clustering algorithm
based on the Itakura-Saito distance, namely the Linde-Buzo-Gray (LBG)algorithm (Linde et al.,
1980; Buzo et al., 1980), has been successfully applied. Speech power spectra tend to follow expo-
nential family densities of the formp(x) = λe−λx whose corresponding Bregman divergence is the
Itakura-Saito distance (see Table 2).

Since special cases of Bregman clustering algorithms have already been shown to be effective in
various domains, we do not experimentally re-evaluate the Bregman clustering algorithms against
other methods. Instead, we only focus on showing that the quality of the clustering depends on
the appropriateness of the Bregman divergence. In particular we studyBregman clustering of data
generated from mixture of exponential family distributions using the corresponding Bregman diver-
gence as well as non-matching divergences. The results indicate that thecluster quality is best when
the Bregman divergence corresponding to the generative model is employed.

We performed two experiments using datasets of increasing level of difficulty. For our first
experiment, we created three 1-dimensional datasets of 100 samples each,based on mixture models
of Gaussian, Poisson and Binomial distributions respectively. All the mixturemodels had three
components with equal priors centered at 10, 20 and 40 respectively. The standard deviationσ of
the Gaussian densities was set to 5 and the number of trialsN of the Binomial distribution was set
to 100 so as to make the three models somewhat similar to each other, in the sense that the variance
is approximately the same for all the models. Figure 1 shows the density functions of the generative
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models. The datasets were then each clustered using three versions of theBregman hard clustering
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Figure 1: Generative models for data sets used in experiment 1

Table 3: Clustering results for the first data set. Columns 2-4 correspondto the normalized mu-
tual information between original and predicted clusters obtained by applyingthe Breg-
man clustering algorithm corresponding to the Bregman divergencesdGaussian, dPoissonand
dBinomial respectively

Generative Model dGaussian dPoisson dBinomial

Gaussian 0.701±0.033 0.633±0.043 0.641±0.035
Poisson 0.689±0.063 0.734±0.057 0.694±0.059
Binomial 0.769±0.061 0.746±0.048 0.825±0.046

algorithm corresponding to the Bregman divergences obtained from the Gaussian (kmeans), Poisson
and Binomial distributions respectively. The quality of the clustering was measured in terms of
the normalized mutual information11 (Strehl and Ghosh, 2002) between the predicted clusters and
original clusters (based on the actual generating mixture component), andthe results were averaged
over 10 trials. Table 3 shows the normalized mutual information values for the different divergences
and datasets. From Table 3, we can see that clustering quality is significantlybetter when the
Bregman divergence used in the clustering algorithm matches that of the generative model.

The second experiment involved a similar kind of comparison of clustering algorithms for multi-
dimensional datasets drawn from multivariate Gaussian, Binomial and Poisson distributions respec-
tively. The datasets were sampled from mixture models with 15 overlapping components and had
2000 10-dimensional samples each. The results of the Bregman clustering algorithms shown in
Table 4 lead to the same conclusion as before, i.e., the choice of the Bregman divergence used for
clustering is important for obtaining good quality clusters.

In practice, an important issue that needs to be addressed is: what is the appropriate Bregman
divergence for a given application? In certain situations, it may be possible to realistically char-
acterize the data generative process using a mixture of exponential family distributions. In such a
scenario, especially in the absence of a better methodology, using the divergence corresponding to

11. It is meaningless to compare the clustering objective function values as they are different for the three versions of the
Bregman clustering algorithm.
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Table 4: Clustering results for the second set of data sets
Generative Model dGaussian dPoisson dBinomial

Gaussian 0.728±0.005 0.661±0.007 0.669±0.005
Poisson 0.792±0.013 0.815±0.014 0.802±0.013
Binomial 0.823±0.006 0.833±0.011 0.849±0.012

the exponential family seems appropriate. In general, however, the divergence used for clustering
need not necessarily have to be the one corresponding to the generative model. The final choice
should depend on the relevant application, i.e., the divergence should capture the similarity prop-
erties desirable in the application, and need not necessarily depend on how the data was actually
generated.

