
An Interactive Tour of Voronoi Diagrams on the GPU

Frank Nielsen
Sony Computer Science Laboratories, Inc.
Frank.Nielsen@acm.org

Version 3.1415, August 21st 2007.

1] Introduction

Voronoi diagrams are fundamental geometric structures that have been both deeply and
widely investigated since their inception in disguise by René Descartes for analyzing the
gravitational influence of stars, in the 17th century. Voronoi diagrams find countless
applications in science and engineering beyond graphics as attested by the long
representative, and yet non-exhaustive, list of applications reported at the web portal
www.voronoi.com (eg., collision detection, path planning, meshing and surface
reconstruction, etc.).

The Voronoi diagram of a finite set of points },....,{ 1 nPPS = partitions the underlying
space into elementary structures called Voronoi cells that define combinatorial proximity

location information. The Voronoi cell of a site is defined as the locii of points closer

to site than to any other site. That is mathematically,

iP

iP
}),Distance(),Distance(|{)Vor(jPPPPPP jii ∀≤= .The Voronoi diagram is

thus an essential combinatorial structure that splits the continuous space into a finite
discrete number of bounded and (necessarily) unbounded cells. The ordinary Voronoi

diagram of a given set of sites is defined as the cell complex induced by the

Voronoi cells for the Euclidean distance

[VC05]:

nPP ,....,1

)Vor(),....,Vor(1 nPP
2

,
2

,,)()(||||),Distance(yyixxiii PPPPPPPP −+−== . Note that since
the Voronoi diagram is defined in terms of distance comparisons, the structure does not
change if we take any arbitrary monotonously increasing function of the distance, like the
square function for example, that allows to bypass unnecessary square root computations.

The graphics processor unit (GPU) provides a nice commodity hardware for either
visualizing these partitions interactively by rasterizing the Voronoi cells, or for computing
even the exact combinatorial structures per see, as described in papers [JF06][DF06][FG06].
Rasterizing 2D Voronoi diagrams is based on computing the index function for each pixel
position in screen space (or texture space for GPUs using per-pixel shaders). The index
function reports for a current pixel/point position the index of the closest site ：

mailto:Frank.Nielsen@acm.org
http://www.voronoi.com/

),(minarg)index(},...,1{ ini PPdP ∈= . In all our Cg codes below (9 in total), we return
both the smallest distance (min function) and its corresponding index (argmin function) in a
float2 structure by the Cg function called Winner. We may fill Voronoi cells using
predefined colors based on the index function, or raster the borders of Voronoi cells if
neighborhood pixels (either in C4 or C8 connectivity) have different indices, ie., different
closest points. To emphasize on the role of the distance function, we may also further
rasterize distance isolines at predetermined values by prescribing beforehand a modulo
offset value. This isoline drawing style emphasizes another interpretation of Voronoi
diagrams as dynamic crystal growths whose seeds are anchored at sites, better called
generators in that context (see Section 6). The OpenGL® GLUT program
OrdinaryVoronoiDiagram allows to interactively pick up a site and move it so that one
can explore how the overall structure changes globally from the relative point positions.
Figure 1 displays different snapshots showing the variety of drawing styles rasterized in
real-time by the per-pixel Cg shader. An excerpt of the OrdinaryVoronoi.cg code is given
below:

// Report the index of the closest point
float2 Winner(float2 p)
{
int i, winner;
float dist,mindist;

mindist=distance(p,position[0]);

for(i=1;i<MAXN;i++)
 {
 dist=distance(p,position[i]);
 if (dist<mindist) {mindist=dist;winner=i;}
 }
return float2(winner,mindist);
}

// Voronoi diagram rasterization
float3 OrdinaryVoronoi(float2 pos: TEXCOORD0) : COLOR0
{
// Index for current and x- y-neighborhood position
float2 w,wx,wy;
int index, indexx,indexy;
// position of the shader pixel
float2 posx,posy;

float3 color;
float3 bordercolor=float3(0,0,0);
float3 isolinecolor=float3(0.5,0.5,0.5);
float iso, iso2, f;

pos=ToDomain(pos);posx=ToDomain(pos)+float2(s,0);posy=ToDomain(pos)+float2(0,s);

w=Winner(pos);wx=Winner(posx);wy=Winner(posy);

index=w[0];indexx=wx[0];indexy=wy[0];

