9.5

A GPU Panorama Viewer for
Generic Camera Models

Frank Nielsen, Sony Computer Science

Laboratories, Inc.

Introdugtion

Digital panoramas are nowadays omnipresent in Internet virtual tours (see hzzp://
www.world-heritage-tour.orgl). A panorama basically stores light information arriving
at a single position from a wide field of view. Panoramas are particular light fields that
conveniently sample the plenoptic function in image-based rendering systems at dis-
crete positions. We distinguish between spherical panoramas, which cover the full
sphere of directions (47 steradians), from cylindrical panoramas, which cover only 360
horizontal degrees over a partial vertical field of view. Panoramas are widely used in
computer graphics not only as backdrops (also called skyboxes), but also as exnviron-
ment maps for dynamic reflections and more recently as light probes for the rendering
of convincing lighting. In the old days, environment maps were merely captured
using a tele-lens camera (approximating the required orthographic projection), cap-
turing the reflections of a spherical mirror ball [Nielsen05a]. Nowadays, stitching
allows us to calibrate and precisely register a sequence of pictures acquired from a
same nodal point. the center of projection (COP) [Nielsen05b]. Thus, an environment
map is a complete panorama ray map obtained from a single COD, while a pinhole
image is interpreted as a local ray map pardally sampling the environment map from
the same COP. The most common environment maps used for simulating real-time
reflections in computer graphics are the latitude-longicude map (also called the
equirectangular map), the cubic map (six quad faces), and the dual paraboloid map
(two images) [Nielsen05a]. Wong et al. further introduced the HEALPix map (12
quads) [Wong05], which improves the spherical ray sampling distribution over the
cube map for computing real-time reflections on the GPU.

Figure 9.5.1 depicts a 1024 x 512 latitude-longitude spherical environment map.

543

544

Section 9 Beyond Pixels and Triangles

)

FIGURE 9.5.1 Example of (A) a latitude-longitude environment map from which (B) a virtual pinhole camera
image is synthesized. The corresponding border of the virtual pinhole camera is traced in the environment map.

Synthesizing’_PinI'ﬂn_ole Camera Vigws

To render a view as if obtained by a virtual pinhole camera anchored at the same COP
of the environment map, we need to partially remap the ray map using a pinhole cam-
era model. The pinhole camera is defined by a set of extrinsic parameters (roll, pitch,
and yaw attributes stored in a rotation matrix and defining the aim and orientation of
the camera image plane) and intrinsic parameters (image dimension, principal point,
and focal length). Remapping, a warping operation, can either proceed by mapping
forward pixels of the environment map to the virtual pinhole camera image (forward
mapping), or vice-versa (backward mapping). This local ray map conversion can be
carried out using intensive per-pixel CPU computations, or per-triangle units using
the texture primitives of graphics cards (2D or 3D triangles), but this is time consum-
ing. On one hand, per-pixel warping offers the highest picture quality by explicitly
controlling the interpolation scheme. On the other hand, texturing triangles allows us
to relieve the CPU from excessive computations by leaving the texturing operation of
interpolating intermediate values to the graphics engine. The drawback is that textur-
ing uses the standard (trilinear) interpolation scheme. Let us now quickly review the
per-pixel backward mapping and the 2D/3D per-triangle forward mapping method
before introducing the GPU panorama shader.

A Simple Pinhole Camera Model

The pinhole camera model of image dimension width w and height 4 and (horizon-
tal) field of view (hfov) maps image pixels to 3D rays anchored at the COP as follows:

x—c y—e,

PinholeXY 2TP(x, y) =| arctan| ——= |,arctan
f zz\/(7x —c)+ f?

=(6,9),

9.5 A GPU Panorama Viewer for Generic Camera Models 545

where (L‘\,,L‘y) = 5,— is the camera principal point, 2 =— is the aspect ratio, and
T 2 w

f is the (horizontal) focal length in pixel units computed from the field of view as:

F = bfov2 filaw, hfov) = ————
2tan/]];w

Conversions between 3D Cartesian and 2D spherical coordinates as shown in
Figure 9.5.2 are processed using the conventional formula:

Cartesian2 Spherical(X)Y ,Z) = (arctan (ﬁ), arctan (# ﬂ =(6,¢)
\ \Z) \VX*+2))

Spherical 2Cartesian(0,¢) = (sin 6 cos @, sin ¢, cos 6 cos (D) =(X.Y,Z)

FIGURE 9.5.2 Conversion between spherical and Cartesian coordinates.