8. Related Work

This work is largely inspired by three broad and overlapping ideas. First,an information theo-
retic viewpoint of the clustering problem is invaluable. Such considerationsoccur in several tech-
niques, from classical vector quantization (Gersho and Gray, 1992) toinformation theoretic cluster-
ing (Dhillon et al., 2003) and the information bottleneck method (Tishby et al., 1999). In particular,
the information theoretic hard clustering (Dhillon et al., 2003) approach solved the problem of dis-
tributional clustering with a formulation involving loss in Shannon’s mutual information. In this
paper, we have significantly generalized that work by proposing techniques for obtaining optimal
quantizations by minimizing loss in Bregman information corresponding to arbitrary Bregman di-
vergences.

Second, our soft clustering approach is based on the relationship between Bregman divergences
and exponential family distributions and the suitability of Bregman divergences as distortion or loss
functions for data drawn from exponential distributions. It has been previously shown (Amari and
Nagaoka, 2001; Azoury and Warmuth, 2001) that the KL-divergence, which is the most natural
distance measure for comparing two membersp(ψ,θ) andp(ψ,θ̃) of an exponential family, is always

a Bregman divergence. In particular, it is the Bregman divergencedψ(θ, θ̃) corresponding to the
cumulant functionψ of the exponential family. In our work, we extend this concept to say that
the Bregman divergence of the Legendre conjugate of the cumulant function is a natural distance
function for the data drawn according to a mixture model based on that exponential family.

The third broad idea is that many learning algorithms can be viewed as solutionsfor minimiz-
ing loss functions based on Bregman divergences (Censor and Zenios, 1998). Elegant techniques
for the design of algorithms and the analysis of relative loss bounds in the online learning setting
extensively use this framework (Azoury and Warmuth, 2001). In the unsupervised learning setting,
use of this framework typically involves development of alternate minimization procedures (Csisźar
and Tusńady, 1984). For example, Pietra et al. (2001); Wang and Schuurmans (2003) analyze and
develop iterative alternate projection procedures for solving unsupervised optimization problems
that involve objective functions based on Bregman divergences undervarious kinds of constraints.
Further, Collins et al. (2001) develop a generalization of PCA for exponential families using loss
functions based on the corresponding Bregman divergences and propose alternate minimization
schemes for solving the problem.
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On a larger context, there has been research in various fields that has focussed on generalized
notions of distances and on extending known methodologies to the general setting (Rao, 1982).
Grünwald and Dawid (2004) recently extended the ‘redundancy-capacitytheorem’ of informa-
tion theory to arbitrary discrepancy measures. As an extension of Shannon’s entropy (Cover and
Thomas, 1991), they introduced generalized entropy measures that are(not necessarily differen-
tiable) concave functions of probability distributions. Just as Shannon’sentropy is the minimum
number of bits (on an average) required to encode a stochastic source,the generalized entropy mea-
sures correspond to the infimum of a general class of loss functions in a game theoretic setting.
Restricting their results to our setting, the generalized entropy is equivalentto the concave func-
tion −φ, whereφ determines the Bregman divergencedφ. However, our framework is applicable
to arbitrary vectors (or functions), whereas Grünwald and Dawid (2004) focus only on probability
distributions.

As we discussed in Section 6, our treatment of clustering is very closely tied torate distortion
theory (Berger, 1971; Berger and Gibson, 1998; Gray and Neuhoff, 1998). The results presented in
the paper extend vector quantization methods (Gersho and Gray, 1992) toa large class of distortion
measures. Further, building on the work of Rose (1994), our results provide practical ways of
computing the rate-distortion function when distortion is measured by a Bregmandivergence. In
addition, the results also establish a connection between the rate distortion problem with Bregman
divergences and the mixture model estimation problem for exponential families(Banerjee et al.,
2004a).

In the literature, there are clustering algorithms that involve minimizing loss functions based on
distortion measures that are somewhat different from Bregman divergences. For example, Modha
and Spangler (2003) present theconvex-kmeans clustering algorithm for distortion measures that
are always non-negative and convex in the second argument, using thenotion of a generalized cen-
troid. Bregman divergences, on the other hand, are not necessarily convex in the second argument.
Linde et al. (1980) consider distortion measures of the formd(x,y) = (x− y)TA(x)(x− y) where
x,y ∈ Rd and A(x) is a d× d positive definite matrix, as loss functions for vector quantization.
Although such distortions are Bregman divergences in some cases, e.g., whenA(x) is a constant
matrix, in general one has to solve a convex optimization problem to compute the optimal represen-
tative when using the aboved(x,y).

