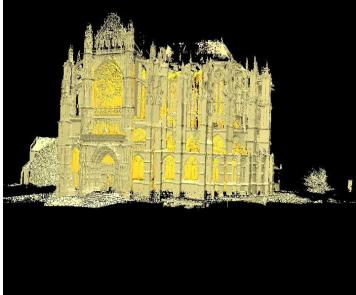
INF555

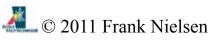
Fundamentals of 3D



Lecture 3: Debriefing: Lecture 2 Rigid transformations/Quaternions Iterative Closest Point (+Kd-trees)

> Frank Nielsen nielsen@lix.polytechnique.fr

> > 28 Septembre 2011



Harris-Stephens' combined corner/edge detector

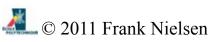
- Depth discontinuity
- Surface orientation discontinuity
- Reflectance discontinuity (i.e., change in surface material properties)
- Illumination discontinuity (e.g., shadow)

Harris-Stephens edge detector

Aim at finding good feature

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \xrightarrow{\text{Gradient with respect to } x, \text{ times gradient with respect to } y}$$

Sum over image region – area we are checking for corner



Harris-Stephens edge detector

Measure the corner response as

$$R = \det M - k (\operatorname{trace} M)^{2}$$

$$\operatorname{det} M = \lambda_{1} \lambda_{2}$$

$$\operatorname{trace} M = \lambda_{1} + \lambda_{2}$$
Avoid computing eigenvalues themselves.

(k - empirical constant, k = 0.04 - 0.06)

Algorithm:

 Find points with large corner response function R (R > threshold)
 Take the points of local maxima of R

all C 2011 Frank Nielsen

0000000000 000 Q, 0 0 11 r, 00-00000000000 δοΠ • 0 A O, D 0 D 000000000 Ð. ſЪ 00000 Ō \mathcal{O} Π C) 5 0 \mathbf{O} 0 🗢 Ō. O. 1100 $\mathbf{\Omega}$ Q. ð a -Ω 0 p q 00000000 $\mathbf{\nabla}$ 00 0 53 OO \mathcal{O} 54 \mathbf{XO} D ርን О **D** O 65 Ð D 0 \mathbf{C} \sim Q 00 000 12 \mathbf{S} P. φ. 2000000 \mathbb{C} O2 <u>_</u> O 0000 50 0000CX $\mathcal{X}\mathcal{Y}$ 5 Б. 5 $\square \bigcirc$ 0000000000000000 PORTO 8 Da.

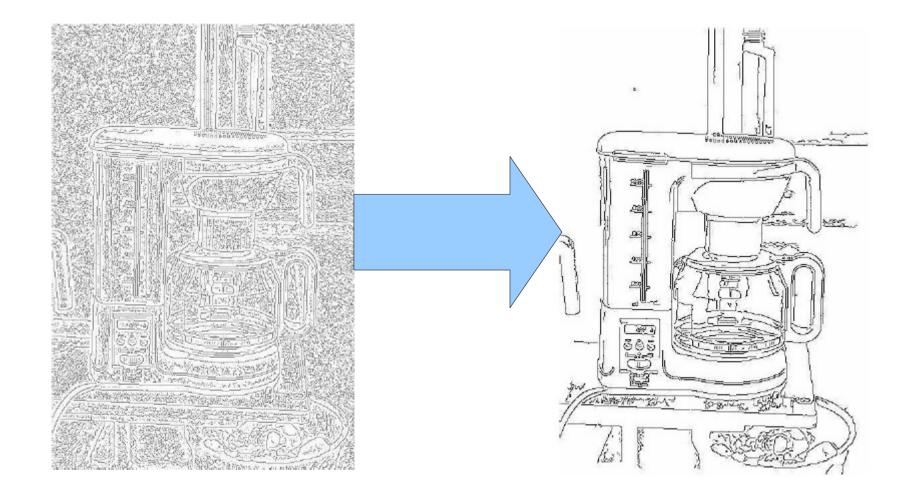
Edge thresholding hysterisis

Single threshold value for edges -> Streaking

Two thresholds: low and high

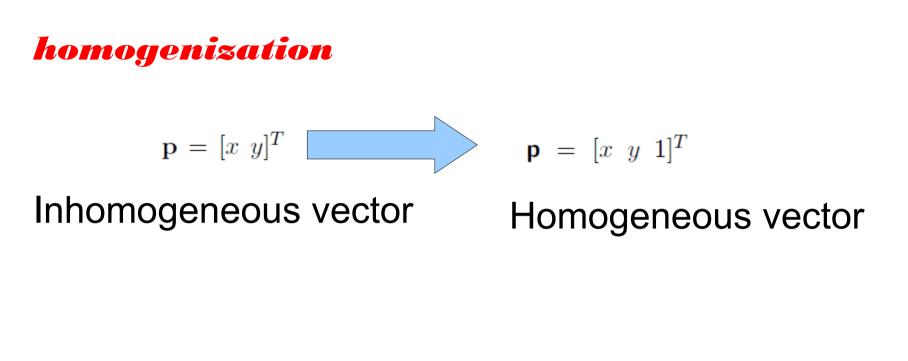
- If a pixel value is above the high threshold, it is an edge.
- If a pixel value is below the low threshold, it is not an edge.

• If a pixel value is between the low and high thresholds, it is an edge if it is connected to another edge pixel, otherwise it is interpreted as noise.



