A Concise and

Practical
Introduction to e

- Introducthn to
Programming A

Algorithms In Java

Chapter 1: Expressions, Variables, and Assignments

Frank NIELSEN
Bx
>4 nielsen@lix.polytechnique.fr

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 1



Learn to program with/in Java

 Computing as a science
J (some basic principles)

. Popular (computer) science

MANET
. . . HCI . . BMI _
E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 2



Jobs & Computer Science

* Industry
* CS Industry

e Others (information systems)

« Administration

 Research & Development

Y %4
- W

'Not feeling fluent with CS today, is like not being able to drive a car !
ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 3



Digital world

Benefits of the analog-to-digital paradigm shift?

* Dissociate contents from support : digitize/"binarize”

||||||||||||||||||||||||

28116161 01 AOOEEET BEE1 1161

F10E1eEE1 11 1619081081 1691 25

4 1118111811191 961 610068651 §

3@11@1@18118111BE11EI1E1L311E1E
BEN BE1 11 Pl ©31 61 1160 C t t b

'ﬁfaa-aaae atar 1o ontents become mere
Be 118 GE] B GE

1@@@1@111 ae 18061 6 . .

3181 106819001561 1081 181818 blnary 0/1 Strlngs

@61 181168106681 1 1 DOREE1 66"

IBEEET 111100681 58108111186

ieaiiiieeaiatiiialial 186
1188888AGE1 181 1 BEE 1 A8E8EE1 B

1maaatiiiacaiianii tiaciimirn

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen



Digital world

* Universal player (machine) and dedicated devices

|||||||||||||||||||

=TEIRIg[G
I

118881811 [T
1811888106861 881 \5

1188868881 1681 18861 BSa6EE1 &

AAAAGRTI A4 @G 1 AEd 1 VARt Al

“Multiple 0/1 readers”
E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen



Digital world

- Generic algorithms:
copying, compressing, transmitting, archiving, etc.

01101100110 g

00011101101 3\}:?@1 |

o Text

*Music -

*Image

*Video AT ‘

Data 01101100110
00011101101

Raise the question: What is the (digital) information?

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen



Digital world: Why 0/1 bits?

Information, first needs of counting...

Unary numeral systems: Binary numeral systems:

0 i} — 0000
0 1 — 0001
0 — 0010
8 ‘ ‘ 0 ' 1 — 0011
i} — 0100
| ° 1 — 0101

jE= - B 4 bits

1 — 0111 .

s — 1w TOrcounting

NI / L C i -wm 0to15
0 — 1010
1 . 1 — 1011
i} — 1100
| o 1 — 1101
0 — 1110
".\ . 1 — 1111

"N :
Decimal: 0 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15
— T _F _F — Binary: 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111
\F e

Linear number of bits for counting vs Logarithmic number of bits for counting

ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen



Nature of computing?

*Generic algorithms:
copying, transmitting... ... genetics...

DNA (double-helix structure of DNA)

1953, James Watson and Francis Crick (Nobel prize)

Ribasome

Genetics
E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen



Nature of computing?

What is Life?
with Sddnf drd Marfes

WHAT IS LIFE?

The Physical Aspeet of the
Living Cell

Printed in Gread Britain of the Universily Fress, Cambridge
(Brooke Orulchkley, University Prinder)
i prashlished b e Camiseidge ['mivernity Presy
(Cambridge, and Beniley Nouse, Londen)

Agenty for Comada and' Trdio : Macwillan
Copyrighted dn the United Stater of America by the
I L ERWIN SCHRODINGER

SBEXION FROFESSOR AT THE DUDLIN INATITUTE VOR
ADVANCED RTUDIES

BY

Based on Lecturea deliorred unader e guspicoes of
the Tostitaly of Trimily College, Dublin,
im Februmry 104

LIFE???

il CAMBRIDGE
SR AT THE UNIVERSITY PRESS
1948

Nobel, Physics 1933

First envisioned by Erwin Schroedinger (What is life?, 1944)