9. Concluding Remarks

In this paper, we have presented hard and soft clustering algorithms to minimize loss functions in-
volving Bregman divergences. Our analysis presents a unified view of an entire class of centroid
based parametric clustering algorithms. First, in the hard-clustering framework, we show that a
kmeans type iterative relocation scheme solves the Bregman hard-clustering problem for all Breg-
man divergences. Further, using a related result, we see that Bregman divergences are the only
distortion functions for which such a centroid-based clustering scheme is possible. Second, we
formally show that there is a one-to-one correspondence between regular exponential families and
regular Bregman divergences. This result is useful in developing an alternative interpretation of the
EM algorithm for learning mixtures of exponential distributions, eventually resulting in a class of
Bregman soft-clustering algorithms. Our formulation also turns out to be closely tied to the rate
distortion theory for Bregman divergences.
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As discussed in the paper, special cases of our analysis have been discovered and widely used
by researchers in applications ranging from speech coding to text clustering. There are three salient
features of this framework that make these results particularly useful forreal-life applications. First,
the computational complexity of each iteration of the entire class of Bregman clustering algorithms
is linear in the number of data-points. Hence the algorithms are scalable and appropriate for large-
scale machine learning tasks. Second, the modularity of the proposed classof algorithms is evident
from the fact that only one component in the proposed schemes, i.e., the Bregman divergence used
in the assignment step, needs to be changed to obtain an algorithm for a new loss function. This
simplifies the implementation and application of this class of algorithms to various data types. Third,
the algorithms discussed are also applicable to mixed data types that are commonlyencountered in
real applications. Since a convex combination of convex functions is always convex, one can have
different convex functions appropriately chosen for different subsets of features. The Bregman
divergence corresponding to a convex combination of the component functions can now be used to
cluster the data, thus vastly increasing the scope of the proposed techniques.
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Appendix A. Properties of Bregman Divergences

In this section, we list some well-known useful properties of Bregman divergences.

Properties of Bregman Divergences

Let φ : S 7→ R be a strictly convex, differentiable function defined on a convex setS = dom(φ) ⊆
Rd and letdφ : S × ri(S) 7→ [0,∞) be its Bregman divergence, i.e,dφ(x,y) = φ(x)− φ(y)−〈x−
y,∇φ(y)〉. Then, the following properties are true.

1. Non-negativity. dφ(x,y)≥ 0, ∀x ∈ S ,y ∈ ri(S), and equality holds if and only ifx = y.

2. Convexity. dφ is always convex in the first argument, but not necessarily convex in thesecond
argument. Squared Euclidean distance and KL-divergence are examples of Bregman diver-
gences that are convex in both their arguments, but the Bregman divergence corresponding to
the strictly convex functionφ(x) = x3, defined onR+, given bydφ(x,y) = x3−y3−3(x−y)y2

an example divergence that is not convex iny.

3. Linearity. Bregman divergence is a linear operator i.e.,∀x ∈ S ,y ∈ ri(S),

dφ1+φ2(x,y) = dφ1(x,y)+dφ2(x,y) ,

dcφ(x,y) = cdφ(x,y) (for c≥ 0) .
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4. Equivalence classes.The Bregman divergences of functions that differ only in affine terms
are identical i.e., ifφ(x) = φ0(x) + 〈b,x〉+ c where b ∈ Rd and c ∈ R, then dφ(x,y) =
dφ0(x,y),∀x ∈ S ,y ∈ ri(S). Hence, the set of all strictly convex, differentiable functions on a
convex setS can be partitioned into equivalence classes of the form

[φ0] = {φ |dφ(x,y) = dφ0(x,y) ∀ x ∈ S , y ∈ ri(S)}.

5. Linear separation. The locus of all the pointsx∈ S that are equidistant from two fixed points
µ1,µ2 ∈ ri(S) in terms of a Bregman divergence is a hyperplane, i.e., the partitions induced
by Bregman divergences have linear separators given by

dφ(x,µ1) = dφ(x,µ2)

⇒ φ(x)−φ(µ1)−〈x−µ1,∇φ(µ1)〉= φ(x)−φ(µ2)−〈x−µ2,∇φ(µ2)〉
⇒ 〈x,∇φ(µ2)−∇φ(µ1)〉= (φ(µ1)−φ(µ2))− (〈µ1,∇φ(µ1)〉−〈µ2,∇φ(µ2)〉)

6. Dual Divergences.Bregman divergences obtained from a Legendre functionφ and its conju-
gateψ satisfy the duality property:

dφ(µ1,µ2) = φ(µ1)+ψ(θ2)−〈µ1,θ2〉= dψ(θ2,θ1),

whereµ1,µ2 ∈ ri(S) are related toθ1,θ2 ∈ ri(Θ) by the Legendre transformation.

