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Jeffreys Centroids: A Closed-Form Expression
for Positive Histograms and a Guaranteed Tight
Approximation for Frequency Histograms

Frank Nielsen, Senior Member, IEEE

Abstract—Due to the success of the bag-of-word modeling para-
digm, clustering histograms has become an important ingredient of
modern information processing. Clustering histograms can be per-
formed using the celebrated k-means centroid-based algorithm.
From the viewpoint of applications, it is usually required to deal
with symmetric distances. In this letter, we consider the Jeffreys di-
vergence that symmetrizes the Kullback-Leibler divergence, and
investigate the computation of Jeffreys centroids. We first prove
that the Jeffreys centroid can be expressed analytically using the
Lambert W function for positive histograms. We then show how
to obtain a fast guaranteed approximation when dealing with fie-
quency histograms. Finally, we conclude with some remarks on the
k-means histogram clustering.

Index Terms—Centroid, clustering, histogram, Jeffreys diver-
gence, Kullback-Leibler divergence, Lambert W function.

I. INTRODUCTION: MOTIVATION AND PRIOR WORK

A. Motivation: The Bag-of-Word Modeling Paradigm

LASSIFYING documents into categories is a common

task of information retrieval systems: Given a training
set of documents labeled with categories, one asks to classify
incoming new documents. Text categorization [1] proceeds by
first defining a dictionary of words (the corpus). It then models
each document by a word count yielding a word histogram
per document. Defining a proper distance d(-,) between his-
tograms allows one to:

* Classify a new on-line document: we first calculate its his-
togram signature and then seek for the labeled document
which has the most similar histogram to deduce its tag (e.g.,
using a nearest neighbor classifier).

* Find the initial set of categories: we cluster all document
histograms and assign a category per cluster.

It has been shown experimentally that the Jeffreys di-
vergence (symmetrizing the Kullback—Leibler divergence)
achieves better performance than the traditional #f~idf method
[1]. This text classification method based on the Bag of Words
(BoWs) representation has also been instrumental in computer
vision for efficient object categorization [2] and recognition in
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natural images. It first requires to create a dictionary of “visual
words” by quantizing keypoints of the training database. Quan-
tization is then performed using the k-means algorithm [8]
that partitions n data points X = {z1,...,x,} into k clusters
C1,...,Cr where each data eclement belongs to the closest
cluster center. From a given initialization, Lloyd’s batched
k-means first assigns points to their closest cluster centers, and
then update the cluster centers, and reiterate this process until
convergence is met after a finite number of steps. When the
distance function d(z,y) is chosen as the squared Euclidean
distance d(z,y) = ||z — yl|/?, the cluster centroids updates to
their centers of mass. Csurka et al. [2] used the squared Eu-
clidean distance for building the visual vocabulary. Depending
on the considered features, other distances have proven useful:
For example, the Jeffreys divergence was shown to perform
experimentally better than the Euclidean or squared Euclidean
distances for Compressed Histogram of Gradient descriptors
[3]. To summarize, k-means histogram clustering with respect
to the Jeffreys divergence can be used to both quantize visual
words to create a dictionary and to cluster document words for
assigning initial categories.

Let w; = zjzlhi denote the cumulative sum of the bin
values of histogram h. We distinguish between positive his-
tograms and frequency histograms. A frequency histogram h
is a unit histogram (i.e., the cumulative sum wj, of its bins
adds up to one). In statistics, those positive and frequency his-
tograms correspond respectively to positive discrete and multi-
nomial distributions when all bins are non-empty. Let H =
{h1,...,hy} be a collection of n histograms with d positive-
valued bins. By notational convention, we use the superscript
and the subscript to indicate the bin number and the histogram
number, respectively. Without loss of generality, we assume that
all bins are non-empty!: h‘l >0,1 <5< nl<i<dTo
measure the distance between two such histograms p and ¢, we
rely on the relative entropy. The extended KL divergence [8] be-
tween two positive (but not necessarily normalized) histograms
pand g is defined by KL(p : ¢} = ijlp"" log Z— +4¢" —p'. Ob-
serve that this information-theoretic dissimilarity measure is not
symmetric nor does it satisfy the triangular inequality property

of metrics. Let p = 4~ and § = % denote the cor-

- i1 d
responding normalized f?équency histogramé. In the remainder,

the “denotes this normalization operator. The extended KL di-
vergence formula applied to normalized histograms yields the