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen



Digital world/computing

Ubiquitous computing= computing everywhere

Binary Calculations l

. Example:
ﬁ_ﬁg Computational
q photography
ol S

E A ConC|se and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen



Computer science is not programming PCs

Computers

computing machineries

Difference engine of Charles Babbage
(conceived in 1822 on paper, built much later on)

Computing is a principle of reality (and science)
Watson and Crick 1951 (DNA double helix heredity)

Computing is 21% Century's Science of integration

g A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 11



INFORMATIQUE=INFORmMation + autoMATIQUE

Information= Data sets, input (discrete binary sequences of 0/1)
Automatic= General recipe that works on any input

= ALGORITHM
Al-Khwarizmi: Scholar of ﬂm@
scientifically flourishing Bagdad: || ”igﬁiéﬁ
I ;;_u ) _,_ s o
Sy * Algorithmi (latinization) -> Algorithm g ~
2« Al jabr -> Algebra
f - Provide readers a generic pipeline solution
[ = to solve a quadratic equation: axZ+bx+e=0
Al-Khwarizmi ; : .
(790 - 840) a |l b3 c -4 . Calculate Solutions ]

The solutions are:
Xy 1 + |0 i
Xyl 4 _ [0 i

E.ﬂ http://www.akiti.ca/Quad2Deg.html

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 12



21° century computer science

 Computers (and computing) are omnipresent
-> Ubiquitous computing (Mark Weiser)

Computers are abundant and versatile:

1952-1999
Xerox parc chief scientist

T

(Many more devices than PCs)

Science of
Integration
(complex systems

 Computing impacted all Sciences:
Computational sciences
Eg., Biology -> Systems biology
(simulation-prediction-experience in wet lab)

* The Science of computing is Computer Science (CS):
11 Deep theoretical questions and important technologies

(eg., medical imaging such as DT-MRI, economy)
DW-MRI "~ |,

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen



Flavor of my research in computer science

Visual computing:
« Computational geometry,
« Computer vision,

« Computer graphics,

* Machine learning

SRMj - Statistical Region Merging in Java
Begrrant

For example, tackling computational photography

Reinventing the photography: taking, sharing and experiencing photos...
fWﬁ?ng has yet

to be
invented!!!

Beyond 2D pixels

Digital camera Smile shutter Beyond ?ingle flash
etc...

Analog camera

A Concise and Practical Introduction to Programming Algorithms in Java © 2009




Computer science is (also) for creative minds

Not only the hardcore mathematical problems to solve,
but also innovation by unleashing the power of
digital calculus for soft problems: i

Human Computer Interactions (HCI), design

Example: computational photography project (2004)

Non-photorealistic camera (NPR)

g A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 15



Algorithms and their performances
(resource/complexities)

There is usually not a single recipe for solving the task:

Eg., compute 5422x2319

(human decimal, machine binary, indian base 60, many tricks, e[’gg. 1 Knuth

How to evaluate and compare different algorithms?

‘E\"*“ﬁ?ﬁ:?ﬂ“i”“ ‘‘‘‘‘
u »(L?u;i“\ ;!\;

Clean framework for assessing the use of ressources:
 time,

* memory,

e #communications,

* efc.

Judge the generic algorithms not for a given instance.
Therefore, analyze:

» Worst-case complexity

» Average-time complexity

* Modern challenges (inplace, i/o bottlenecks & streaming, etc.)

* Etc.

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 16



Programming algorithms in Java

* Conceived by Bill Joy (SUN co-founder) and James Gosling

- Started in 1990, for the "next wave in computing”

- On-time for the Internet and WWEB (applets are Java applications, Javascript, etc.)
Cross-platform= runs on various operating systems (Windows, UNIX, Leopard, etc.)

- Typed language (a=b, with a and b from different types will generate a compiler error)

* Object oriented (00, ease the conception and modularity of applications)

* Rich set of Applications Programming Interface (API)
» Free Software Development Kit on many platforms (SDK)
 Verbose for catching bugs and debugging applications.