7. Relation to KL-divergence. Let Fψ be an exponential family withψ as the cumulant func-
tion. Then the KL divergence between two membersp(ψ,θ1) andp(ψ,θ2) in Fψ corresponding
to natural parametersθ1 andθ2 can be expressed as a Bregman divergence in two possible
ways. In particular,

KL(p(ψ,θ1)||p(ψ,θ2)) = dφ(µ1,µ2) = dψ(θ2,θ1)

whereµ1 and µ2 are the expectation parameters corresponding toθ1 and θ2. Further, if
ψ(0) = 0, thenp(ψ,0)(x) = p0(x) is itself a valid probability density andKL(p(ψ,θ)‖ p(ψ,0)) =
φ(µ), whereµ = ∇ψ(θ).

8. Generalized Pythagoras theorem.For anyx1 ∈ S andx2,x3 ∈ ri(S), the following three-
point property holds:

dφ(x1,x3) = dφ(x1,x2)+dφ(x2,x3)−〈x1−x2,∇φ(x3)−∇φ(x2)〉. (26)

Whenx1,x2 andx3 are such thatx1 ∈ S ′ whereS ′ is a convex subset ofS andx2 is given by

x2 = argmin
x∈S ′

dφ(x,x3),

then the inner product term in (26) becomes negative and we have,

dφ(x1,x2)+dφ(x2,x3)≤ dφ(x1,x3).

When the convex subsetS ′ is an affine set, then the inner product term is zero giving rise to
an equality.
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Necessary and Sufficient Conditions for a Bregman Divergence

A divergence measured : S × ri(S) 7→ [0,∞) is a Bregman divergence if and only if there exists
a∈ ri(S) such that the functionφa(x) = d(x,a) satisfies the following conditions:

1. φa is strictly convex onS and differentiable on ri(S).

2. d(x,y) = dφa(x,y), ∀x ∈ S ,y ∈ ri(S) wheredφa is the Bregman divergence associated with
φa.

It is easy to see the sufficiency property from the second condition. To prove that the conditions
are necessary as well, we note that for any strictly convex, differentiable functionφ, the Bregman
divergence evaluated with a fixed value for the second argument differs from it only by a linear
term, i.e.,

φa(x) = dφ(x,a) = φ(x)−φ(a)−〈x−a,∇φ(a)〉
= φ(x)+ 〈b,x〉+c,

whereb = −∇φ(a) andc = 〈a,∇φ(a)〉−φ(a). Hence,φa is also strictly convex and differentiable
and the Bregman divergences associated withφ andφa are identical.

Appendix B. Proof of Exhaustiveness Result

This appendix is based on results reported in Banerjee et al. (2005) andis included in this paper
for the sake of completeness. The results discussed here show the exhaustiveness of Bregman
divergences with respect to the property proved in Proposition 1.

Theorem 10 ( Banerjee et al. (2005))Let F : R×R 7→R+ be a continuous and differentiable func-
tion F(x,y) with continuous partial derivatives∂F

∂x and ∂F
∂y such that F(x,x) = 0,∀x∈R. For all sets

X ⊆R and all probability measuresν overX , if the random variable X takes values inX following
ν such that y∗ = Eν[X] is the unique minimizer of Eν[F(X,y)] over all y∈ R, i.e., if

argmin
y∈R

Eν[F(X,y)] = Eν[X] (27)

then F(x,y) is a Bregman divergence, i.e., F(x,y) = dφ(x,y) for some strictly convex, differentiable
functionφ : R 7→ R.

Proof Since the optimality property in (27) is true for allX andν, we give a constructive argument
with a particular choice ofX andν. Let X = {a,b} ⊂ R wherea 6= b, and letν be {p,q}, with
p,q∈ (0,1) andp+q = 1 so thatEν[X] = pa+qb. Then from (27),

pF(a,y)+qF(b,y) = Eν[F(X,y)]≥ Eν[F(X,Eν[X])] = pF(a, pa+qb)+qF(b, pa+qb)

∀y∈R. If we consider the left-hand-side as a function ofy, it equals the right-hand-side aty= y∗
.
=

Eν[X] = pa+qb. Therefore, we must have

p
∂F(a,y∗)

∂y
+q

∂F(b,y∗)
∂y

= 0. (28)
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Substitutingp = (y∗−b)/(a−b) and rearranging terms yields

1
(y∗−a)

∂F(a,y∗)
∂y

=
1

(y∗−b)

∂F(b,y∗)
∂s

.