10therwise, we may add an arbitrary small quantity ¢ > 0 to all bins. When
frequency histograms are required, we then re-normalize.
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traditional KL divergence [8]: KL(p : §) = ZT N logi
since z;l:ﬂ]i -t = Z;‘I:lqi - Z;‘l:lﬁi =1-1=0
The KL divergence is interpreted as the relative entropy be-

tween p and ¢ : KL(p ) = H*(p : ¢) — H(p), where
H*(p:q) = Zlep log 4 = denotes the cross-entropy and
H(p)=H*(p:p) = ZLI P log f% is the Shannon entropy.

This distance is explained as the expected extra number of bits
per datum that must be transmitted when using the “wrong” dis-
tribution ¢ instead of the true distribution p. Often p is hidden
by nature and need to be hypothesized while ¢ is estimated.
When clustering histograms, all histograms play the same role,
and it is therefore better to consider the Jeffreys [4] divergence

J(p,q) = KL{p : ¢q) + KL(g : p) that symmetrizes the KL
divergence:
J(p.q) =Y (0 — ¢')log i = J@n). (1)
i=1

Observe that the formula for Jeffreys divergence holds for arbi-
trary positive histograms (including frequency histograms).

This letter is devoted to compute efficiently the Jeffreys cen-
troid c of aset H = {hy,..., h,} of weighted histograms de-
fined as:

¢ = arg Il}illzﬁjj(hj,w), )
j=1

where the 7;’s denote the histogram positive weights (with
>i_1m; = 1). When all histograms h; € H are normalized,
we require the minimization of x to be carr1ed out over A, the
(d — 1)-dimensional probability simplex. This yields the Jef-
freys frequency centroid ¢. Otherwise, for positive histograms
hj € 'H, the minimization of x is done over the positive
orthant Ri, to get the Jeffreys positive centroid c. Since the
J-divergence is convex in both arguments, both the Jeffreys
positive and frequency centroids are unique.

B. Prior Work and Contributions

On one hand, clustering histograms has been studied using
various distances and clustering algorithms. Besides the clas-
sical Minkowski £,,-norm distances, hierarchical clustering with
respect to the x? distance has been investigated in [7]. Banerjee
et al. [8] generalized k-means to Bregman k-means thus al-
lowing to cluster distributions of the same exponential families
with respect to the KL divergence. Mignotte [9] used k-means
with respect to the Bhattacharyya distance [10] on histograms
of various color spaces to perform image segmentation. On
the other hand, Jeffreys k-means has not been yet extensively
studied as the centroid computations are non-trivial: In 2002,
Veldhuis [11] reported an iterative Newton-like algorithm to
approximate arbitrarily finely the Jeffreys frequency centroid
¢ of a set of frequency histograms that requires two nested
loops. Nielsen and Nock [12] considered the information-geo-
metric structure of the manifold of multinomials (frequency
histograms) to report a simple geodesic bisection search algo-
rithm (i.e., replacing the two nested loops of [11] by one single
loop). Indeed, the family of frequency histograms belongs to
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the exponential families [8], and the Jeffreys frequency cen-
troid amount to compute equivalently a symmetrized Bregman
centroid [12].

To overcome the explicit computation of the Jeffreys cen-
troid, Nock et al. [13] generalized the Bregman k-means [8] and
k-means++ seeding using mixed Bregman divergences: They
consider two dual centroids ¢, and ¢}, attached per cluster, and
use the following divergence depending on these two centers:
AKL(ép, » 2 2 ¢8) = KL(ém, = 2) + KL(z : &,). However,
note that this mixed Bregman 2-centroid-per-cluster clustering
is different from the Jeffreys k-means clustering that relies on
one centroid per cluster.