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 17



Why programming languages?

Machines are “stupid”: they obey you 100%
-> Need to fully and precisely specify your intentions
(no room for ambiguity, the bug is yours!!!)

.. Machines only “understand” 0/1 binary sequences
(eg., instruction codes of microprocessors)

Machine = Processing + Peripherals (IIO)A ry @,
.. controlled by an Operating System (OS)

But Human masters “natural language”

... and we need to unleash ease of programming
ASSEMBLER, FORTRAN, ALGOL, BASIC, .......JAVA

Key principle of CS: Bootstrapping!

use existing languages to create more powerful languages:

Python, Ruby, etc.
E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 18



My first (java) program [t

| BORN TO BE WIRED

-

o B

Programmers and CScientists cherrish...
... their “Hello World” programs

class FirstProgram{
public static void main (String[ ] args) {
System.out.println ("Hello INF311 !");

J

¥ First programs often looks magic!

Special function main: entry of the program

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 19



HELLO WORLD

My first (Java) program

* Type this program into a text editor (nedit, notepad)
Save this “text” as FirstProgram.java %

 Compile the program FirstProgram.java

prompt% jJavac FirstProgram.java

» Execute the compiled program

prompt%s jJava FirstProgram

prompts Hello INF311 !

Hello IWF311 !

Press any key to continue..._

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 20



My first (Java) program

1) EDIT and SAVE
High-level language

, , concepts/abstraction
FirstProgram. java
%% 2) COMPILE
1)
FirstProgram.class =2 (Java Byte code in .class)
JAVA

3) EXECUTE

j ava FirstP rogram (Java Virtual machine: JVM)
... low-level language

instructions for processors

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 21



My first algorithm in Java:
A solver for quadratic equations

In Java =

- —» |nstall the SDK

(you do not have
to do this in room machines)

pubiic Report) | TamE = [
iz v Leg Repart®)

Telechargement gratuit Java 'f_ EGHWOIEBEWIS

Téléchargez Java gratuitement pour votre PC dés maintenant! m
[

2l t e b al Sringl
# Téléchargement gratuit Java pades ll:E'!:IHEIi'r
I b Flanmtinai [s

http://www.java.com/fr/

J2SEv 1.4.2_16 SDK

The J25E Software Development Kit (S0OK) supports creating J25E applications. More info..
Download J2SE SDK;

Installation Instructions Readhle Releasekotes
Sun License Third Party Licenses

Input: a, b, c of the quadratic equations axZ?+bx+c=0
Solution: the at most two real roots
bt VIt =dac

i ’

X

g A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 22



Programming: Solver for quadratic equations

class QuadraticEquationSolver

{

public static void main(String[] arg)

{

double a, b, c;

QuadraticEquationSolver.java

a=Math.sqrt (3.0);
b=2.0;
c=-3.0;

double delta=b*b-4.0*a*c;
double rootl, root2;

I
rootl= (-b-Math.sqgrt (delta))/(2.0*a); _"bi b* - dac
root2= (-b+Math.sqgrt (delta))/(2.0%*a); = % !
System.out.println (rootl);

System.out.println (root2) ;
System.out.println("Let us check the roots:");

System.out.println (a*rootl*rootl+b*rootl+c);
System.out.println (a*root2*rootZ2+b*root2+c);

}
}

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 23



Programming simple formula

class QuadraticEquationSolver

{

public static void main (Stringl[] arg)

. {
Variable wdouble a,b,c;

(deolare) a=Math.sqgrt (3.0) ;

b=2.0; 7 Assignments

c=-3.0;

double delta=b*b-4.0*a*c;< Declaret+Assign
double rootl, root?2;

rootl= (-b-Math.sqgrt (delta))/ (2.0*a);

root2= (-b+Math.sqgrt (delta))/(2.0%*a);
System.out.println (rootl);
System.out.println (root2) ;
System.out.println("Let us check the roots:");