// number of isoline strips
iso=30.0*frac(w[1]); // period
iso2=frac(iso);

color=ColorCell(index);

// overwrite isoline
 if (((iso2>t1)&&(iso2<10.0*t2)))
 color=isolinecolor;

// Overwrite
if ((index!=indexx)||(index!=indexy))
 return color=bordercolor;

return color;
}
<<
Code 1. The Cg code OrdinaryVoronoi.cg for rasterizing Voronoi cells with different styles.
>>

<< Insert icon code OrdinaryVoronoiDiagram.exe here>>

<< Insert Figure 1 here Figure1a-OrdinaryVoronoiDiagram-Border.tif
Figure1b-OrdinaryVoronoiDiagram-CellBorder.tif
Figure1c-OrdinaryVoronoiDiagram-IsolineBorder.tif
Figure1d-OrdinaryVoronoiDiagram-isofilledborder. >>
<<Caption
Different rendering styles for the ordinary Voronoi diagram: (a) Rasterizing borders, (b)
rasterizing color cells with thick borders, (c) rasterizing distance isolines with thick borders,
and (d) rasterizing all three types of information at once: colored cells, distance isolines,
and cell borders.
>>

Voronoi diagrams have been generalized in many ways [CVD06] by considering arbitrary
objects instead of points for sites or various distance functions instead of the Euclidean
distance, just to name a few. In computational geometry, there exists also important
variations called k-order Voronoi diagrams that choose all subsets of k sites instead of a
single site for defining the notion of ``closest/furthest’’ proximity cells (many cells are
empty).

In this paper, we emphasize on the educational aspects of interactive GPU applications for
computing in real-time 2D Voronoi diagrams beyond the Euclidean geometry. Namely, we
first give brief account and visually depict affine and curved Voronoi diagrams [CVD06].
Since there are uncountably infinitely many potential distance functions, each defining a
proper Voronoi diagram in itself, it does not make really sense to catalog all of them. We
rather present the reader in the latter part a neat generalization based on the axiomatization
of distances. Namely, we will describe two classes of generic Voronoi diagrams based on
the information-theoretic parametric distances [BVD’07]: Bregman and Csiszár
divergences. Bregman and Csiszár divergences cover interestingly many familiar
distances and yet intersect only for the most fundamental information measure: The
Kullback-Leibler divergence, better known as the relative entropy or information
discrepancy. This allows one to compute statistical Voronoi diagrams, like for example the
Voronoi diagrams of a finite set of normal distributions),(iiN σμ encoded as 2D

parameter information points),(ii σμ . This reveals all the more important for computing
Voronoi diagrams under uncertainty (eg., points with individual variance-based noise).

But first, let us quickly examine some fundamental properties of the ordinary Euclidean
Voronoi diagrams.

2] Bisectors and dually orthogonal Delaunay triangulations

We previously defined the Voronoi cell of site P as the locii of points closer to P than to any
other sites. However, that definition of Voronoi cells also implicitly highlights the notion of
territory of a point P with respect to the other sites. So instead of looking up for each point
its cell, we rather consider computing the cell boundaries. The notion of territory is
decomposable and let intervene only the discrete finite set of input points. For a given pair
of sites P and Q, we consider the boundary of their cells as an elementary territory frontier
(the mere Voronoi diagram of two points) and called it the bisector:

)},Distance(),Distance(|{),Bisector(QXPXXQP ≤= .
Since the Voronoi cell

}),Distance(),Distance(|{)Vor(SPPPPPPP jii ∈∀≤= can be rewritten as

. The bisector in the plane is a line (generalizes to),Bisector()Vor(jiiji PPP ≠∩=

plane in 3D and hyperplane in higher dimensions): its characteristic derived from the

distance equality),Distance(),Distance(PPPP ji = yields indeed an affine

equation for the locii of points at equidistance of and : iP jP
,0,,)(2,:),Bisector(>=<−><+>−< jjiiijji PPPPPPPPP where

yyxx QPQPQP +>=< , denotes the 2D inner product (dot product).
 Thus the Voronoi cell is expressed as the intersection of a set of half-planes yielding a
convex polygon, also called Dirichlet cell or Thiessen polygon, eventually open to infinity
for unbounded cells.