Edge hysteresis

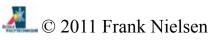
Homogeneous coordinates and duality point/line



dehomogenization (also known as

Perspective division)

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \simeq \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \\ \frac{y}{w} \end{bmatrix}, \text{ for } w \neq 0.$$



Projective plane \mathbb{P}^2

Equivalence class:

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} \lambda x \\ \lambda y \\ \lambda w \end{bmatrix}, \forall \lambda \neq 0.$$

L: ax + by + c = 0.

is equivalent to

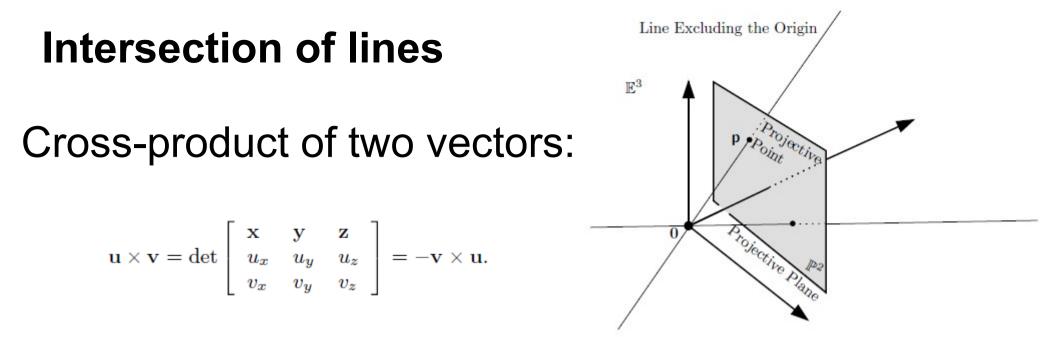
 $L: \lambda ax + \lambda by + \lambda c = 0$

Line coefficients stored in an inhomogeneous vector

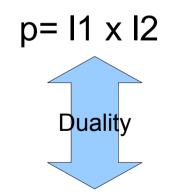
 $\mathbf{l} = \begin{bmatrix} a & b & c \end{bmatrix}^T$

Equation of the line: $L : \mathbf{I}^T \mathbf{p} = 0.$

Point and line have same homogeneous representation: A point can be interpreted as the coefficients of the line

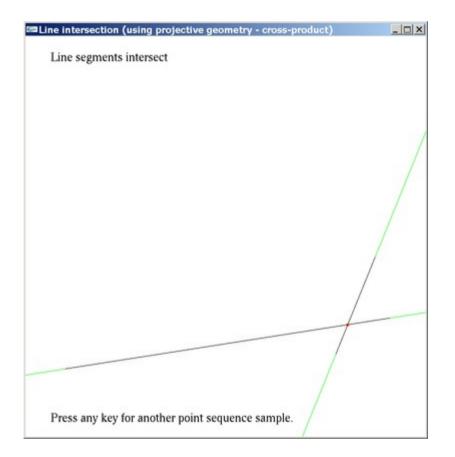


Intersection point of two lines is obtained from their cross-product:



Line passing through two « points » I1* and I2*:

Application: Detection of line segment intersection



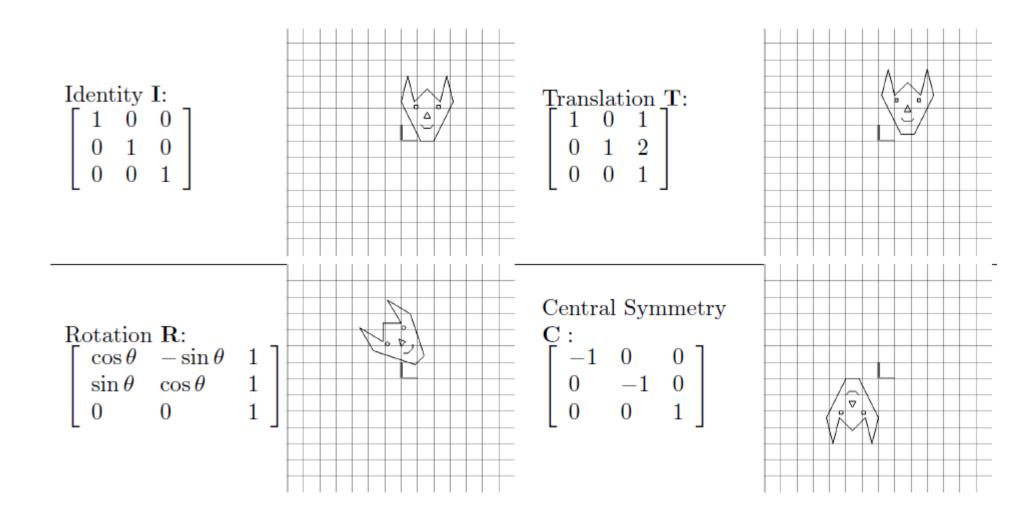
11=CrossProduct(p,q); 12=CrossProduct(r,s); // intersection point is the cross-product //of the line coefficients (duality) intersection=CrossProduct(l1,l2); intersection.Normalize(); // to get back Euclidean point © 2011 Frank Nielsen