Per—Plxel Backw__arc! Ray Mappmg

We first need to align the principal point of the camera image (1mage center) with the
aim of the camera using a rotation matrix defined as

cosrcos y —sinrsin psiny —sinrcos p cosrsin y+sinrsin pcos y
R(r, p,y)=| sinrcos y +cosrsin psiny cosrcosp sinrsin y—cosrsin pcos y |,

—cos psin y sin p cos pcos y

546

(

xc —
ONTHECD

Section @ Beyond Pixels and Triangles

where the roll denotes the angle around the z-axis, the pitch denotes the angular
amplitude around the x-axis, and the yaw denotes the inclination around the y-axis.
Then we create a synthetic pinhole camera view by looking up for each pinhole image
pixel xy the corresponding 6¢ ray, rotating that ray and the original orthonormal
frame using the rotation matrix, and finding the corresponding pixel in the environ-
ment ray map using the LatitudeLongitudeTP2XY function:

LatitudeLongitude TP2 XY (6,¢) = w, (9; T])/J}) [‘P +7/ 2])
T

b/

where w, and 4, denote, respectively, the equirectangular panorama width and height.
Interpolation schemes can be chosen as the nearest neighbor interpolant for speed
or bilincar or better interpolation mcthods {e.g., Lanczos). Listing 9.5.1 shows e

source code.

LISTING 9.5.1 Source Code

CPUPanoramaViewer.cpp

indexpi=0;

for(y=0;y<hpi;y++)
for(x=0;x<wpl;x++)
(.
xy[0)=x;xy[11=y;

PinholeXY2TP(xy,tp);
Spherical2Cartesian(tp,xyz);
Rotation(xyz,R,xyzrot};
Cartesian2Spherical(xyzrot,tp);
LatitudelLongitudeTP2XY(tp,xy);

// Nearest interpolation scheme for compactness
xx=(int)xy[0];yy=(int}xy[1];

index1ll=3* (yy*widthpan+xx);

pinholeimage[indexpi++]=environmentmap[indexll++};// R
pinholeimage[indexpi++]=environmentmap[indexll++];// G
pinholeimage[indexpi++]=environmentmap(indexll++];// B

}
Please refer to subfolder CPU Panorama viewer in this article’s folder on the CD-ROM.

Per-Triangle 3D Forward Ray Mapping

To speed up the rendering process, we may compute the ray conversion at sparse posi-
tions, and let the graphics engine render the textured primitives. A typical example is
rendering a 3D unit sphere using texture coordinates of the environment map. We
represent the environment map (0,9) as a grid on a regular mesh and compute the
3D vertex position on the sphere for each 2D grid vertex using the Spherical2Carte-
sian procedure. Deciding whether a triangle is to be rendered or not, and clipping
partially visible triangles, is handled by the graphics engine.

9.5 A GPU Panorama Viewer for Generic Camera Models 547

Per-Triangle 2D Forward Ray Mapping

Another strategy consists in rendering 2D triangles and determining for ourselves
the out-of-view triangles. That is, once we get the 3D triangle vertex positions, we
find the angular parameters (8',¢") and project back to the screen space using the
PinholeTP2XY primitive:

Pinbole TPLXY (8,8)= (f an B+ ,axf(x =)} tan +c) = ()

Although the vertex positions are precisely computed, the barycentric 2D triangle
interpolation does not produce a perfectly correct result. However, this is quite un-
noticeable, and the interpolation approximation error decreases as we refine the
triangulation. Note that for textured primitives, backward mapping as shown in Fig-
ure 9.5.3 would be challenging, as some 2D xy triangles of the pinhole camera image
may be cut into several parts in the environment mapping (for example, a triangle
containing the latitude-longitude north pole in its interior).

2D Per-pixel backward mapping

T -
!