System.out.println (a*rootl*rootl+b*rootl+c);
System.out.println (a*root2*root2+b*root2+c) ;
}

}

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

24



Programming simple formula

class QuadraticEquationSolver

{

public static void main (Stringl[] arg)

{

double a,b,c;
a=Math.sqrt (3.0);

b=2.0;
c=-3.0;

double rootl, root?2;

double delta=b*b—4.o*a*c7Arithmetic expressions

rootl= (-b-Math.sqgrt (delta))/(2.0*a);

root2= (-b+Math.sqgrt (delta))/(2.0%a);
System.out.println (rootl);

System.out.println (root2);
System.out.println ("Let us check the roots:");

D|Sp|ay System.out.println (a*rootl*rootl+b*rootl+c);
System.out.println (a*root2*rootZ2+b*root2+c);

}
}

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

25



Programming: Solver for quadratic equations

Use any text editor to program
(nedit in UNIX, notepad under windows)

Indentation is up to you
-> helps read programs

! quadraticequationsolver. java - Bloc-notes

Fichiet Edition Farmat Affichage ¢
class quadraticEquationsolwverd

? public static void mainfstring[] arg)

double a,b, c;

1.0;
2.0

a
b ;
C=-3.0;

double delta=h%h-4.0%a%c;

double

rootl=
rootd=

SysTem.
SysTem.

SysTem.
System.
SysTem.

1

rootl, roots;

{-h-math.sqrt{deltal)) 2.0%3);
C-b+math. sgrt{deltall (2. 0%al;

aut
aut

aut
out
aut

Magic code for printing onto the

Lprintlnfrootl];
o ¢ J console

.printindroot2);

printIng"Let us check the roots:"):
printinga*rootl*rootl+b*rootl+c); .
.printinfa*root2*root24bh%root24cC); o

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

26



Compiling and executing a Java program

prompt>javac filename.java

— . :
D:~ENSEIG™1~INF311~LECTUR™ >

QD -~ ENSEIG™1~INF311~LECTUR™ >
gD =~ ENSEIG™1~INF311~LECTUR™ >
D:~ENSEIG™1~INF311~LECTUR™ >
D:~ENSEIG™1~INF311~LECTUR™ *javac guadraticequationsolver.java

D:~ENMSEIG™1~INF311~LECTUR™ >

If no compile error happens, it produces a file fllename.class

Then excute the compiled code.
prompt>java filename

To store output to afile:
prompt>java flilename >_result.txt

N

ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 27

Redirect console to filename result.txt



Fundamentals of Java: Variables

e Avaria
e Avaria
 The va
 The va

ble is uniquely named (not a reserved keyword)
nle stores a value in a memory slot

ue of a variable is accessed by its name

ue of a variable can be modified

A=32 A 32
B=16 B 16
/C=A . c 32
reference value
Memory bank
Left hand side (reference) and right hand side (value) of = means different things

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 28



Fundamentals of Java: Expressions

« Formed by variables, operators (+,-,/, x, etc.) and constants (1, Math.PI, etc.)
» Expressions are evaluated and return a result (eventually stored in a variable)

» Operators follow priority rules: 5x3+2 ?
...avoid overuse of parenthesis 5x3+2 = (5x3)+2

Few examples of expressions in Java:

// Expressions
5+3*x/vy
“Hello “+”INF311!”