Overview of duality in projective geometry

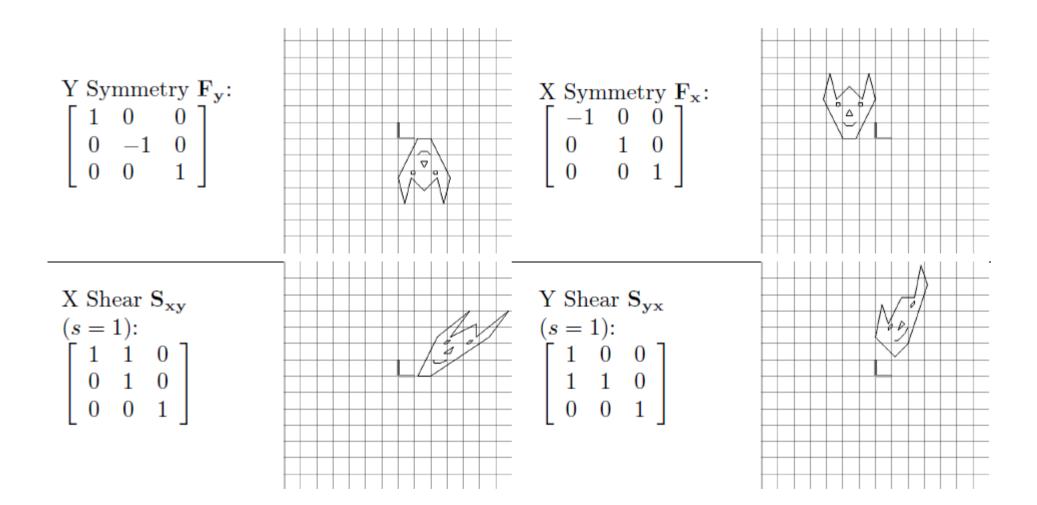
	Point	Line
Representation	$\mathbf{p} = \begin{bmatrix} x & y & w \end{bmatrix}^T$	$\mathbf{I} = \left[\begin{array}{ccc} a & b & c \end{array} \right]^T$
Incidence	$\mathbf{p}^T \mathbf{I} = 0$	$\mathbf{I}^T \mathbf{p} = 0$
	(lines \boldsymbol{I} passing through $\boldsymbol{p})$	$({\rm points} \ p \ {\rm on} \ {\rm line} \ I)$
Degeneracy	Collinearity:	Concurrence:
	$\det[\mathbf{p_1} \ \mathbf{p_2} \ \mathbf{p_3}] = 0$	$\det[\mathbf{I}_1 \ \mathbf{I}_2 \ \mathbf{I}_3] = 0$
Join	$\mathbf{I} = \mathbf{p}_1 \times \mathbf{p}_2$	$\mathbf{p} = \mathbf{I}_1 \times \mathbf{I}_2$
	(line passing through \boldsymbol{p}_1 and $\boldsymbol{p}_2)$	(intersection point of I_1 and $I_2)$
Infinity	Ideal points: $\begin{bmatrix} x & y & 0 \end{bmatrix}^T$	Ideal line: $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$

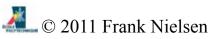
The determinant of three points represent the volume of their parallepiped. $(\mathbf{p}_1 \times \mathbf{p}_2) \cdot \mathbf{p}_3$.

2D Transformations using homogeneous coordinates



2D Transformations using homogeneous coordinates





Cartesian coordinate systems in 3D

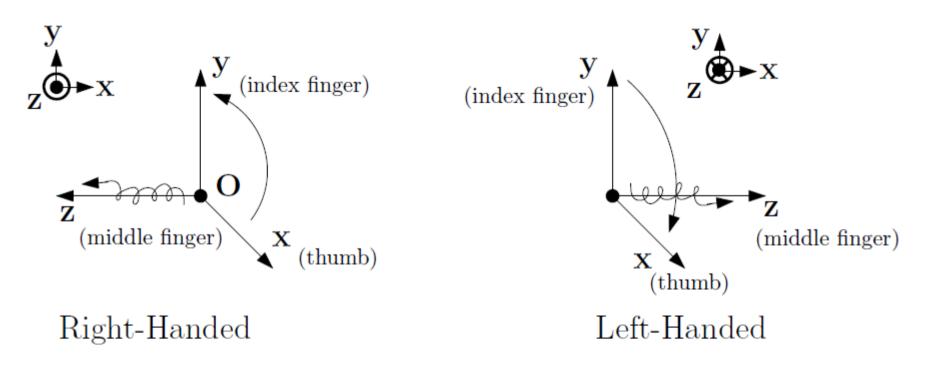


FIGURE 3.15 The right-handed $(\mathbf{z} = \mathbf{x} \times \mathbf{y})$ and left-handed $(\mathbf{z} = \mathbf{y} \times \mathbf{x} = -\mathbf{x} \times \mathbf{y})$ Cartesian coordinate systems.

3D Transformations using homogeneous coordinates

$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & \sin\theta & 0 \\ 0 & -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\mathbf{R}_{y} = \begin{bmatrix} \cos \theta & 0 & -\sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ \sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

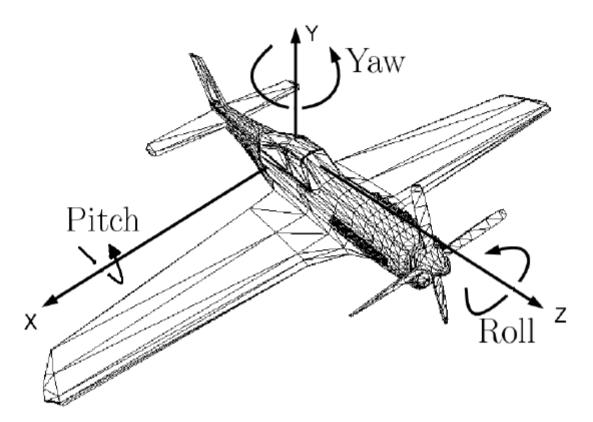
$$\mathbf{R}_{z} = \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0\\ -\sin\theta & \cos\theta & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

 $\mathbf{R} = \mathbf{R}_x \mathbf{R}_y \mathbf{R}_z$

Be careful: Gimbal lock

all C 2011 Frank Nielsen

Euler rotation



 $\mathbf{R}(\text{roll}, \text{pitch}, \text{yaw}) = \mathbf{R}_z(\text{roll}) \times \mathbf{R}_x(\text{pitch}) \times \mathbf{R}_y(\text{yaw})$

 $\begin{aligned} \mathbf{R}(\operatorname{roll},\operatorname{pitch},\operatorname{yaw}) &= \mathbf{R}(r,p,y) = \\ \begin{bmatrix} \cos r \cos y - \sin r \sin p \sin y & -\sin r \cos p & \cos r \sin y + \sin r \sin p \cos y \\ \sin r \cos y + \cos r \sin p \sin y & \cos r \cos p & \sin r \sin y - \cos r \sin p \cos y \\ -\cos p \sin y & \sin p & \cos p \cos y \end{aligned}$

all C 2011 Frank Nielsen

Cross-product/outer product

$$\mathbf{u} \times \mathbf{v} = \det \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{bmatrix} = -\mathbf{v} \times \mathbf{u}.$$

