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Mahalanobis distances

» For Q > 0, a symmetric positive definite matrix like a
covariance matrix, define Mahalanobis distance:

Dq(p,q) = \/(P —q)'Q(p—q)

Metric distance (indiscernibles/symmetry/triangle inequality)
Eg., Q = precision matrix Y 1 where ¥ = covariance matrix

» Generalize Euclidean distance when Q = I: Dy(p,q) = ||p—q||
» Mahalanobis distance interpreted as Euclidean distance after

Cholesky decomposition Q = LT L and affine transformation
X' — LTx:

Do(p,q) = Dy(L"p, LT q) = ||p — ||




Generalizing
Mahalanobis distances
with Cayley-Klein
projective geometries

_I_
Learning in Cayley-Klein
spaces



Cayley-Klein geometry: Projective geometry [7, 3]

» RPY: (Ax, \) ~ (x,1)
homogeneous coordinates x — X = (x,w = 1), and
dehomogeneization by “perspective division” X — =

» cross-ratio measure is invariant by
projectivity/homography/collineation:

(
(

p_
P,Q) =
(p,a;: P,Q) -

where p, g, P, Q are collinear



Definition of Cayley-Klein geometries

A Cayley-Klein geometry is K = (F, Cdist, Cangle):

1. A fundamental conic: F
2. A constant unit cgist € C for measuring distances

3. A constant unit Cupgle € C for measuring angles

See monograph [7]



Distance in Cayley-Klein geometries

‘dist(p, q) = caist Log((p, q; P, Q)) ‘

where P and Q are intersection points of line / = (pg) (I = p x §
in 2D) with the conic.
Log is principal complex logarithm (modulo 27/)



Key properties of Cayley-Klein distances

» dist(p, p) = 0 (law of indiscernibles)
» Signed distances : dist(p, g) = —dist(q, p)

» When p, q, r are collinear

’dist(p, q) = dist(p, r) + dist(r, q) ‘

Geodesics in Cayley-Klein geometries are straight lines
(eventually clipped within the conic domain)

Logarithm is transferring multiplicative properties of the cross-ratio
to additive properties of Cayley-Klein distances.

When p, g, P, Q are collinear:

(P,a:P,Q) = (p,r; P,Q)-(r,q: P,Q)



Dual conics
In projective geometry, points and lines are dual concepts

Dual parameterizations of the fundamental conic F = (A, A®)
Quadratic form Qa(x) = X" A%

» primal conic = set of border points: Cq = {p : Qa(p) =0}

» dual conic = set of tangent hyperplanes:

Ci=1{T = Qua(l) =0}

A2 = A71|A| is the adjoint matrix
Adjoint can be computed even when A is not invertible (|A| = 0)



Taxonomy

Signature of matrix = sign of eigenvalues of its eigen decomposition

Type A AL Conic

Elliptic (+,4+.4) | (++,+) non-degenerate complex conic

Hyperbolic (+,4+, =) | (+,+,-) non-degenerate real conic

Dual Euclidean (+,+,0) | (+,+,0) Two complex lines with a real intersection point
Dual Pseudo-euclidean | (4,—,0) | (+,0,0) Two real lines with a double real intersection point Deux
Euclidean (+,0,0) | (+,4+,0) | Two complex points with a double real line passing through
Pseudo-euclidean (4+,0,0) | (+,—,0) | Two complex points with a double real line passing through

Galilean (+,0,0) | (+.0,0) Double real line with a real intersection point

Degenerate cases are obtained as limit of non-degenerate cases.

Measurements can be elliptic, hyperbolic or parabolic (degenerate
case).



Real CK distances without cross-ratio expressions

For real Cayley-Klein measures, we choose the constants:

» Constants (k is curvature):

» Elliptic (k > 0): caist = 5;

» Hyperbolic (x < 0): caist = —5
» Bilinear form S, = (p',1)"S(q,1) = ' S§
» Get rid of cross-ratio using:

Spq + \/ qu — SppSqq
(p,q;: P, Q) =

Spq — qu — SppSqq
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Elliptic Cayley-Klein metric distance

Spq + \/ qu - Sppsqq)

Spq — qu — SppSqq

K
de(p, q) = 5 Log (

ppOqq

de(p, q) = K arccos (Squ>

Notice that de(p, g) < k7, domain Ds = R in elliptic case.

Gnomonic projection dg(x,y) = & - arccos ((x', y'))
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Hyperbolic Cayley-Klein distance

When p,q € Ds := {p : Spp < 0}, the hyperbolic domain:

Spq + ,/52 - 5S,,S
K pq pq PP2qq
dy(p.q) = —Elog ( )

Spq — qu — SppSaqq

)
du(p, q) = —k arctanh ( 1— ’g’;"’)
pq

du(p, q) = —k arccosh <5pq>

V/ SppSqq

with arccosh(x) = log(x + v/x2 — 1) and arctanh(x) = 5 log 1.