// Assignment (expressions) terminate with a ;
X=CcxX + r*Math.cos (theta);
y=Ccy+ r*Math.sin (theta);

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 29



Fundamentals of Java: Affectation (sign =)

Var = Expression ;

Atomic
instruction

 Var is the name of a variable
» Expression is a well-formed expression

Assignment left hand side=right hand side is decomposed as :
* The Expression is evaluated yielding value v

» The reference (memory slot) of Var is determined
* Value v is stored in the memory slot of Var

lhs — >
lhs = rhs S rhs
Reference Value
Memory bank

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 30



Basic types

Type = Domain of values of variables
All variables must be typed in Java

Basic types (=basic data structures):
Integers:

byte 8 bits

short 16 bits

int 32 bits [-2%*31,2**31-1]
long 64 bits [-2*763,2"*63-1]
Reals:

float (single precision, 32 bits)
double (double precision, 64 bits)

char 16 bits (Unicode, world languages)

boolean true Or false
‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 31



Why do we type variables?

To ensure homogeneous operations

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

32



Basic types: casting expressions

Euclidean (integer) division versus usual (real) division

int p=2;
int g=3;
int quotient=p/qg;

int reminder=p%qg; // modulo Cast (coercion)

div=p/qg; ///

realdiv= (double)p/ (double) g;

double

double

System.
System.
System.
System.
System.

out
out
out
out
out

.print (quotient) ;
.print (Y %) ;
.println (reminder) ;
.println(div) ;
.println (realdiv);

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 33



Casting expressions

Implicit casting for assignment
x=Expression;

vshould be of the same type. Casting: Var=(TypeOfVar)Expression;

double x=2; // implicit casting
double x=(double)2;// explicit
double x=2.0; // same type

Typings:
Safeguards for basic bugs in programs
Allows one to perform static analysis of programs

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 34



Implicit casting

double

r char c="X";
float int code=c;

? System.out.println (code);
ong

f

int char

|

short Answers 88 (ASCII code of X)

|

byvte

Implicit casting rules

ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

35



Fundamentals of Java: Types

» Everything is typed (variables, constants, etc.)

* Require to declare types of variables

* The result of an expression has a type

 Variable and expression should have the same type for assignment

public class tvypes

{

public static woid main{String [] args) . . o .
e e Compiler warns you of implicit casting
o (possible loss of precision!)

int A.B:
boolean bool;

a=3.1415
b=2 71:
a ERROR
=1 3f;
d=5.0: <& pozzible lozs of precision hpes.java D:sEnzeignementshINF 3114 Lecturez200¢ line 18
4=H5556 (d=5.0f)
B=d#j;
bool=trues:
| ERROR o d
bool=E: <ﬂ—iﬁctrm|jatil:ule hpes types. java O:MEnzeignementzh ME31 TS Lectures2008 line 26
} (different types)

LR T Y P T I A el el el el el el el el el
|l R o R s B I Y T e Y s o Y Y e N R e g TR R

3z -7

A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 36



Recap of simple (formula) programs

Declare variables of basic types: Type var;
double x;

int n,m; //separate with a comma variables
char c;

Assignment: var=Expression;
Xx=2.171;

n=2008;

c="X" ;

Arithmetic expression: Expression1 Operator Expression2
m=300%23;
delta=b*b-4*a*c;

Declare+Assign at once (shortcut):
1nt year2secs=365*24*60%60;

A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 37



Incrementing/Decrementing

X=xX+1;

X=x+step;

// Instructions equivalent to
X+=1;

X+=step;

// Decrement now

X—=3;

1=2;
i++; // equivalent to 1i=i+1;
++i; // similar, equivalent to i=i+1;

| | | Incrementing is useful for loops
ﬂ A Concise and Practical Introduction to Programming Algorithms in Java & 2009 Frank Nielsen 38



Pre- and post-incremention

compare...