Consider the cross-product as a matrix multiplication:

$$\mathbf{u}\times\mathbf{v}=[\mathbf{u}]_{\times}\mathbf{v}$$

$$[\mathbf{u}]_{\times} = \begin{bmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{bmatrix} = \mathbf{M}.$$

Outer-product

$$\mathbf{u}\mathbf{u}^{T} = \underbrace{\begin{bmatrix} u_{x} \\ u_{y} \\ u_{z} \end{bmatrix}}_{(3,1)} \underbrace{\begin{bmatrix} u_{x} & u_{y} & u_{z} \end{bmatrix}}_{(1,3)} = \underbrace{\begin{bmatrix} u_{x}^{2} & u_{x}u_{y} & u_{x}u_{z} \\ u_{x}u_{y} & u_{y}^{2} & u_{y}u_{z} \\ u_{x}u_{z} & u_{y}u_{z} & u_{z}^{2} \end{bmatrix}}_{(3,3)}$$

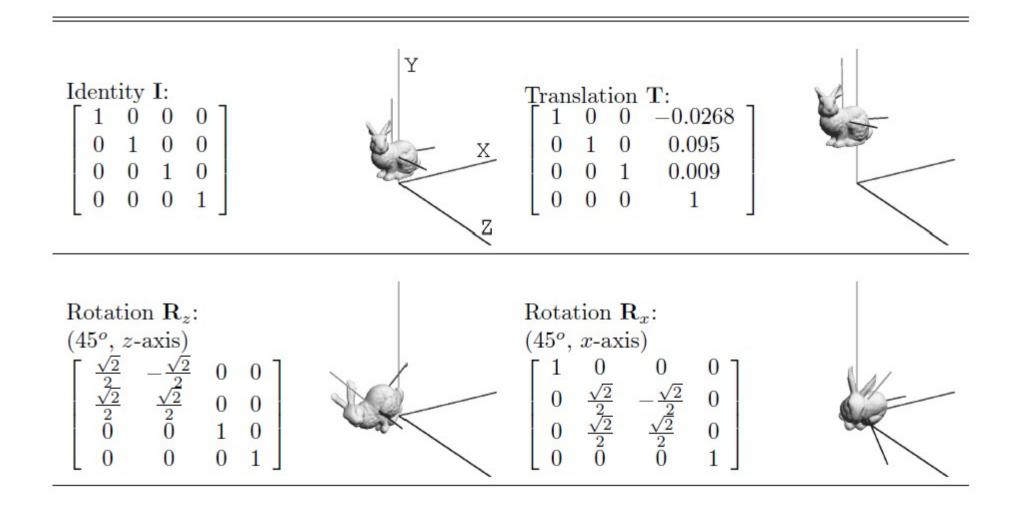
Arbitrary matrix rotation: Rodrigues' formula

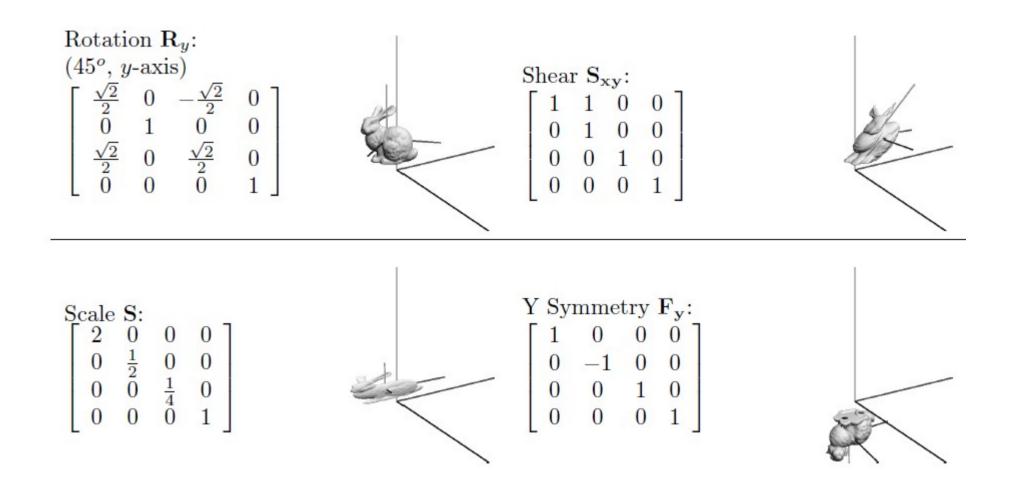
$$\mathbf{R}_{\mathbf{u},\theta} = \mathbf{u}\mathbf{u}^T + \cos\theta(\mathbf{I} - \mathbf{u}\mathbf{u}^T) + [\mathbf{u}]_{\times}\sin\theta,$$

Equivalent to:

$$\mathbf{R}_{\mathbf{u},\theta} = \mathbf{I} + [\mathbf{u}]_{\times} \sin \theta + [\mathbf{u}]_{\times}^2 (1 - \cos \theta).$$

$$\begin{aligned} \mathbf{R}_{\mathbf{u},\theta} &= \\ \begin{bmatrix} \cos\theta + u_x^2(1 - \cos\theta) & u_x u_y(1 - \cos\theta) - u_z \sin\theta & u_y \sin\theta + u_x u_z(1 - \cos\theta) \\ u_z \sin\theta + u_x u_y(1 - \cos\theta) & \cos\theta + u_y^2(1 - \cos\theta) & -u_x \sin\theta + u_y u_z(1 - \cos\theta) \\ -u_y \sin\theta + u_x u_z(1 - \cos\theta) & u_x \sin\theta + u_y u_z(1 - \cos\theta) & \cos\theta + u_z^2(1 - \cos\theta) \end{bmatrix}. \end{aligned}$$