Sincea,b andp are arbitrary, the above equality implies that the function

1
(y−x)

∂F(x,y)
∂y

is independent ofx. Thus we can write, for some functionH,

∂F(x,y)
∂y

= (y−x)H(y), (29)

for some continuous functionH.
Now define functionφ by

φ(y) =
Z y

0

Z y′

0
H(t)dtdy′.

Thenφ is differentiable withφ(0) = φ′(0) = 0, φ′′(y) = H(y). Integration by parts for (29) leads to

F(x,y)−F(x,x) =
Z y

x
(y′−x)H(y′)dy′ = φ(x)−φ(y)−φ′(y)(x−y).

SinceF(x,x) = 0, the non-negativity ofF implies thatφ is a convex function.
It remains to show thatφ is strictly convex. Supposeφ is not strictly convex. Then there exists

an intervalI = [`1, `2] such that̀ 1 < `2 andφ′(y) = (φ(`1)−φ(`2))/(`1− `2) for all y∈ I . Consider
the setX = {`1, `2} with ν = {1

2, 1
2}. It is easy to check that anyy∈ I is a minimizer ofEν[F(X,y)].

This is a contradiction, and soφ must be strictly convex.

It is possible to get rid of the condition that∂F
∂y has to be continuous by proper mollification argu-

ments (Banerjee et al., 2005). Further, it is possible to generalize the result to functions in more
than one dimension, i.e.,F : Rd×Rd 7→ R+.

Theorem 11 ( Banerjee et al. (2005))Let F : Rd×Rd 7→ R+ be a continuous function such that
F(x,x) = 0,∀x∈Rd, and the second order partial derivatives∂

2F
∂xi∂x j

,1≤ i, j,≤ d, are all continuous.

For all setsX ⊆Rd and all probability measuresν overX , if the random variable X takes values in
X following ν such thaty = Eν[X] is the unique minimizer of Eν[F(X,y)] over ally ∈ Rd, i.e., if

argmin
y∈Rd

Eν[F(X,y)] = Eν[X] ,

then F(x,y) is a Bregman divergence, i.e., F(x,y) = dφ(x,y) for some strictly convex, differentiable
functionφ : Rd 7→ R.

The proof of Theorem 11 builds on the intuition of the proof of Theorem 10, but is more involved
and hence skipped; the interested reader is referred to Banerjee et al.(2005).
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Appendix C. Proof of Theorem 3

This appendix provides a proof of Theorem 3 in Section 4.3 and related results. Most of the ideas
used in our analysis are from Section 9.1 of Barndorff-Nielsen (1978). For the sake of completeness,
we give detailed proofs of the results. We begin with definitions. LetP0 be any non-negative
bounded measure onRd and Fψ = {p(ψ,θ), θ ∈ Θ ⊆ Rd} be a regular exponential family with
cumulant functionψ and base measureP0, as discussed in Section 4.1. Without loss of generality,
let P0 be a probability measure.12 Let Iψ be the support ofP0 (Definition 6) and hence, of all the
probability distributions inFψ. Let φ be the conjugate ofψ so that(int(dom(φ)),φ) and(Θ,ψ) are
Legendre duals of each other.

Lemma 3 For anyθ ∈Θ andx ∈ Rd,

〈θ,x〉−ψ(θ)≤− log

(

inf
u∈Rd,‖u‖2=1

P0 [〈u,X〉 ≥ 〈u,x〉]
)

(30)

where X∼ P0. Hence

inf
u∈Rd,‖u‖2=1

P0[〈u,X〉 ≥ 〈u,x〉] > 0 implies that x ∈ dom(φ) .

Proof Let uθ be the unit vector in the direction ofθ. Given anyx ∈ Rd, it is possible to divideRd

into two half spacesG1 = {x′ ∈Rd| 〈uθ,x′〉< 〈uθ,x〉} andG2 = {x′ ∈Rd| 〈uθ,x′〉 ≥ 〈uθ,x〉}. For
anyθ, we have

1 =
Z

x′∈Rd
exp(〈θ,x′〉−ψ(θ))dP0(x′)

⇒ exp(ψ(θ)) =
Z

x′∈Rd
exp(〈θ,x′〉)dP0(x′) .