This letter is organized as follows: Section Il reports a closed-
form expression of the positive Jeffreys centroid for a set of
positive histograms. Section III studies the guaranteed tight ap-
proximation factor obtained when normalizing the positive Jef-
freys centroid, and further describes a simple bisection algo-
rithm to arbitrarily finely approximate the optimal Jeffreys fre-
quency centroid. Section IV reports on our experimental results
that show that our normalized approximation is in practice tight
enough to avoid doing the bisection process. Finally, Section V
concludes this work.

II. JEFFREYS POSITIVE CENTROID

We consider aset H = {h1,..., h,} of n positive weighted
histograms with d non-empty bins (h; € Ri,w]- > 0 and
> ;75 = 1). The Jeffreys positive centroid ¢ is defined by:

¢=arg min J(H,z) = arg HllIl Zﬂ'l (hj,z). (3)

TE[RJr z€R +J 1

We state the first result:

Theorem 1: The Jeffreys positive centroid ¢ = (¢!, ..., %)
of aset{h1,...,h,} of n weighted positive histograms with d
bins can be calculated component-wise exactly using the Lam-
bert W analytic function: ¢! = ,wherea® = 3% | m;h’

W(&e)
denotes the coordinate-wise arltli’metlc weighted means and
g = IT5- 1(h%)™ the coordinate-wise geometric weighted
means.

Proof: We seek for x € RY that minimizes Eq. (3). After
expanding Jeffreys divergence formula of Eq. (1) in Eq. (3) and
removing all additive terms independent of =, we find the fol-
lowing equivalent minimization problem:

d £
min E r'log = — a'logz".
TEHi =1 g’

This optimization can be performed coordinate-wise, indepen-
dently. For each coordinate, dropping the superscript notation
and setting the derivative to zero, we have to solve log £ 4+ 1 —
2 = (), which yields z = W("?, where W () denotes the
Lambert W function [14]. ]

Lambert function2 W is defined by W(z)e"(®) = 2 for
2 > (. That is, the Lambert function is the functional inverse of
f(z) = ze® = y: 2 = W(y). Although function W may seem

2We consider only the branch W, [14] since arguments of the function are
always positive.
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non-trivial at first sight, it is a popular elementary analytic func-
tion similar to the logarithm or exponential functions. In prac-
tice, we get a fourth-order convergence algorithm to estimate it
by implementing Halley’s numerical root-finding method. It re-
quires fewer than 5 iterations to reach machine accuracy using
the IEEE 754 floating point standard [14]. Notice that the Lam-
bert W function plays a particular role in information theory
[15].

III. JEFFREYS FREQUENCY CENTROID
_We consider a set H of n frequency histograms:
H = {hl,....hn}
A. A Guaranteed Approximation

If we relax « to the positive orthant Ri instead of the
probability simplex, we get the optimal positive Jeffreys cen-
troid ¢, with ¢/ = (Theorem 1). Normalizing this

W(”l
positive Jeffreys centroid to get ¢ = £ does not yield the
Jeffreys frequency centroid ¢ that requlres dedicated iterative
optimization algorithms [11], [12]. In this section, we con-
sider approximations of the Jeffreys frequency histograms.
Veldhu1s [11] approximated the Jeffreys frequency centroid
¢ by & = "+q, where a and g denotes the normalized
weighted arithmetlc and geometric means, respectively. The
normalized geometric weighted mean § = (g',...,5%) is

defined by §° = M,L € {1,...,d}. Since
- Zi:l HJ‘:l(h}>“] 5

Z;ﬁl:l Z;'L:1 ﬂ'jhé‘ = Z?:l Ty 2;71:1 hj’ = Z?ﬂ T = 1,

the normalized arithmetic weighted mean has coordinates:

it = Z;'I:1 7r:,'h§-.

We consider approximating the Jeffreys frequency centroid
by normalizing the Jeffreys positive centroid c: & = =

We start with a simple lemma:

Lemma 1: The cumulative sum 1w, of the bin values of the
Jeffreys positive centroid ¢ of a set of frequency histograms is
less or equal to one: 0 < w,. < 1.