🚢 © 2011 Frank Nielsen

Rigid transformations
$$\mathbf{D} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

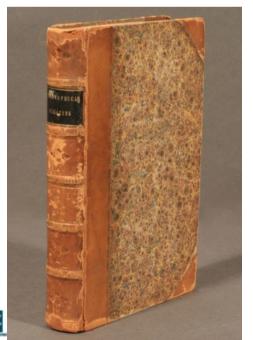
Concatenation (non-commutative!)

$$\mathbf{D}_{1}\mathbf{D}_{2} = \begin{bmatrix} \mathbf{R}_{1} & \mathbf{t}_{1} \\ \mathbf{0}^{T} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{R}_{2} & \mathbf{t}_{2} \\ \mathbf{0}^{T} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{1}\mathbf{R}_{2} & \mathbf{R}_{1}\mathbf{t}_{2} + \mathbf{t}_{1} \\ \mathbf{0}^{T} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{R}' & \mathbf{t}' \\ \mathbf{0}^{T} & \mathbf{1} \end{bmatrix} = \mathbf{D}'.$$
$$\mathbf{D}^{-1} = \begin{bmatrix} \mathbf{R}^{T} & -\mathbf{R}^{T}\mathbf{t} \\ \mathbf{0}^{T} & \mathbf{1} \end{bmatrix}.$$

Quaternions for rotations

Provide rotation operator that is invertible

- Easy to invert scalars
- For 2D vectors, invert using complex numbers...
- For 3D vectors??? (-> 4D quaternions)
- For dD vectors??? (-> 8D octonions)



Lectures on Quaternions

http://digital.library.cornell.edu/

LECTURES

OUATERNIONS:

CONTAINING A SYSTEMATIC STATEMENT

A New Mathematical Method ;

OF WHICH THE PRINCIPLES WERE COMMUNICATED IN 1618 TO THE ROYAL IRISH ACADEMY;

AND WHICH HAS SINCE FORMED THE SUBJECT OF SUCCESSIVE COURSES OF LECTURES, DELIVERED IN 1846 AND SUBSEQUENT YEARS,

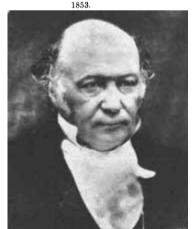
THE HALLS OF TRINITY COLLEGE, DUBLIN :

WITH NUMEROUS ILLUSTRATIVE DIAGRAMS, AND WITH SOME GEOMETRICAL AND PHYSICAL APPLICATIONS.

SIR WILLIAM ROWAN HAMILTON, LL. D., M. R. I. A.,

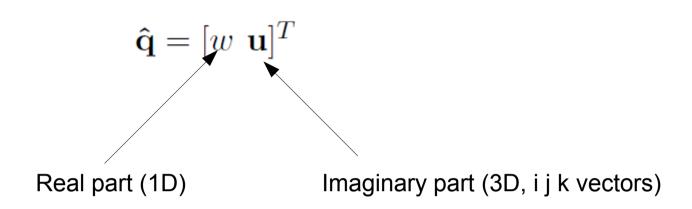
HELOW OF THE ANTREAL MACHINE AND ATTACKS AND ATTACKS IN A DATA AND A DATA A A DATA AND A DATA AND A DATA A DATA AND A DATA A A DATA

DUBLIN: HODGES AND SMITH, GRAFTON-STREET, booksellers to the university. London: whittaker & Co., ave-maria lane. Cambridge: macmillan & Co.



Sir William Rowan Hamilton

Quaternions: 1D real+3D imaginary



Multiplication:

$$\hat{\mathbf{q}}_1 \hat{\mathbf{q}}_2 = \begin{bmatrix} w_1 w_2 - \mathbf{u_1} \cdot \mathbf{u_2} \\ \mathbf{u_1} \times \mathbf{u_2} + w_1 \mathbf{u_2} + w_2 \mathbf{u_1} \end{bmatrix}$$

Norm (l2) $||\mathbf{\hat{q}}|| = \sqrt{||\mathbf{u}||^2 + w^2}$

🔔 © 2011 Frank Nielsen

Unit quaternions

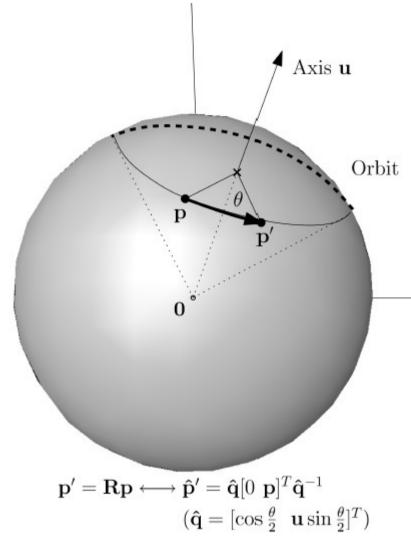
$$\hat{\mathbf{q}} = \begin{bmatrix} \cos \theta \\ \mathbf{u} \sin \theta \end{bmatrix} \qquad \qquad ||\mathbf{u}|| = 1$$

Rotation theta around an axis u: Quaternion representation:

$$\hat{\mathbf{q}} = \begin{bmatrix} \cos \frac{\theta}{2} & \mathbf{u} \sin \frac{\theta}{2} \end{bmatrix}^T$$