1=5;
j=i++; // post-incrementation

11=5;
jj=++1ii; // pre-incrementation

Var++ returns the value of var and then increment it
++Var first increment var and then return its value

Thus j=5 but jj=6

ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 39



Chopping Programs (Language)

Syntax of programs

Word Reserved keywords
Variables
Sentence Instruction [;
Paragraph Block (of instructions) {I;}
Chapter Function
g Book Program
Library Library (API)

ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 40



Commenting programs

e Adopt conventions
Eg., class ClassName .... stored in file ClassName.java

 Name variables explicitly (so that you can remember them easily)

« Comment programs (single line // or multiple lines /* */)
// Written for INF311

class CommentProgram

{
/* This is a simple Java program that
illustrates how to comment source code */

// Entry of the program

public static void main(String[ ] args)
{// it does nothing
}

}

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 41



A basic skeleton program in Java

// Basic skeleton program for INF311

class Prog = Name of your program: Prog.java

{

public static voilid main(Stringl[] arg)

{ T _# Magic formula 1
int x=2008;
?ystem.out.prlntln ()7 _#  Magic formula 2

> javac Prog.java
(builds a Prog.class file)

> Java Prog

(execute the program)
2008

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 42



Integrated Development Environment (IDE)

An |IDE allows one to create, edit, compile and debug seamlessly
applications at the tip of mouse clicks.

File  Edit  Search  Yiew  Project  Build  Tools  Corfigure  Window  Help -8 X
d|&F o Jf i) - @ .
File: View X
3

= Ewternal Files
1 quadraticequationsoker. java

quadraticequationsolver.java 4 b x

1 B class QuadraticEgquationSolver{
2

\PROGRA ~1\XINOXS~1\JCREAT-1\GE2001 .exe

public static wvolid main(String[] arg)

3.8
double a.b.o; .8
aea us check the roots:

1.0;
2.0; h.6

a
b
c=-3.0; Press any key to continue..._

double delta=bxb-4 O%xa*c;
double rootl, root2:
rootl= {-b-Hath.sgrt(delta) ) {2 0=a);

3
4
5
&
7
g8
9
10
11
12
13
14
15
16
17
18
19 b
20 root2= (—h+Math =sqgrtidelta) ) (2 0*a);
21
22
23
24
25
26
27
28
29
30
31
32
HE]

Sy=tem out println(rootl):
System.out . println{root2):

System.out . println("Let us check the roots:"):
System.out . println{a*rootl*rootl+b*rootl+c)
System.out . println{a*root 2*#root2+b*root2+c)

Package Wiew X

clipse

(Eg., Jcreator, www.jcreator.com/ )

iiH E<F CISIESIERRRONFE C T

Eclipse

ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 43



A Glimpse at @4k
Block of ingig¥leiife]

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

44



Euclid's Greatest Common Divisor (GCD)

Input: Two numbers a,b

Output: Find the greatest common divisors ¢ of a and b

Euclid's original algorithm ?8;3;?;%3
while b # For example, GCD of (30,105):
ifarh
q:=8-D Mathematical proof:
a]gp GCD(30,105)
5= o =GCD(30,75)
| =GCD(30,45)
return a =GCD(30.15)
=GCD(15,15)
=GCD(15,0)

> GCD(30,105)=15
‘a A Concise and Practical Introduction to PrograflfiREyAR§8RtnFIS HiB(aN @ibsinssliar-grw Wild(Eplidean_algorithm - 45



Euclid's Greatest Common Divisor (GCD)

Input: Two numbers a,b
Output: Find the greatest common divisors ¢ of a and b

while b # 0O
if a > b
.1y . . . a = a -
Euclid's original algorithm elee ?
b :=h - a
return a

class GCD {
public static void main(String[] arg)
{
// Parse arguments into integer parameters
i int a= Integer.parselnt(argl0]);
~" int b= Integer.parselnt(arg[l]);

while (a!=b)

if (a>b) a=a-b;
else b=b-a;

a // Display to console
" System.out.println(a) ;
}

}
‘a A Concise and Practical Introduction to ProgratiiiRyAR§8REnFIS B8N @ibinss!iarrw Wifd(Eplidean_algorithm 46



Euclid's greatest common divisor (GCD)

> javac gcd.java
(compile in a gcd.class)

L arglo]  —arg[1]
> jJava gcd 234652 3456222 > gcd.txt

(execute and store result in gcd.txt)

2 ocdout.txt - Blo

Fichier Edition Form

g2

X Ac

omr;cie énd Practical IIn rduction' to Programming Algorithms in Java © 2009 Frank Nielsen 47

]

bt I

m



Geometric interpretation of Euclid’s GCDWW

Visualize a (65) and b (25) on two axes Thzac

a=b=5, Stopping criterion + GCD

g A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 48



Programming is helpful for simulation

Simulation by Monte Carlo methods:
Eg., approaching PI=3.41592... using simulation

Distribution of Monte Carlo Trials

 tonoreen Draw arandom point uniformly in a square:
=" Probability of falling inside a centered unit disk?