SphericalzCartesian Rotation R | art s'anZSphexical{ EnvmapTPZXYf

©@.4)— (X.Y,2) H_,H J @0 |

‘Zl

|
CameraXYZTP'

(x,) > (6, ¢)

3D Per-triangle vertex forward mapping

EnvMapXY2TP
x,») > (6, ¢)

Spherical2Cartesian Rotation R

6.)>(X.Y.Z) HU

\Z/

2D Per-triangle vertex forward mapping

EnvMapXYZTP Spherical2Cartesian otation R CartesianZSpherical CameraTPZXY

(x,3) > (6,¢) 0.9) > (X.Y,2) ﬂaﬂ) @9 a(x',y')J

FIGURE 8.5.3 Backward per-pixel and forward per-triangle coordinate pipelines.

A GPU Fragment Shader

In this section, we describe the ray map conversion by a short fragment shader. The
parameters of the shader are the rotation matrix and the texture image dimension.
Using the shader, we can render at full-screen resolution with maximal frame rate
(usually 60 fps, but this may vary according to your monitor’s refresh rate).

548

Section 9 Beyond Pixels and Triangles

Zooming in or zooming out is achieved by decreasing or increasing the field of
view, which impacts the focal length. This can be implemented using another shader
parameter that we omitted here for simplicity. Moreover, rotational motion blur effect
can be added purposely using the OpenGL accumulation buffer [Nielsen05b]. List-
ing 9.5.2 is an excerpt of the file pinhole.cg.

LISTING 9.5.2 Excerpt from pinhole.cg

samplerRECT Panoramalmage;
float widthpan,heightpan;
float3x3 R;

float PI=3.14159265;

[6»]
T

float2 tp;

tp[1l=atan(p{1]/sart{p[0]*p[0]+p(2]1*pP[2]));
tpl0i=atan2(pf0],p[2]};

return tp;

}

float3 Spherical2Cartesian(float2 tp)

{
float3 xyz;

xyz[0]=cos(tp[1])*sin(tp[0]);
xyz[1]=sin(tp[1]);
xyz[2]=cos(tp[1])*cos(tp[Q]);

return xyz;

}

[/ Pinhole X-Y -> Theta-Phi -> Panorama X-Y
float2 PinholeXY2TP(float x,float y)
{

// focal length in pixel unit

float f=1000;

// principal point

float cx=widthpan/2.0;

float cy=heightpan/2.0;

/| aspect ratio

float aspect=heightpan/widthpan;
float t,p;

t=atan2(x-cx,f);
p=atan2((y-cy)/aspect,sqrt((x-cx)*(x-cx)+f*f));

return float2(t,p);
}

9.5 A GPU Panorama Viewer for Generic Camera Models 549

// Environment map
float2 LatitudeLongitudeTP2XY{float t, float p)

{
float x,vy;

x=widthpan*((t+PI)/(2.0*PI));
y=heightpan* ((p+PI/2.0)/PI};

return float2(x,y);
}

// Receives RPY in matrix R and warp accordingly

// Backward mapping: Pinhole->Environment mapping

floatd WarpPanorama(float2 texcoord : TEXCOORDO) . COLORO
{

float3 pp,xyz;
float2 tp,xy;

tp=PinholeXY2TP(texcoord[0],texcoord[1]};
xyz=Spherical2Cartesian{tp);
pp=mul(R,xyz);
tp=Cartesian2Spherical(pp);
xy=LatitudelongitudeTP2XY (tp[0],tp[1]);

return f3texRECT (Panoramalmage, Xy);

¥

Using the same conversion framework, we can also remove the radial lens distor-
tion effects using the GPU. Let us consider Tsai’s radial distortion model [Nielsen05b].
We simply need to define the primitive Tsaixy2Tp, which we do by first remapping
the (distorted) source image into an undistorted ideal pinhole image and then applying the
regular PinholeXY2TP transformation. Please refer to subfolder GPUPanoramaViewerl

on the CD-ROM.