For a given 3D point p, we compute its rotation Rp as

Unit quaternions for rotations



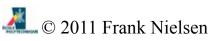
$$\hat{\mathbf{q}} = [w \ \mathbf{u}]^T \longrightarrow \mathbf{R}(\hat{\mathbf{q}}) = \begin{bmatrix} 1 - 2u_y^2 - 2u_z^2 & 2u_x u_y - 2wu_z & 2u_x u_z + 2wu_y & 0\\ 2u_x u_y + 2wu_z & 1 - 2u_x^2 - 2u_z^2 & 2u_y u_z - 2wu_x & 0\\ 2u_x u_z - 2wu_y & 2u_y u_z + 2wu_x & 1 - 2u_x^2 - 2u_y^2 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

all C 2011 Frank Nielsen

Conversion rotation matrix to quaternion

$$w = \frac{1}{2}\sqrt{\operatorname{trace}(\mathbf{R}) + 1}$$

$$\mathbf{u} = \begin{bmatrix} \frac{r_{yz} - r_{zy}}{4w} \\ \frac{r_{zx} - r_{xz}}{4w} \\ \frac{r_{xy} - r_{yz}}{4w} \end{bmatrix}$$



Spherical linear interpolation (SLERP)

LERP is non-sense for rotation matrices:

 $\mathbf{R}_{\lambda} = (1 - \lambda)\mathbf{R}_0 + \lambda \mathbf{R}_1,$

 $\mathbf{R}_{\lambda} = \mathbf{R}_0 + \lambda(\mathbf{R}_1 - \mathbf{R}_0) = \text{LERP}(\mathbf{R}_0, \mathbf{R}_1; \lambda).$

SLERP is using quaternion algebra:

$$\hat{\mathbf{q}}_{\lambda} = (\hat{\mathbf{q}}_{2}\hat{\mathbf{q}}_{1}^{-1})^{\lambda}\hat{\mathbf{q}}_{1}$$

$$\hat{\mathbf{q}}^{\lambda} = (\exp(\theta\mathbf{u}))^{\lambda} = \exp(\lambda\theta\mathbf{u}) = \cos\lambda\theta + (\sin\lambda\theta)\mathbf{u}.$$

$$\mathrm{SLERP}(\hat{\mathbf{q}}_{1}, \hat{\mathbf{q}}_{2}; \lambda) = \frac{\hat{\mathbf{q}}_{1}\sin(1-\lambda)\theta + \hat{\mathbf{q}}_{2}\sin\lambda\theta}{\sin\theta}$$

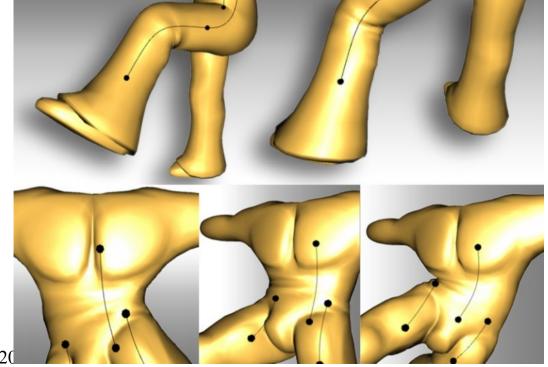
$$\mathrm{SLERP}(\hat{\mathbf{q}}_{1}, \hat{\mathbf{q}}_{2}; \lambda) \simeq_{\theta \to 0} (1-\lambda)\hat{\mathbf{q}}_{1} + \lambda\hat{\mathbf{q}}_{2} = \mathrm{LERP}(\hat{\mathbf{q}}_{1}, \hat{\mathbf{q}}_{2}; \lambda)$$

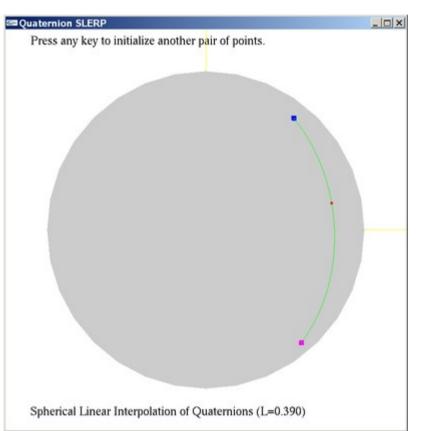
all C 2011 Frank Nielsen

Spherical linear interpolation (SLERP)

$$SLERP(\hat{\mathbf{q}}_1, \hat{\mathbf{q}}_2; \lambda) = \frac{\hat{\mathbf{q}}_1 \sin(1-\lambda)\theta + \hat{\mathbf{q}}_2 \sin\lambda\theta}{\sin\theta}$$

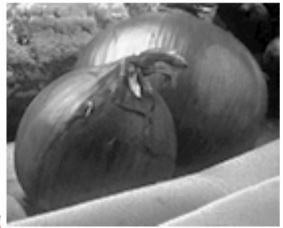
Useful for computer graphics animation (bone. skinning at articulation)





