

1A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Frank NIELSEN

nielsen@lix.polytechnique.fr

A Concise and
Practical
Introduction to
Programming
Algorithms in Java

Chapter 3: Functions and recursivity

2A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

So far... Executive review

Lecture 1: Java=Typed compiled programming language

Variables: Type var; (boolean, int, long, float, double)

Assignment: var=Expression; (with type checking)

Expression: Operand1 Operator Operand2 (+-*/%)

Instruction (;) & comments // or /* */

3A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

So far... Executive review
Lecture 2: Program workflow (blocks/branching/loops)

Determine the set of instructions at runtime

Blocks: sequence of instructions { }

Branching condition: if predicate B1 else B2
(switch case break)

Loops: while, do, for and escaping break

Numerical precisions: finite-precision arithmetic
(absurd results, loose of associativity, etc.)

4A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Meaning of a function in mathematics ?

● Source (X) and target (Y) domains

● A map that associates to elements of X elements of Y

● An element of X is associated at most once to a member of Y

● The mapping gives always the same result (deterministic/no randomness)

● Functions of several variables may be built blockwise...
...using Cartesian product of spaces

5A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Meaning of functions for computing ?
● A portion of a program processing data and returning a result

●A function not returning a result is also called a procedure

●A function has typed parameters as arguments

●A function usually yields the same result for a given set of arguments
 (except for side-effects or use of pseudo-randomness)

●A function needs to be declared first before calling it elsewhere

TypeF F(Type1 arg1, Type2 arg2, ..., TypeN argN)
{
TypeF result;
block of instructions;
return result;
}

6A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

class INF311{

public static typeF F(type1 arg1, ..., typeN argN)
{
// Description
Block of instructions;
}

...
}

● This kind of function is also called a static method
● Functions must be defined inside classes
● A function not returning a result has type void

(also known as a procedure)

Declaring functions in Java

7A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Defining the body of a function in Java

Class INF311{

public static typeF F(type1 arg1, ..., typeN argN)
{
// Description
Block of instructions;
}

}

Body of a function

● Body should contain an instruction return to indicate the result

● If branching structures are used (if or switch) , a return should be
written for all different branches. Otherwise we get acompiler error!

8A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Defining the body of a function in Java
class INF311{

public static typeF F(type1 arg1, ..., typeN argN)
{
// Description
Block of instructions;
}

}

Body of a function

 Body should contain an instruction return to indicate the result

If branching structures are used (if or switch) ,
 then a return should be written for all different branches.

... Otherwise we get a compiler error! (why? => not type safe!)

9A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Using functions in Java

10A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

A few examples of basic functions
class FuncDecl{

public static int square(int x)
{return x*x;}

public static boolean isOdd(int p)
{if ((p%2)==0) return false;

 else return true;}
public static double distance(double x, double y)

{if (x>y) return x-y;
 else return y-x;}

public static void display(double x, double y)
{System.out.println("("+x+","+y+")");
 return; // return void
}

public static void main (String[] args)
{
...
}

}

11A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

class FuncDecl{
public static int square(int x){...}

public static boolean isOdd(int p) {...}

public static double distance(double x, double y) {...}

public static void display(double x, double y) {...}

public static void main (String[] args)
{
display(3,2);
display(square(2),distance(5,9));
int p=123124345;
if (isOdd(p))

System.out.println("p is odd");
else System.out.println("p is even");

}
}

A few examples of basic functions

12A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Functions... JCreator IDE

13A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

● Modularity (ease of presentation)

● Code re-use (program once, re-use many times!)
 -> library (API)

● Ease certification of correctness and test routines.

Benefits of using functions

14A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Functions with branching structures

ERROR!!!

This compiled but there is
an error (break keyword?!)

15A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Functions with branching structures
(correct program)

16A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Factorial function n! in Java

Call function factorial in class « toolbox »

17A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Calling functions: Inner Mechanism
TypeF result=F(param1, param2, ..., paramN);

 param1, ..., paramN should be of the same types as the ones declared in the function

A function call can be used inside an expression,
or even as a parameter of another function (nested calls)
Example: F1(F2(x),F3(x))

Assignment's rule checks at compile time for type equivalence:
System.out.println(IsPrime(23121971));
double dist=distance(u,v);

Beyond the scope of the function's class, we need to put the
function' class with a dot. Requires the function to be public.

Math.cos(x);
TD2.factorial(n);
TC.lireInt();

18A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Revisiting IsPrime: measuring time

We repeat this computation
1000 times to measure

the elapsed time

Function call in class TC:
TC.demarrerChrono();

Function call in class TC:
TC.tempsChrono();

19A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Potential side effects of functions:
Static variables (effet de bord)
● Function that might modify/alterate the environment

 For example:
... displaying a value

 ... But also modify a variable of the base class

● A class variable is declared inside the class scope,
...not in function bodies

● Class variables are declared using the keyword static

20A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Side effects of functions: Static variables

CountingCounting
 number of number of

function callsfunction calls

Declaration of class variable
static int classvar;

21A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Function: Signature and overloading
signature of a function = ordered sequence of parameter types

Two functions with different signatures can bear the same name
(since the compiler can distinguish them!)

static double plusone(...)
int
double
String

22A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Although the function result type is important,
Java does not take into account it for creating signatures...

