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So far... Executive review

Lecture 1: Java=Typed compiled programming language

Variables: Type var; (boolean, int, long, float, double) 

Assignment: var=Expression; (with type checking)

Expression: Operand1 Operator Operand2 (+-*/%)

Instruction (;) & comments // or /* */
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So far... Executive review
Lecture 2: Program workflow (blocks/branching/loops)

Determine the set of instructions at runtime

Blocks: sequence of instructions { }

Branching condition: if predicate B1 else B2  
(switch case break)

Loops: while, do, for  and escaping break

Numerical precisions: finite-precision arithmetic
(absurd results, loose of associativity, etc.)
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Meaning of a function in mathematics ?

● Source (X) and target (Y) domains

● A map that associates to elements of X elements of Y

● An element of X is associated at most once to a member of Y

● The mapping gives always the same result (deterministic/no randomness)

● Functions of several variables may be built blockwise...
...using Cartesian product of spaces
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Meaning of functions for computing ?
● A portion of a program processing data and returning a result

●A function not returning a result is also called a procedure

●A function has typed parameters as arguments

●A function usually yields the same result for a given set of arguments
                (except for side-effects or use of pseudo-randomness)

●A function needs to be declared first before calling it elsewhere

TypeF F(Type1 arg1, Type2 arg2, ..., TypeN argN)
{
TypeF result;
block of instructions;
return result;
}
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class INF311{

public static  typeF F(type1 arg1, ..., typeN argN)
{
// Description
Block of instructions;
}

...
}

● This kind of function is also called a static method
● Functions must be defined inside classes
● A function not returning a result has type void 

(also known as a procedure) 

Declaring functions in Java
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Defining the body of a function in Java

Class INF311{

public static  typeF F(type1 arg1, ..., typeN argN)
{
// Description
Block of instructions;
}

}

Body of a function

● Body should contain an instruction return to indicate the result

● If branching structures are used (if or switch) , a return should be 
written for all different branches. Otherwise we get acompiler error!
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Defining the body of a function in Java
class INF311{

public static  typeF F(type1 arg1, ..., typeN argN)
{
// Description
Block of instructions;
}

}

Body of a function

 Body should contain an instruction return to indicate the result

If branching structures are used (if or switch) , 
         then a return should be written for all different branches. 

... Otherwise we get a compiler error!  (why? => not type safe!)
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Using functions in Java
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A few examples of basic functions
class FuncDecl{

public static int square(int x)
{return x*x;}

public static boolean isOdd(int p) 
{if ((p%2)==0) return false;

 else return true;}
public static double distance(double x, double y) 

{if (x>y) return x-y;
 else return y-x;}

public static void display(double x, double y)
{System.out.println("("+x+","+y+")");
 return; // return void
}

public static void main (String[] args)
{
...
}

}
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class FuncDecl{
public static int square(int x){...}

public static boolean isOdd(int p) {...} 

public static double distance(double x, double y) {...} 

public static void display(double x, double y) {...}

public static void main (String[] args)
{
display(3,2);
display(square(2),distance(5,9));
int p=123124345;
if (isOdd(p)) 

System.out.println("p is odd");
else System.out.println("p is even");

}
}

A few examples of basic functions
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Functions... JCreator IDE
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● Modularity (ease of presentation)

● Code re-use (program once, re-use many times!)
 -> library (API)

● Ease certification of correctness and test routines.

Benefits of  using functions
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Functions with branching structures

ERROR!!!

This compiled but there is
an error (break keyword?!)
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Functions with branching structures
(correct program)
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Factorial function n! in Java

Call function factorial in class « toolbox »
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Calling functions: Inner Mechanism
TypeF result=F(param1, param2, ..., paramN);

 param1, ..., paramN should be of the same types as the ones declared in the function

A function call can be used inside an expression, 
or even as a parameter of another function (nested calls)
Example: F1(F2(x),F3(x))

Assignment's rule checks at compile time for type equivalence:
System.out.println(IsPrime(23121971));
double dist=distance(u,v);

Beyond the scope of the function's class, we need to put the
function' class with a dot. Requires the function to be public.

Math.cos(x);
TD2.factorial(n);
TC.lireInt();
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Revisiting IsPrime: measuring time

We repeat this computation
1000 times to measure 

the elapsed time

Function call in class TC:
TC.demarrerChrono();

Function call in class TC:
TC.tempsChrono();
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Potential side effects of functions: 
Static variables (effet de bord)
● Function that might modify/alterate the environment

 For example:
... displaying a value

 ... But also modify a variable of the base class 

● A class variable is declared inside the class scope, 
...not in function bodies

● Class variables are declared using the keyword static 
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Side effects of functions: Static variables

CountingCounting
  number of number of 

function callsfunction calls

Declaration of class variable
static int classvar;
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Function: Signature and overloading
signature of a function = ordered sequence of parameter types

Two functions with different signatures can bear the same name
(since the compiler can distinguish them!)

static double plusone(...)
int
double
String
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Although the function result type is important, 
Java does not take into account it for creating signatures...