Bilateral filtering

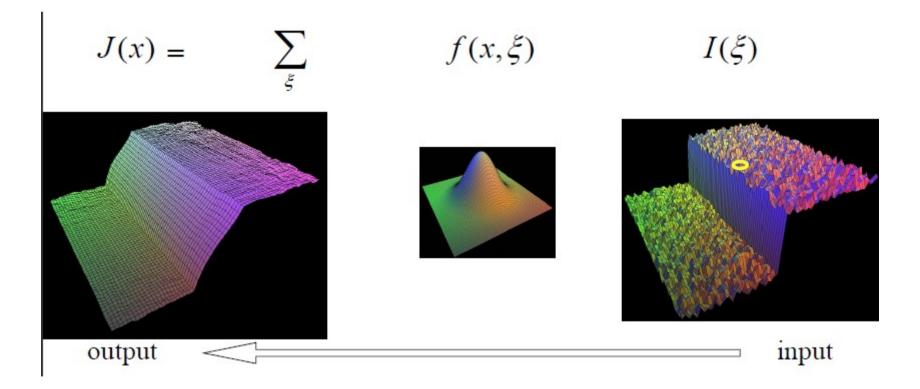
Edge-preserving smoothing

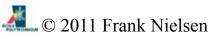


Series C 2011 Frank Nielsen

Gaussian filtering: Blur everything

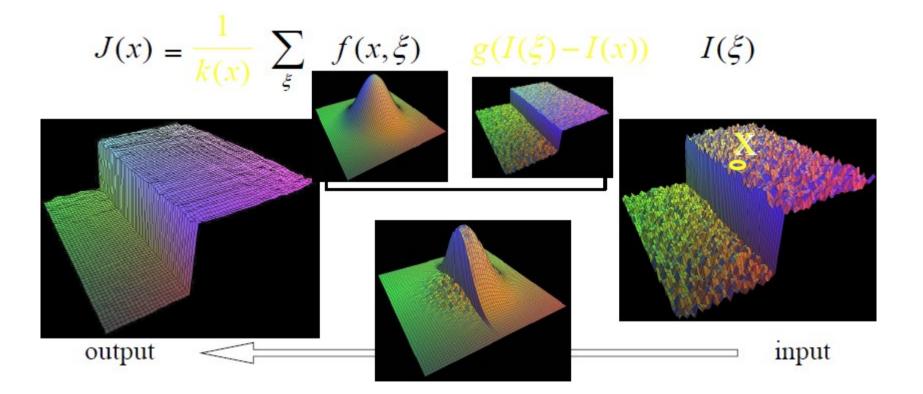
Traditional spatial gaussian filtering



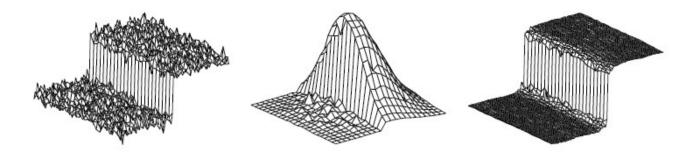


Bilateral filtering

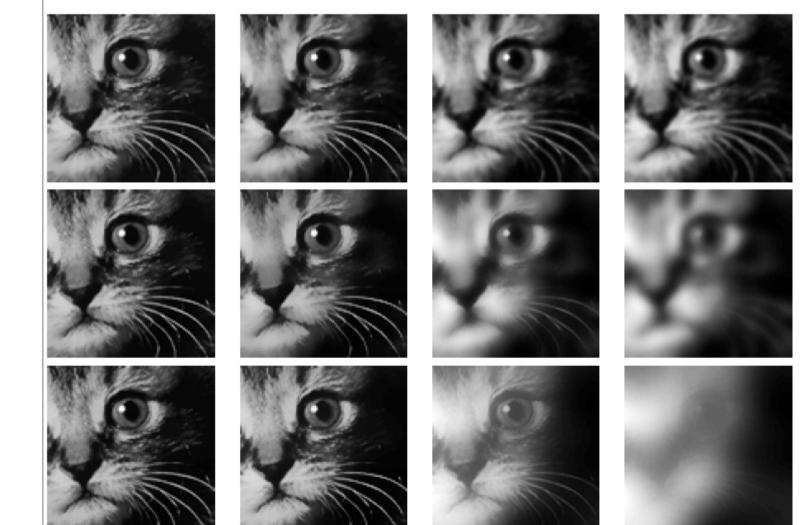
New! gaussian on the intensity difference filtering



Bilateral Filtering for Gray and Color Images, Tomasi and Manduchi 1998 SUSAN feature extractor...



 $\sigma_r = 10$



 $\sigma_r = 100$

 $\sigma_r = 30$

Range filtering

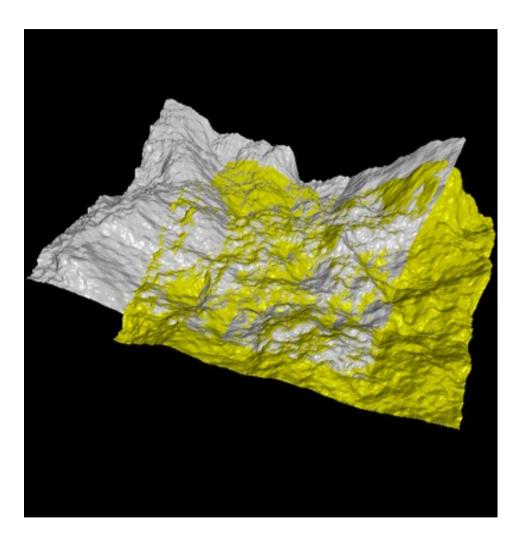
 $\sigma_r=300$

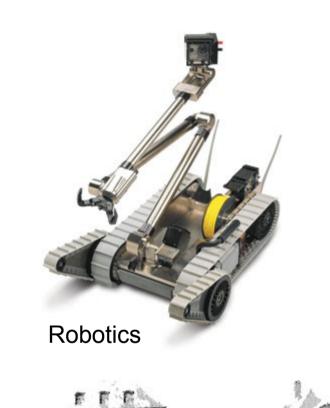
 $\sigma_d = 1$

 $\sigma_d = 3$

 $\sigma_d = 10$

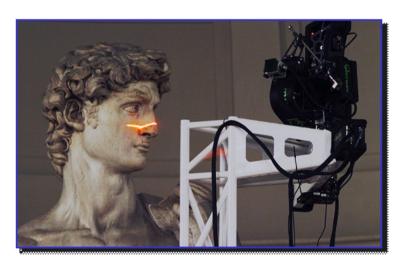
Iterative Closest Point (ICP)





🚢 © 2011 Frank Nielsen

Align point sets obtained from range scanners



http://www-graphics.stanford.edu/projects/mich/

ICP for solving jigsaws

Solve stone jigsaws...



ICP: Algorithm at a glance

- Start from a not too far transformation
- Match the point of the target to the source
- Compute the best transformation from point correspondence
- Reiterate until the mismatch error goes below a threshold

In practice, this is a very fast registration method...