Partitioning the integral overRd into G1 andG2, we obtain

exp(ψ(θ)) =
Z

x′∈G1

exp(〈θ,x′〉)dP0(x′)+
Z

x′∈G2

exp(〈θ,x′〉)dP0(x′)

≥
Z

x′∈G2

exp(〈θ,x′〉)dP0(x′)

≥ exp(〈θ,x〉)
Z

x′∈G2

dP0(x′) (since〈uθ,x′〉 ≥ 〈uθ,x〉 for x′ ∈ G2 )

= exp(〈θ,x〉)P0[〈uθ,X〉 ≥ 〈uθ,x〉]
≥ exp(〈θ,x〉) inf

u
P0[〈u,X〉 ≥ 〈u,x〉] .

On taking logarithms and re-arranging terms, we obtain (30).
From (30), inf

u
P0[〈u,X〉 ≥ 〈u,x〉] > 0 implies that∀θ,〈θ,x〉−ψ(θ) < ∞, so that

φ(x) = sup
θ

(〈θ,x〉−ψ(θ)) < ∞,

12. Since any non-negative bounded measure can be simply converted to a probability measure by a multiplicative con-
stant, our analysis remains practically unchanged in the general case, except for an additive constant to the cumulant
function.
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i.e.,x ∈ dom(φ).

We now prove the claim of Theorem 3 thatIψ ⊆ dom(φ).

Proof of Theorem 3 Let x0 ∈ Iψ and letu be any unit vector. LetH(u,x0) be the hyperplane
throughx0 with unit normalu. Let H (u,x0) be the closed half-space determined by the hyperplane
H(u,x0), i.e.,H (u,x0) = {x∈Rd|〈u,x〉 ≥ 〈u,x0〉}. Using this notation, we give separate proofs for
the cases whenP0 is absolutely continuous with respect to the counting measure and with respect to
the Lebesgue measure.

Let P0 be absolutely continuous with respect to the counting measure. By definition,x0 ∈
H (u,x0). Sincex0 ∈ Iψ, applying Definition 6 to the setI = {x0} we havep(ψ,θ)(x0) > 0. Hence
p0(x0) > 0 as the exponential family distribution is absolutely continuous with respect toP0. There-
fore, the closed half-spaceH (u,x0) has a positive measure of at leastp0(x0) for any unit vectoru,
i.e.,

P0 [〈u,X〉 ≥ 〈u,x0〉] ≥ p0(x0) > 0 ∀u
so that inf

u
P0 [〈u,X〉 ≥ 〈u,x0〉] ≥ p0(x0) > 0 .

From Lemma 3, it follows thatx0 ∈ dom(φ). Therefore,Iψ ⊆ dom(φ).
Now we consider the case whenP0 is absolutely continuous with respect to the Lebesgue mea-

sure. Ifx0 ∈ Iψ, then∀I ⊆ Rd with x0 ∈ I and
R

I dx > 0, we have
Z

I
dP0(x) > 0 .

Note that sincex0 ∈H (u,x0) and
R

H (u,x0)
dx > 0, we must have

Z

H (u,x0)
dP0(x) > 0 ∀u.

Hence,P0(〈u,X〉≥ 〈u,x0〉)> 0,∀u. Since the set of unit vectors is a compact set, infu P0(〈u,X〉≥
〈u,x0〉) is achieved at some unit vectoru∗, so that

inf
u

P0(〈u,X〉 ≥ 〈u,x0〉) = P0(〈u∗,X〉 ≥ 〈u∗,x0〉) > 0 .

Again, Lemma 3 implies thatx0 ∈ dom(φ) so thatIψ ⊆ dom(φ).

Finally, we present a related result from Barndorff-Nielsen (1978) involving the closed convex hull
of Iψ and dom(φ). The result is not essential to the paper, but is relevant, and interesting inits own
right.

Theorem 12 (Barndorff-Nielsen (1978))Let Iψ be as in Definition 6. Let Cψ be the closure of the
convex hull of Iψ, i.e., Cψ = co(Iψ). Then,

int(Cψ)⊆ dom(φ)⊆Cψ

whereφ is the conjugate ofψ.

Note that Theorem 12 does not imply Theorem 3.
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I. Csisźar. Why least squares and maximum entropy? An axiomatic approach to inference for linear
inverse problems.The Annals of Statistics, 19(4):2032–2066, 1991.
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