Function: Signature and overloading
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Function: Signature and overloading
static int plusone (int n)
static double plusone(int n)
      !!! COMPILATION ERROR !!!

class SignatureError{
public static int plusone(int n) 
{return n+1;}

public static double plusone(int n) 
{return n+1.0;}

public static void main(String args[])
{}   }

C:\J\Signature.java:6: plusone(int) is already defined in SignatureError
 static double plusone(int n)
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Executing functions in Java
● Work place of the function is created when the function is called

● ... and destroyed once it is executed (value returned)

● Parameter values are equal to the results of the expressions 

● Function parameters are allocated in memory reserved for the function

● If a parameter is modified inside the function body, 
   it remains unchanged in the calling function.

public static void main(String args[])
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Executing functions in Java

Memory
(stack)

Memory
for main

Memory
for Increment

Memory
for plusone

As soon as we exit this
function, k takes its original
value of (5)

passage par valeur
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Executing functions in Java

(In C++, swapping is easy)
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Principle of recursion
A beautiful principle of computing !
Loosely speaking, ...
   ...the inverse of inductivism in mathematics

● A function that calls itself...

● ...not forever, so that there should be stopping states...

● ...Function parameters should tend to the ones that do not
...require recursion to finalize the computation...

 But all this is an informal glimpse of recursion (self-structure)
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Example: Revisiting the factorial
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Population growth:
Newly born pair of  M/F rabbits  are put in a field. 
Newly born rabbits take a month to become  mature, after which time
... They produce a new pair of baby rabbits every month

Q.: How many pairs will there be in subsequent years? 

Example: Fibonacci numbers
Leonard de Pise
(1170- 1245)

1, 1, 2, 3, 5, 8, 13, 21, 34, 55...... 
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Example: Fibonacci numbers

Leonard de Pise

Much better algorithms at....
http://fr.wikipedia.org/wiki/Suite_de_Fibonacci
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Understanding a recursive function

recursive function called:

● Allocation of memory for local variables

● Stack operations to compute

● ... Call the function with other parameters, if required

● Process operations that remains on the stack  

int fibo(int n)
{int x,y;
   if(n <= 1) return 1;
   x=fibo(n-1); 

y=fibo(n-2);
   return  x+y;}

x=fibo(2)
y=fibo(1)
return x+y

fibo(3) Recursive calls
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x=fibo(2)
y=fibo(1)
return x+y

x=fibo(1)
y=fibo(0)
return x+y

return 1;

fibo(3)
fibo(2)

fibo(1)

Understanding a recursive function
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x=fibo(2)
y=fibo(1)
return x+y

x=1
y=fibo(0)
return x+y

return 0;fibo(3)
fibo(2) fibo(0)

Understanding a recursive function
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x=fibo(2)
y=fibo(1)
return x+y

x=1
y=0
return x+yfibo(3)

fibo(2)=1

Understanding a recursive function
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x=1
y=fibo(1)
return x+y

fibo(3) fibo(1)=1 return 1;

Understanding a recursive function
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x=1
y=1
return x+y

fibo(3)=2

As we can see, there is a lot of redundant work here.
-> Very inefficient algorithm.

Can cause stack overflow if the #recursive calls... 
...become too large

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ..

Understanding a recursive function
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Understanding a recursive function
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Recursion: Halting problem
When does a recursive program terminate?

The arguments always decrease and
 there is always a stopping criterion
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Recursion: Halting problem
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Does not always halt because 
we may never reach terminal case (n=0) for odd numbers

Recursion: Halting problem
Do we always reach
 that terminal state?
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What do you think of this one?

Stack overflow

Recursion: Halting problem
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Syracuse problem and termination conjecture

Conjectured to halt

(computer simulation helps intuition but does not give a full proof)

Recursion: Halting problem
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There is provably no algorithm that can take as input a 
program (binary string) and return true 

if and only if this program halts.

http://en.wikipedia.org/wiki/Halting_problem

 Halting problem: Computer Science

Proof skipped
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Terminal recursion

Does not put function calls on the stack 
(thus avoid stack overflow)

What happens if we call Factorial(100) ? 

Recursive calls are alwaysof the form return f(...);
  ->No instruction (computation) after the function   

(Factorial is not terminal since return n*f(n-1); )

if (n<=1) return 1; else
return n*f(n-1); 
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 factorial with terminal recursion

Arguments plays the role of accumulators

What happens if we call Factorial(100) ? 
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Terminal Recursion: 
Revisiting Fibonacci 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ...

ac
cu

mula
tor
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Recursivity and Nature
Drawing fractal curves and motifs

Koch's  snowflake

Fractals:
● Patterns that are present at different scales
● The curve at stage n is defined recursively... 
     ....from the curve at stage n-1
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Fractal: Sierpinski motif

Generation 1 Generation 2 Generation 3 Generation 4 Generation 5

The recursive pattern is given by a simple rewritting rule:
Replace a triangle by 3 triangles defined by the...

midpoints of the edges of the source triangle

Waclaw Sierpinski 
(1882-1969) 

Polish mathematician
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Sierpinski curve (2D pyramid)

http://www.enseignement.polytechnique.fr/profs/informatique/Philippe.Chassignet/MACLIB/Java/maclib_java.html
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