A Method for Registration of 3-D Shapes. by: Paul J Besl, Neil D Mckay. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 14, No. 2. (February 1992

ICP: Finding the best rigid transformation

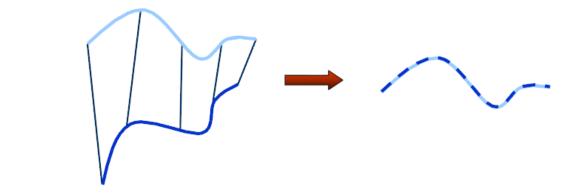
Given point correspondences, find the best rigid transformation.

$$X = \{x_1, ..., x_n\} \qquad P = \{p_1, ..., p_n\}$$

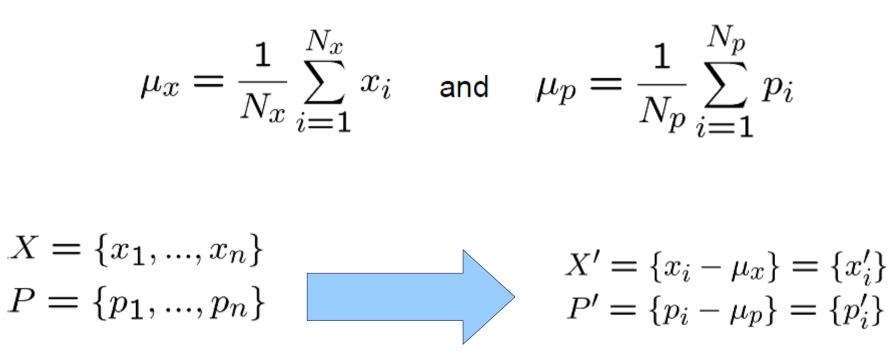
Observation/Target

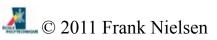
Find (R,t) that minimizes the squared euclidean error:

$$E(R,t) = \frac{1}{N_p} \sum_{i=1}^{N_p} ||x_i - Rp_i - t||^2$$



Align the center of mass of sets:





Finding the rotation matrix:

$$W = \sum_{i=1}^{N_p} x'_i p'^T_i$$

Compute the singular value decomposition

$$W = U \begin{bmatrix} \sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3} \end{bmatrix} V^{T}$$

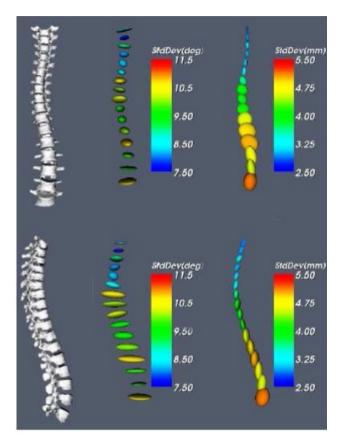
$$\sigma_1 \ge \sigma_2 \ge \sigma_3$$

Optimal transformation:

$$R = UV^T | \\ t = \mu_x - R\mu_p |$$



Registration of many point sets to a common atlas



Scoliotic Spine (Atlas of 307 patients)

Many variants of ICP method (truncated, robust, etc.)

🔔 © 2011 Frank Nielsen

What computational geometers say

In theory,

ICP may provably run very slowly for well-constructed point sets...

David Arthur; Sergei Vassilvitskii

Worst-case and Smoothed Analysis of the ICP Algorithm, with an Application to the k-means Method

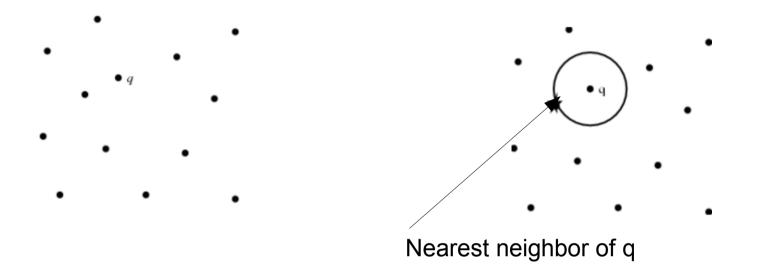
FOCS 2006 => $O(n/d)^d$ iterations (exponential)

... but smooth analysis of ICP is polynomial

Theorem. With probability 1 - 2p ICP will finish after at most $O(n^{11}d\left(\frac{D}{\sigma}\right)^2 p^{-2/d})$ iterations. Since ICP always runs in at most $O(dn^2)^d$ iterations, we can take $p = O(dn^2)^{-d}$ to show that the smoothed complexity is polynomial.

C 2011 Frank Nielsen

Computing nearest neighbors in ICP...



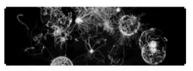
- Naive linear-time algorithm
- Tree-like algorithm using kd-trees
- Tree-like algorithm using metric ball trees
- •..

Challenging problem in very high-dimensions (common to work up to dimension > 1000 nowadays)

→ Rendu des TD1, 2 et 3 pour le Mardi 4 Octobre 17h (Upload work sur la page du cours)

Installez Processing.org

» Exhibition



The Creators by Constanza Casas, Mark C Mitchell and Pieter Steyaert

The Digital Rube Goldberg Processor by The Product

» Download Processing» Play with Examples

» Browse Tutorials

Processing is an open source programming language and environment for people who want to create images, animations, and interactions. Initially developed to serve as a software sketchbook and to teach fundamentals of computer programming within a visual context, Processing also has evolved into a tool for generating finished professional work. Today, there are tens of thousands of students, artists, designers, researchers, and hobbyists who use Processing for learning, prototyping, and production.

- » Free to download and open source
- » Interactive programs using 2D, 3D or PDF output
- » OpenGL integration for accelerated 3D
- » For GNU/Linux, Mac OS X, and Windows
- » Projects run online or as double-clickable applications
- » Over 100 libraries extend the software into sound, video, computer vision, and more...
- » Well documented, with many books available

To see more of what people are doing with Processing, check out these sites:

Prototyp-0 by Yannick Mathey