1
. 'Y ‘l‘d . 2

..":n" \
i it REVT Areaof Ccle 77" o
bk U 4

A Areaof Square (20 7)°

How do we get (pseudo-)random numbers in Java?
Call function random() of class Math

Math.random();

Monte-Carlo sampling extremely used
in graphics and financial economy !!!

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 49



Monte-Carlo estimation of Pl in Java

iIH})C)I“t jga\fa_,th;i]_, * . Estimation of PI: 3.1512 wersus machine PI 3.141592653589793

Press any key to continue...

class MonteCarloPT

{

public static void main(String [] args)
{
int iter = 10000000; // # iterations
int hits = 0;

for (int 1 = 0; 1 < i1ter; 1i++)

{
double rX = 2*Math.random() - 1.0;
double rY = 2*Math.random() - 1.0;

double dist = rX*rX + rY*rY;
if (dist <= 1.0) // falls inside the disk
hits++;
}

double ratio = (double)hits/iter; // Ratio of areas

double area = ratio * 4.0;

System.out.println ("Estimation of PI: " + areat+ " versus
machine PI "+Math.PI);

}
} Monte-Carlo simulation techniques proved useful in computational sciences

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 50



H u m a n Ve rs us M aCh i ne #transistors x2 every 18 months

0, 000 001 $ / transistor transistors
= i 10,000,000.000

‘ Dual-Core Intel® lanium 2Pruaﬂl

« Machines are dull but extremely fast ] |
e L ' e :sffj:iif:ﬁ}:‘/’ 100,000,000

Intel” Pentium® Bl Processor |

» Designing software is difficult i 2 S R O

In‘liPmEuanoesur //

(as difficult as building an Airbus) /L/‘/‘

1$ / transistor 25‘ F 100,000
. . . . %‘i?‘/ l ‘ 10,000
» Artifical intelligence (Al) is a el |

1970 1975 1980 1985 1990 1995 2000 2005 2010

key tODIC in Computer SCience 10um 3um ium _ 0.8um__ 0.18um _ 65nm Taille du transistor

6um 1.5um 0.25um 90nm  45nm

FABTEETF‘DEE BLE DWATA, TPAN..-»N"I SEI0MN SPEED

.

Bug:

» Abnormality of the system
* Not by the faulty machine but by the programmer!

« Small bugs, big consequences!!!
(Ariane 501, Intel's Pentium division bug, etc.)

'Il-’-".l 1880 7860 1880 1EO0  TERD  VYEaC 1880 TEED 2000 ER0

doubling trmag; 13401280 36 months
EXPOMNENTIALSCALE BEEIE'J:‘:I 12 months

« Cost 100 billion$/ years (Dept. of Commerce)

The Law of Accelerating Returns of Ray Kurzweil

: ?
E A Concise and Practical Introduction to Programmiwé%llgori .h]usrﬂv %%”8’56‘&)%%61% N‘)'erst]éml printable=1 51



Small bugs, big consequences: Numerical errors

Finite precision, roundings of arithmetic operations may cause devastating effects

Predicate Wrong evaluation of a predicate
yields a different path of instructions: Bug!
Branching If (a b)

instruction
then
Expressions
Ihs=expression(rhs)
Block 1
Small numerical errors may not be so
capital here.
else
Block 2

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 52



CAPTC HA versus SPAM (Human vs Machine)

Choose a password:

Re-enter password:

Security Question:

Answer:

Secondary email:

Location:

Word Verification:

Terms of Service:

check availability! |

Passwaord strength

Minirmum of & characters in length

Remember me on this computer.