Generic Camera Models

A generic camera model (yielding either a partial or complete environment map) is
defined concisely using two change-of-coordinate functions: genericcameraXy2TpP
and genericcameraTP2XY. These functions are potentially partially defined. For exam-
ple, the fisheye camera only (re)projects the environment mapping onto an image
disk (undefined elsewhere in the rectangular image). Also noteworthy, the origin and
axis of the environment map can be readjusted using the GPU by specifying the new
origin and frame axes using the rotation matrix. To illustrate the generic camera func-
tions, let us consider the conversion of the latitude-longitude equirectangular map to
the front face of the dual paraboloid using the function Paraboloidupxy2TP. A nor-
malized pixel (x,y) (with x €[~11] and y €[-11]) in the front paraboloid maps to
a corresponding downward ray direction defined by the following 3D vector:

2x 2x xz%—yz—l
R AR R L RS |

550 Section 9 Beyond Pixels and Triangles

We then need to simply apply the Cartesian2spherical function to retrieve the
corresponding (6,0) angles. Because we use both back and front paraboloid maps to
define a complete environment map, it is enough to consider normalized pixels falling
within the unit disk:

float3 ParaboloidUpXY2TP(float2 xy)

{
float s,t,X,Y,Z;
float3 tpz;

s=(xy[0}]-(widthpan/2.0))/(widthpan/2.0);
t=(xy[{1]-{(heightpan/2.0))/(heightpan/2.0);

if (s*s+t*t<=1.0)
{
A=2.0%s/(s*s+t*t+1.0);
Y=2.0*t/(s*s+t*t+1.0);
Z=(-1.0+s*s+t*t) /(s*s+t*t+1.0);
// Cartesian to spherical conversion
tpz[O]=atan2(X,Z);
tpz[1]=atan2(Y,sqrt(X*X+Z*2));
tpz[2]=1.0;

else tpz[2]=0.0;

return tpz,

}

float3 WarpPanorama(float2 texcoord : TEXCOORDO) : COLORO
{

float3 pp,xyz,tpz;

float2 tp,xy;

xy[0]=texcoord[0];
xy[1]=texcoord[1];

tpz=ParaboloidUpXY2TP(xy);
tp[0]=tpz[0];
tpl1]=tpz[1];

it (tpz[2]==1.0){
xyz=Spherical2Cartesian(tp);
pp=mul(R,xyz);
tp=Cartesian2Spherical(pp);
xy=LatitudelLongitudeTP2XY(tp[O],tp[1]);

return f3texRECT(Panoramalmage, xy);}
else

{

return float3(0,0,1);

}

}

9.5 A GPU Panorama Viewer for Generic Camera Models 551

The basic difference in the previous pinhole.cg shader is that the remapping is only

effective inside the image disk. Thus, we need to slightly modify the former Warp-

Panorama shader to take into account the domain of definition of the mapping functions.

The ray remapping shaders can also be combined altogether in a number of scenarios.

For example, we can display on each face of a 3D cube a different camera model viewer

K obtained from a common environment map (see Figure 9.5.4 and shader file generic-
ONTHECD camera.cg). Please refer to subfolder GPUPanoramaViewer2 on the CD-ROM.

U Panorama Viewer | ShaderX'5, (c) 2006 Frank Nielsen = _ -

FIGURE 9.5.4 Rendering several generic camera models
using the abstract framework.

Conclusion

We have presented an efficient GPU panorama fragment shader for relieving the
CPU of the per-pixel and warping procedures. The panorama viewer allows us to ren-
der several generic camera models in a same view at maximum frame rate, as well as
to convert or remap on-the-fly complete environment maps. The abstraction (8,¢)

ray-(x, y) image framework relies on the fact that all rays share a common center of
projection. We leave to future work the extension of this abstract camera model and
reprojection technique to caustic surfaces particularly observed in catadioptric acqui-
sition systems [Nielsen05b].

552 Section 9 Beyond Pixels and Triangles

References

[Nielsen05a] Nielsen, Frank. “Surround Video: A Multihead Camera Approach.” The
Visual Computer, 21(1-2), (2005): 92-103.

[Nielsen05b] Nielsen, Frank. Visual Computing: Geometry, Graphics and Vision.
Charles River Media, 2005.

[Wong05] Wong, Tien-Tsin, Liang Wan, Chi-Sing Leung, and Ping-Man Lam.
“Real-time Environment Mapping with equal solid-angle spherical quad-map.”
ShaderX": Advanced Rendering Technigues, edited by Wolfgang Engel. Charles
River Media, 2005: 221-233.