Proof: Consider the frequency histograms H as positive
histograms. It follows from Theorem 1 that the J effreys positive

centroid ¢ is such that w, = Zf_l ¢ = Z(,l = (aL - . Now,

the arithmetic-geometric mean inequality states that a > g
where a* and ¢* denotes the coordinates of the arithmetic and
geometric positive means. Therefore W(Z—(’) > land ¢ < a'.
Thus w, = Zle ¢ < E?:l at = 1. ]

We consider approximating Jeffreys frequency centroid
on the probability simplex A, by usmg the normahza—
tion of the Jeffreys positive centroid: ¢/ = with

d
w= T
we use the folléwmg lemma: .
Lemma 2: For any histogram 2 and frequency histogram /,
we have J(z, h) = J(Z, h) + (w, — DKL(E : h) + logw,),
where w, denotes the normalization factor (w, = Y 5_, z*).
Proof: 1t follows from the definition of Jeffreys di-
vergence and the fact that &' = w,d’ that J(x,h) =
Z;”Zl(ww,:i": h ') log = il Expanding and mathemati-

cally rewriting the ths. y1elds J(x,h) = ZLNU;JF log Z—-&-

wW (—P)

. To study the quality of this approximation,

659

woit log w, + hi log, b i log wy) = (w, — 1)logw, +
J(&, h)+(w, —1) ZT' . z log = =J(z, h)+(w, —1)(KL(% :
h) + log w,), since Z Z'Ij LB =1 |

The lemma can be extended to a set of weighted frequency
histograms H:

J(z, H) = J(@, H) + (w, — D)(KL(Z : H) + logw,),
where J(z, H) = Sy mid(w, h;) and KL(&
Zn T KL(E, hy) (w1ch = 1).

We state the second theorem concerning our guaranteed ap-
proximation:

Theorem 2: Let ¢ denote the Jeffreys frequency centroid and

H) =

~/

¢’ = - the normalized Jeffreys positive centroid. Then the
approximation factor czr = ]J((FC ’g)) issuch that 1 < az < 1+

( 1 1)KL(C:H)

We

< L (with w, < 1).

J(c,H) — w B ~

Proof: We have J(c,H) < J(¢,H) <

Using Lemrha 2, since J(¢'\H) = . )

we)(KL(¢, H) + logw,.)) and J{(¢,H) < J(¢, H), it fol-
w)

lows that 1 < az < 14 A= )<K3((:HI§)+IO Yo
have KI(¢ : H) = %KL((‘H)

00

log w, (by expanding the
KL expression and using the fact that w, = )_, ¢*). Therefore

< 1+ % Since J(é, H) > J(c.H) and

KL(c, H) < J(¢, H), we finally obtain oz < L. |

When w, = 1 the bound is tight. Experimeﬁtal results de-
scribed in the next section shows that this normalized Jeffreys
positive centroid ¢’ almost coincide with the Jeffreys frequency
centroid.

gr

B. Arbitrary Fine Approximation by Bisection Search

It has been shown in [11], [12] that minimizing Eq. (2) over
the probability simplex Ay amounts to minimize the following
equivalent problem:

¢ = arg ;niAll KL{(a: z)+ KL(Z : g), “
TCAg

Nevertheless, instead of using the two-nested loops of Veldhuis’
Newton scheme [11], we can design a single loop optimization
algorithm. We consider the Lagrangian function obtained by en-
forcing the normalization constraint ¢ = 1 similar to [11].
For each coordmate setting the derivative with respect to ct,we
getlog £ S+Hl-& +)\ = 0, which solves as ¢* = w((14*+1)
By multiplying these d constraints with & respectively an(i sum-
ming up, we deduce that A = —KL(¢ : §) < 0 (also noticed
by [11]). From the constraints that all ¢;’s should be less than

one, we bound A as follows: ¢ = w(a;*l) < 1, which

FE

solves for equality when A = log(e® §*) — 1. Thus we seek
for A € [max;log(e® ') — 1,0]. Since s = >, ¢' = 1, we
have the following cumulative sum equation depending on the
unknown parameter A: ¥