Creating a Google Account will enable Web History. Web History is a feature
that will provide you with a more personalized experience on Google that
includes mare relevant search results and recommendations. Learn Mare

Enable Web History.

Choose a question hd

If you forget your password we will ask for the answer to your secunity
question. Learn Mare

This address is used to authenticate your account should you ever encounter

problems or forget your password. If you do not have another email address
you may leave this field blank. Learn More

France |

Type the characters you see in the picture below.

To fight undesirable bulk spam, we need
to differentiate whether it is the action of
a human or an automated jam program.

Image-recognition CAPTCHAs:
Difficult task (OCR, segmentation, etc.)

Letters are not case-sensitive

Please check the Google Account information you've entered above (feel free
to chanae anvthina vou likel. and review the Terms of Senice below

(visual) CAPTCHA

Completely Automated Public Turing test to tell Computers and Humans Apart

‘a A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 53



Turing test...

Pioneer of modern computer science

10/0[0/ 0|0[1/1[B|0|0; TN O
B - f /,/P" L
£h MR

. __..zz T
N

"~L i L8 L \| y_d}

> DNA, ribosome
Alan Turing, 1912-1954 Prqposed the “universal” Turing maqhme.

(41 years old) A ribbon, a head, a state and an action table
(automaton)

Turing test: proposal for a test of machine's capability to demonstrate

intelligence. Originally, for natural language conversation (and processing).
Initially, by text-only channel such a teletype machine

[Nobel prize in computer science]

@ Association for computing machinery (ACM)'s Turing Award (2500009%)

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 54



Versatility of Turing tests

;2 Question

Can we make the distinction between music played by a human and music
played by a machine ?

Thfe Continuator of F. Pachet (Sony CSL)

www.csl.sony.fr
E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

55



OO0 ST O

.hmuln'-:-'m%mumn1a|u1gu1u
UNDERGRADUATE TOPICS LIRS
k= ' In COMPUTER SCIENCE B
= S

Undergraduate Tapics in Computer Science (UTICS) delivers high-

quality instructional content for undergraduates studying in all areas of
computing and information science. From cor fourdational and theoretical
miaterial 1o finalyear topics and applications, UTICS books take & fresh,
concise, and modern approach and are ideal for self-study or for a one- or
two-semester m;irsze.-?he texts are all authored by established f:uper‘ts in
their fields, reviewed by an international advisary boanrd_and cantain
riumerous examples and problems. Many include fully worked solutions.

— . o k) . Al

Frank Nielsen UNDERGRADU

A Concise and Practical Introduction to i MF
Programming Algorithms in Java

e A concise and

e oo s e st i e s v Practical
Introduction to
Programming
Algorithms in Java

I

programmers to control the instruction workflows. Functions with pass-by-
value/pass-by-reference argumenis and recursion are explained, followed by a
discussion of arrays and data encapsuiation using objects.

The second part of the book focuses on data structures and algorithms, describing
sequential and bisection search technigques and analysing their efficiency by using
complexity analysis. terative and recursive sorting algorithms are discussed followed
by linked lists and common insertion/deletion/merge operations that can be carried
out on these. Abstract data structures are introduced along with how to program
these in lava using object-orientation. The book closes with an introduction to more
evolved algorithmic tasks that tackie combinatorial
Comroree Sciewce optimisation probkems.

Exercises are included at the end of each chapber in order
for students to practice the concepts leamed_ and a final
section contains an overall exam which allows them to
evaluate how well they have assimilated the material
covered in the book.

BABT U] SWYI0 S|

2uwweliSoid 03 UORINPOIIUI [BIRIEI PUE B5]IUDD W

@ Springer UTics

springer.com

‘g A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen



	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56