Function: Signature and overloading

23A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Function: Signature and overloading
static int plusone (int n)
static double plusone(int n)
 !!! COMPILATION ERROR !!!

class SignatureError{
public static int plusone(int n)
{return n+1;}

public static double plusone(int n)
{return n+1.0;}

public static void main(String args[])
{} }

C:\J\Signature.java:6: plusone(int) is already defined in SignatureError
 static double plusone(int n)

24A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Executing functions in Java
● Work place of the function is created when the function is called

● ... and destroyed once it is executed (value returned)

● Parameter values are equal to the results of the expressions

● Function parameters are allocated in memory reserved for the function

● If a parameter is modified inside the function body,
 it remains unchanged in the calling function.

public static void main(String args[])

25A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Executing functions in Java

Memory
(stack)

Memory
for main

Memory
for Increment

Memory
for plusone

As soon as we exit this
function, k takes its original
value of (5)

passage par valeur

26A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Executing functions in Java

(In C++, swapping is easy)

27A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Principle of recursion
A beautiful principle of computing !
Loosely speaking, ...
 ...the inverse of inductivism in mathematics

● A function that calls itself...

● ...not forever, so that there should be stopping states...

● ...Function parameters should tend to the ones that do not
...require recursion to finalize the computation...

 But all this is an informal glimpse of recursion (self-structure)

28A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Example: Revisiting the factorial

29A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Population growth:
Newly born pair of M/F rabbits are put in a field.
Newly born rabbits take a month to become mature, after which time
... They produce a new pair of baby rabbits every month

Q.: How many pairs will there be in subsequent years?

Example: Fibonacci numbers
Leonard de Pise
(1170- 1245)

1, 1, 2, 3, 5, 8, 13, 21, 34, 55......

30A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Example: Fibonacci numbers

Leonard de Pise

Much better algorithms at....
http://fr.wikipedia.org/wiki/Suite_de_Fibonacci

31A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Understanding a recursive function

recursive function called:

● Allocation of memory for local variables

● Stack operations to compute

● ... Call the function with other parameters, if required

● Process operations that remains on the stack

int fibo(int n)
{int x,y;
 if(n <= 1) return 1;
 x=fibo(n-1);

y=fibo(n-2);
 return x+y;}

x=fibo(2)
y=fibo(1)
return x+y

fibo(3) Recursive calls

32A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

x=fibo(2)
y=fibo(1)
return x+y

x=fibo(1)
y=fibo(0)
return x+y

return 1;

fibo(3)
fibo(2)

fibo(1)

Understanding a recursive function

33A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

x=fibo(2)
y=fibo(1)
return x+y

x=1
y=fibo(0)
return x+y

return 0;fibo(3)
fibo(2) fibo(0)

Understanding a recursive function

34A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

x=fibo(2)
y=fibo(1)
return x+y

x=1
y=0
return x+yfibo(3)

fibo(2)=1

Understanding a recursive function

35A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

x=1
y=fibo(1)
return x+y

fibo(3) fibo(1)=1 return 1;

Understanding a recursive function

36A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

x=1
y=1
return x+y

fibo(3)=2

As we can see, there is a lot of redundant work here.
-> Very inefficient algorithm.

Can cause stack overflow if the #recursive calls...
...become too large

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ..

Understanding a recursive function

37A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Understanding a recursive function

38A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Recursion: Halting problem
When does a recursive program terminate?

The arguments always decrease and
 there is always a stopping criterion

39A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Recursion: Halting problem

40A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Does not always halt because
we may never reach terminal case (n=0) for odd numbers

Recursion: Halting problem
Do we always reach
 that terminal state?

41A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

What do you think of this one?

Stack overflow

Recursion: Halting problem

42A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Syracuse problem and termination conjecture

Conjectured to halt

(computer simulation helps intuition but does not give a full proof)

Recursion: Halting problem

43A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

There is provably no algorithm that can take as input a
program (binary string) and return true

if and only if this program halts.

http://en.wikipedia.org/wiki/Halting_problem

 Halting problem: Computer Science

Proof skipped

44A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Terminal recursion

Does not put function calls on the stack
(thus avoid stack overflow)

What happens if we call Factorial(100) ?

Recursive calls are alwaysof the form return f(...);
 ->No instruction (computation) after the function

(Factorial is not terminal since return n*f(n-1);)

if (n<=1) return 1; else
return n*f(n-1);

45A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 factorial with terminal recursion

Arguments plays the role of accumulators

What happens if we call Factorial(100) ?

46A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Terminal Recursion:
Revisiting Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ...

ac
cu

mula
tor

47A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Recursivity and Nature
Drawing fractal curves and motifs

Koch's snowflake

Fractals:
● Patterns that are present at different scales
● The curve at stage n is defined recursively...
 from the curve at stage n-1

48A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Fractal: Sierpinski motif

Generation 1 Generation 2 Generation 3 Generation 4 Generation 5

The recursive pattern is given by a simple rewritting rule:
Replace a triangle by 3 triangles defined by the...

midpoints of the edges of the source triangle

Waclaw Sierpinski
(1882-1969)

Polish mathematician

49A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Sierpinski curve (2D pyramid)

http://www.enseignement.polytechnique.fr/profs/informatique/Philippe.Chassignet/MACLIB/Java/maclib_java.html

50A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

51A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51