Curvature kK < 0

12



Decomposition of the bilinear form [1]

> a

Write S = [ T b

:| = SZ,a,b with ~ = 0.

Spq = p'SGg=p'Xg+plat+a g+b
let u=-YX1acRy (a=—-Zp)and b=p"Tpu+ sign(m)%

_1
pod (b=plp)2 b>plp
—(u'p—b)"z b<pp

Then the bilinear form writes as:

S(p.4) = Snlp. @) = (p— 1) E(q — ) + sien(x)

13



Curved Mahalanobis metric distances

We have [1]:

HI% Ds ,.x(p,q) = R';rgf Ds ,.x(p,q) = Dx(p, q)

Mabhalanobis distance Dx(p, q) = Ds 0.0(p, q)

Thus hyperbolic/elliptic Cayley-Klein distances can be interpreted
as curved Mahalanobis distances, or k-Mahalanobis distances

When S = diag(1,1,...,1,—1), we recover the canonical hyperbolic
distance [5] in Cayley-Klein model:

= arccos L <p7 q>
Dy(p: q) = h<\/1—<p,p>\/1—<q’q>>

defined inside the interior of a unit ball.
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Cayley-Klein bisectors are affine
Bisector Bi(p, q):

Bi(p,q) = {xeDs : dists(p,x)=dists(x,q)}
Sp.x)  _ S(g,x)

VSp.p)  /S(a,9)

arccos and arccosh are monotonically increasing functions.

(x.V15(p.p)ITq - VIS(q, a)|Zp)

+V/[S(p. pl(a" (g +x) + b) = V/IS(a.q)l(a" (p +x) + b) =0

Hyperplanes (restricted to the domain) 15




Cayley-Klein Voronoi diagrams are affine

Can be computed from equivalent (clipped) power diagrams [2, 5]
https://www.youtube.com/watch?v=YHJLg3-RL58
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Cayley-Klein balls

Blue: Mahalanobis Red: elliptic Green: Hyperbolic

Cayley-Klein balls have Mahalanobis ball shapes with displaced
centers
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Learning curved
Mahalanobis metrics
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Large Margin Nearest Neighbors [8], LMNN

Learn Mahalanobis distance M = LT L = 0 for a given input

data-set P
» Distance of each point to its target neighbors shrink, epun(L)

S={(xi,x) : yi=y and x; € N(x;)}

> Keep a distance margin of each point to its impostors, €ush(L)
(X,',Xj) €S and Vi 75 y/}

R = {(xi, xj, x1)
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http://www.cs.cornell.edu/"kilian/code/lmnn/Ilmnn.html
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LMNN: Cost function and optimization

Objective cost function [8]: convex and piecewise linear (SDP)

epu(L) = ZiisjlIL(xi — )1,

epush(L) = T T (1= yir) [L+ L0 = x)[12 = 1L = x)I1P]
(L) = (- p)epun(L) + pepusn(L)

i — j: xj is a target neighbor of x;

yir = 1 iff x; and x; have same label, y;; = 0 otherwise.

1 set by cross-validation

Optimize by gradient descent: €(Ls11) = €(Lt) — vae(rgtt)

oc _
oL

(1= p)xiisi Gy + nZijner.(Cj — Cir)
where C;j = (x; — x;) T (xi — x;)

Easy, no projection mechanism like for Mahalanobis Metric for

Clustering (MMC) [9]
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Elliptic Cayley-Klein LMNN [1], CVPR 2015

e(L) = ) > de(xix) + Y Y (1= yi)

ii—j ii—j |

with C,:,'/ = []. + dE(X,',Xj) - (J'E(X,',X/)]+ (hinge IOSS)

1—/1)2 8dE XnXJ MZZ(].— 8(,11

INET INET

86(

Ode(xi, %) _ kK (Sic, ﬁcjj (Gt )
oL SiS;—S2 \Si S
1 ij
8CU’ — 8dE(£))Z’7Xj) - adEf())ZhXI)a if CI_// > 07
oL 0, otherwise.
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Hyperbolic Cayley-Klein LMNN (new case)

To ensure S keeps correct signature (1, d,0) during the LMNN
gradient descent, we decompose S = L' DL (with L = 0) and
perform a gradient descent on L with the following gradient:

adH(X,',Xj) _ k DL <5,J 5,‘

2D+ 22— (Cy + C'i))
oL /755 = 5i5; -G i+ G

Sii Si

Recall two difficulties of hyperbolic case compared to elliptic case:

» Hyperbolic Cayley-Klein distance may be very large
(unbounded vs. < k7 for elliptic case)

» Data-set should be contained inside the compact domain Dg
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HCK-LMNN: Initialization and learning rate

/

» Initialize L = (L 1) and D so that P € Dgs with

Y1 =1'T1" (eg., precision matrix of P).

-1

-1
K maxy ||L'x||?

with x > 1.