50 = £ ) = Sins ity

=1y )
This is a monotonously decreasing function with s(0) < 1. We
can thus perform a simple bisection search to approximate the
optimal value of A, and therefore deduce an arbitrary fine ap-
proximation of the Jeffreys frequency centroid.
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TABLE I

EXPERIMENTAL PERFORMANCE RATIO AND STATISTICS FOR THE 30000+ IMAGES OF THE CALTECH-256 DATABASE. OBSERVE THAT v, =

J(H.e)
J(H,&)

<1

SINCE THE POSITIVE JEFFREYS CENTROID (AVAILABLE IN CLOSED-FORM) MINIMIZES THE AVERAGE JEFFREYS DIVERGENCE CRITERION. OUR GUARANTEED
NORMALIZED APPROXIMATION &’ IS ALMOST OPTIMAL. VELDHUIS’ SIMPLE HALF NORMALIZED ARITHMETIC-GEOMETRIC APPROXIMATION PERFORMS ON
AVERAGE WITH A 6.56% ERROR BUT CAN BE FAR FROM THE OPTIMAL IN THE WORST-CASE (35.8%)

| [[ ac(optimal positive) | oz (normalized approximation) | w. < I(normalizing coefficient) | oz~ (Veldhuis’ approximation) |

average || 0.9648680345638155 | 1.0002205080964255 0.9338228644308926 1.065590178484613
min 0.906414219584823 1.0000005079528809 0.8342819488534723 1.0027707382095195
max 0.9956399220678585 | 1.0000031489541772 0.9931975105809021 1.3582296675397754

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We used a multi-precision floating point (http://www.apfloat.
org/) package to handle calculations and control arbitrary pre-
cisions. We chose the Caltech-256 database [16] consisting of
30607 images labeled into 256 categories to perform exper-
iments: We consider the set of intensity? histograms . For
each of the 256 category, we consider the set of histograms
falling inside this category and compute the exact Jeffreys pos-
itive centroids ¢, its normalization Jeffreys approximation ¢
and optimal frequency centroids ¢. We also consider the av-
erage of the arithmetic and geometric normalized means ¢’ =

“;9. We evaluate the average, minimum and maximum ratio
_ J(H.x) P
ay = Gape forx € {e,&,é&"}. The results are reported

in Table I. Furthermore, to study the best/worst/average per-
formance of the the normalized Jeffreys positive centroid ¢,
we ran 109 trials as follows: We draw two random binary his-
tograms (d = 2}, calculate a fine precision approximation of ¢
using numerical optimization, and calculate the approximation
obtained by using the normalized closed-form centroid ¢. We
gather statistics on the ratio o = J](((; 5 ) > 1. We find experi-
mentally the following performanée: @~ 1.0000009, apax ~
1.00181506, crp;, = 1.000000. Although ¢’ is almost matching
¢ in those two real-world and synthetic experiments, it remains
open to express analytically and exactly its worst-case perfor-
mance.

V. CONCLUSION

We summarize the two main contributions of this paper: (1)
we proved that the Jeffreys positive centroid admits a closed-
form formula expressed using the Lambert W function, and (2)
we proved that normalizing this Jeffreys positive centroid yields
a tight guaranteed approximation to the Jeffreys frequency cen-
troid. We noticed experimentally that the closed-form normal-
ized Jeffreys positive centroid almost coincide with the Jef-
freys frequency centroid, and can therefore be used in Jeffreys
k-means clustering. Notice that since the k-means assignment/
relocate algorithm monotonically converges even if instead of
computing the exact cluster centroids we update it with prov-
ably better centroids (i.e., by applying one bisection iteration of
Jeffreys frequency centroid computation), we end up with a con-
verging variational Jeffreys frequency k-means that requires

3Converting RGB color pixels to 0.3 8 + 0.596G + 0.11B 1 grey pixels.

to implement a stopping criterion. Jeffreys divergence is not
the only way to symmetrize the Kullback—Leibler divergence.
Other KL symmetrizations include the Jensen-Shannon diver-
gence [5], the Chernoff divergence [6], and a smooth family of
symmetric divergences including the Jensen-Shannon and Jef-
freys divergences [17].
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