INF555

Fundamentals of 3D

Laplacian Image pyramids Expectation-Maximization

0.15 <u>()</u> 0.1 0.05

+ Overview of computational photography

Frank Nielsen nielsen@lix.polytechnique.fr

30 Novembre 2011

Lecture 9:

- Télécharger votre projet le 10 Décembre au soir
- Examen 13 Décembre
- Venez avec une clé USB (Projet, TDs)

→ Utilisez Processing.org+JAMA+JMyron (dans la mesure du possible)

Interpreting Fourier spectra

Stripes of the hat

Fourier log power spectrum

Stripes of the hair

90 degrees

Divide by blocks

Laplacian image pyramids

Used also in computer graphics for texturing (mipmapping)

Laplacian image pyramids

Gaussian. Blur and sample, and then **Laplacian.** Interpolate and estimate

$\mathbf{G}_1 = \mathbf{I}$	
$\mathbf{G}_i = \mathrm{EXPAND}(\mathbf{G}_{i+1}) + \mathbf{L}_i.$	Reconstruction
$\mathbf{L}_i = \mathbf{G}_i - \mathrm{EXPAND}(\mathbf{G}_{i+1})$	Residual
$\mathbf{L}_1 = \mathbf{G}_1 - \mathrm{EXPAND}(\mathbf{G}_2)$	$\mathbf{G}_4 = \mathbf{L}_4 + \mathrm{EXPAND}(\mathbf{G}_5)$
$\mathbf{L}_2 = \mathbf{G}_2 - \mathrm{EXPAND}(\mathbf{G}_3)$	$\mathbf{G}_3 = \mathbf{L}_3 + \mathrm{EXPAND}(\mathbf{G}_4)$
$\mathbf{L}_3 = \mathbf{G}_3 - \mathrm{EXPAND}(\mathbf{G}_4)$	$\mathbf{G}_2 = \mathbf{L}_2 + \mathrm{EXPAND}(\mathbf{G}_3)$
$\mathbf{L}_4 = \mathbf{G}_4$	$\mathbf{G}_1 = \mathbf{L}_1 + \mathrm{EXPAND}(\mathbf{G}_2) = \mathbf{I}$

 \rightarrow Precursors of wavelets

Laplacian image pyramids

Blurring is efficient for sampling as it removes high-frequency components. (sample at fewer positions.)

Gaussian kernel and resampling at a *quarter* of the image size. Blurring and resampling is computed using a *single* discrete kernel.

Why Gaussians?

- •Central limit theorem: (mean of random variables approach Gaussian distribution)
- •Infinitely differentiable functions
- •Fourier of Gaussians are Gaussians

•Human brain has neuronal regions doing Gaussian filtering

Laplacian image pyramids: Lossless multi-scale representation of images

FIGURE 4.46 Gaussian and Laplacian image pyramids: the original image I can be reconstructed without any error from the smallest image of the Gaussian pyramid (\mathbf{G}_5) and the Laplacian image pyramid $\mathcal{L} = {\mathbf{L}_i}_i$.

Laplacian image pyramids: Reconstruction process

© Frank Nielsen 2011

Multiband blending.

Blending two overlapping images using their pyramids

- Compute Laplacian pyramids *L*(I1) and *L*(I2) of I1 and I2.
 Generate a hybrid Laplacian pyramid *Lr* by creating for each image of the pyramid a 50%/50% mix of images, obtained by selecting the leftmost half of *L*(I1) with the rightmost half of *L*(I2).
- Reconstruct blended images from the Laplacian pyramid Lr.

Left pyramid

blend

Right pyramid

Using a region mask

Nowadays, we better use Poisson image editing and gradient/image reconstruction

Soft clustering using Expectation-Maximization (EM)

Generative statistical models

• µ1

• µ3

a

$$\mathbf{x}; \boldsymbol{\theta}_m \sim \mathcal{N}\left(\mathbf{x}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m\right)$$

$$\mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{-d/2} |\boldsymbol{\Sigma}|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

$$f(Y = y|\theta) = \sum_{j=1}^{k} \alpha_j \frac{1}{\sqrt{(2\pi)^d |\Sigma_j|}} \exp\{-\frac{1}{2}(y - \mu_j)^T \Sigma_j^{-1}(y - \mu_j)\}$$

GAUSSIAN MIXTURE MODELS (GMMs)

ttp://www.neurosci.aist.go.jp/~akaho/MixtureEM.html © Frank Nielsen 2011 Indicator variables z (also called latent variables)

Multinomially distributed π_m

$$p(\mathbf{x}_{i}|z_{im} = 1; \boldsymbol{\theta}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}_{m}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x}_{i} - \boldsymbol{\mu}_{m})^{T} \boldsymbol{\Sigma}_{m}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{m})\right\}$$

© Frank Nielsen 2011

Generating samples from Gaussian Mixture Models (GMMs)

- 1: for i = 1 to N do
- 2: $m \leftarrow \text{index of one of the } M \text{ models randomly selected}$ according to the prior probability vector π
- 3: Randomly generate \mathbf{x}_i according to the distribution $\mathcal{N}(\mathbf{x}_i; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m)$ 4: end for

 $\begin{array}{ll} \text{Maximize the likelihood} & \mathcal{L}(\boldsymbol{\theta}) = p(\mathbf{X}; \boldsymbol{\theta}) \\ \text{(incomplete)} & \boldsymbol{\theta} \ = \ \{\boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m, \pi_m\}_1^M \end{array}$

Maximize the likelihood (complete likelihood)

$$p(\mathbf{X}, \mathbf{Z}; \boldsymbol{\theta})$$

joint distribution of \mathbf{X} and $\mathbf{Z} = {\{\mathbf{z}_i\}}_1^N$

Expectation-Maximization algorithm: Iteration

EM iteration:

• Expectation step : Soft assignment to clusters

$$w_{tj} = p(x_t = j | y_t) = \frac{\alpha_j f(y_t | \mu_j, \Sigma_j)}{\sum_{i=1}^k \alpha_i f(y_t | \mu_i, \Sigma_i)}$$

• Maximization step : Given assignments find best parameters

$$\hat{\alpha}_{j} \leftarrow \frac{1}{n} \sum_{t=1}^{n} w_{tj}$$

$$\hat{\mu}_{j} \leftarrow \frac{\sum_{t=1}^{n} w_{tj} y_{t}}{\sum_{t=1}^{n} w_{tj}}$$

$$\hat{\Sigma}_{j} \leftarrow \frac{\sum_{t=1}^{n} w_{tj} (y_{t} - \hat{\mu}_{j}) (y_{t} - \hat{\mu}_{j})^{T}}{\sum_{t=1}^{n} w_{tj}}$$

Initialize with k-means (or k-means++)

Modeling images with Gaussian mixture models

RGB+XY= Point in 5D

En Java, http://www.lix.polytechnique.fr/~nielsen/MEF/ En Python, http://www.lix.polytechnique.fr/~schwander/pyMEF/

Original images

Gaussian representation

> Statistical images

Gaussian mixture models for image segmentation

Any smooth density function can be arbitrarily closely approximated by a Gaussian mixture model