» At iteration t, it may happen that P ¢ Ds, since we do not
know the optimal learning rate «v. When this happens, we
reduce v <— 3, otherwise we let 7y < 1.017.
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Curved Mahalanobis learning: Results

Experimental results on some UCI data-sets

k | Data-set | elliptic | Hyperbolic | Mahalanobis
1 wine 0.989 0.865 0.984
vowel 0.832 0.797 0.827
balance | 0.924 0.891 0.846
pima 0.726 0.706 0.709
3 wine 0.983 0.871 0.984
vowel 0.828 0.782 0.827
balance | 0.917 0.911 0.846
pima 0.706 0.695 0.709
5 wine 0.983 0.984
vowel 0.826 0.805 0.827
balance | 0.907 0.895 0.846
pima | 0.714 | 0.712 0.709
11 wine 0.994 0.983 0.984
vowel 0.839 0.767 0.827
balance | 0.874 0.897 0.846
pima 0.713 0.698 0.709

For classification, enough to consider k € {—1,0,+1}



Spectral decomposition and fast proximity queries

» Avoid to compute dg or dy for arbitrary S

» Apply spectral decomposition (elliptic case S = LT L, or
hyperbolic case S = LT DL ) and perform coordinate changes
so that we consider the canonical metric distances:

oy
de(x',y’) = arccos ( :
Xy

o 1—(x,y)
du(x, = arccosh
H(X',y") <\/1 — <X’,X'>\/1 — <y/,y/>>

» Proximity query: Eg, Vantage Point Tree
data-structures [10, 6] (with metric pruning).
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Mixed curved Mahalanobis distance

’ d(x,y) = ade(x,y) + (1 — a)du(x,y) ‘

1. Sum of Riemannian metric distances is metric (“blending”

positive with negative constant curvatures)

2. Mixed of bounded distance (elliptic CK) with unbounded

distance (hyperbolic CK), hyperparameter tuning «

Datasets | Mahalanobis | elliptic | Hyperbolic | Mixed @ B=(1-a)
Wine 0.993 0.984 0.893 0.986 | 0.741 0.259
Sonar 0.733 0.788 0.640 0.802 || 0.794 0.206

Balance 0.846 0.910 0.904 0.920 || 0.440 0.560
Pima 0.709 0.712 0.699 0.720 || 0.584 0.416
Vowel 0.827 0.825 0.816 0.841 || 0.407 0.593

Although mixed CK distance is a Riemannian metric distance, it is
not of constant curvature.
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Conclusion
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Contributions and perspectives

» Study of Cayley-Klein elliptic/hyperbolic geometries:
Affine bisector, Voronoi diagrams from (clipped) power
diagrams, Cayley-Klein balls (Mahalanobis shapes with
displaced centers), etc.

» Classification with Large Margin Nearest Neighbor (LMNN) in
Cayley-Klein elliptic/hyperbolic geometries
(hyperbolic geometry: compact domain & unbounded
distance)

» Experiments on mixed Cayley-Klein distances

Ongoing work:
Extensions of Cayley-Klein geometries to Machine Learning
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Thank you!

https://www.lix.polytechnique.fr/"nielsen/CayleyKlein/

10.1109/ICIP.2016.7532355

arXiv:1609.07082
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Properties of the cross-ratio

> (p,p;P,P)=1
> (p.4:Q.P) = Garg

» (p,g; P, Q)= (p,r; P,Q)-(r,q; P, Q) when r is collinear with

p,q,P,Q
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Measuring angles in Cayley-Klein geometries

angle(/, m) = cangle log((/, m; L, M))

where L and M are tangent lines to A passing through the
intersection point p (p =/ x min 2D) of | m.

m
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Interpretation of hyperbolic Cayley-Klein distance

dr(x,y) = k arccosh (< X', y' >)
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Cayley-Klein Voronoi diagrams from (clipped)

power diagrams

¢ = Ypi+a
2/ Spipi
2 |Zpi+al> a'pi+b
4Spp; V/Spior
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Cayley-Klein balls have Mahalanobis ball shapes

Elliptic Cayley-Klein ball case:

Y =Y —aa F=/Sc,ccos(r)
=YY (Vd — PPa) with & =%c+a
r?=b%—-Pb+ (s b=a'c+b
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Cayley-Klein balls have Mahalanobis ball shapes

Hyperbolic Cayley-Klein ball case:

Y =aa —7PX F = /Sc,c cosh(r)
d =3"YPa - bvd) with & =%c+a
r?=%b—b%4(, ) b=alc+b

.. and drawing a Mahalanobis ball amounts to draw a Euclidean
ball after affine transformation x’ < L x.

38



Spectral decomposition and signature

» Eigenvalue decomposition: S = OAOT.

A = diag(A1,1,- -+ Agy1,d+1)
I 0 1 .7
0\ ]DzO , where
A =€ {—1,1} and O= orthogonal matrix (0O~* = OT)

» Canonical decomposition: S = oD3 [

» Diagonal matrix D has all positive values, with D;; = A; ; and
Dgi1,d41 = [Nd+1,d+1]
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