But there is more and this is obviously a key reason of their success and fame in computer
graphics: Voronoi diagrams exhibit a unique dual structure called the Delaunay
triangulations which enjoy nice properties (eg., no thin triangles – that is maximizes the
smallest angle and minimizes the radius of the smallest enclosing disks of triangles) for
points in general position (that is, no four co-circular points). The Delaunay triangulation
meshing the input point set is derived from the Voronoi diagram by linking with straight
line segments (ie., geodesics) the sites of adjacent cells. The boundary of the mesh is the
convex hull of the point set and contains all finite Voronoi cells. Further, since the line
segment joining two sites is provably perpendicular to their bisector, it follows that the
Delaunay triangulation structure is globally orthogonal to the Voronoi diagram.
Observe that the intersection point of the bisector/line segment joining two sites may not
belong to the Voronoi boundaries. Although the Delaunay edges can be derived from the
second-order Voronoi diagram [FG06] by checking non-empty cells, we rather proceed by
expanding the former ordinary Voronoi code and detect the edges yielding corresponding
Delaunay edges by scanlining the frame buffer.

The program DelaunayTriangulation demonstrates that technique (Cg code
DelaunayTriangulation.cg). Observe that it is not flawless as sometimes the program will
fail to report edges (notably on the convex hull, if not all bounded Voronoi cells are fully
rendered in the viewport) but yet is interesting for educational purposes. It can be checked
that the maximum number of Delaunay edges is 3n-6. This number may varies according to
the configuration of the point set, namely depending on the size of the convex hull.

<< Insert Figure 2 Figure2-DelaunayTriangulation.tif here>>
<<Caption
The dual Delaunay triangulation is orthogonal to the primal Voronoi diagram.
>>

3] Affine and curved Voronoi diagrams

Having lines (planes or hyperplanes in higher dimensions) as bisectors is definitively a
convenient property since cells can be computed as convex polygons (polyedra and

polytopes in higher dimensions). Another classic Voronoi diagram is the power diagram of
a set of disks. The power distance of a point P to a disk (C,r) centered at C with radius is

defined as . The power distance is symmetric, and
positive if and only if the point P lies outside the disk. Power diagrams generalize ordinary
Voronoi diagrams (all radii set to zero) but note that some Voronoi cells of Power diagrams
may be empty (and by virtue of the pigeonhole principle some cells may contain (partially)
several points). Affine diagrams a;so include interestingly the Voronoi diagram for the

generalized quadratic distance

22||||),;Power(rCPrCP −−=

)()(),(i
T

iiQ PPQPPPPd −−= for a positive
semi-definite matrix Q (the usual ordinary Euclidean distance is obtained by setting Q to
the identity matrix), and k-order diagrams. It is therefore natural to ask whether there
exists a common universal methodology for computing these affine diagrams? The striking
result is that any affine diagram can be computed as the power diagram of a set of disks.
(Thus, we can also compute the Delaunay edges from a power diagram representing the
second-order point Voronoi diagram since 2nd order diagrams are affine.) Another common
distance variation of Voronoi diagrams is to add or multiply the distance by a weight
anchored at each site (these parameters can be interpreted as a time lag and a speed attribute
for each generator). These generalizations yield the so-called additively and
multiplicatively weighted Voronoi diagrams. In [CVD06], the most common curved and
affine Voronoi diagrams are presented. They can all be computed from the following

generic distance function () αα

iii
T

iii rPPQPPwPPd −−−=)()(),(. That is, to

each disk we further attach a weight and a positive semi-definite symmetric

matrix (often taken as the inverse of a variance-covariance matrix). The radii of disks
can potentially be imaginary, ie. negative. Equipped with that parametric distance function,
we get the following diagrams explained in details in [CVD06]:

),(ii rP iw

iQ

 Möbius diagrams obtained by the following distance:

. Möbius diagrams have the particularity of
having their bisectors as arcs of circles. The Voronoi diagrams with arcs of circle
bisectors are called spherical diagrams by analogy to affine diagrams. Similarly, there
is a universality theorem for that class of Voronoi diagrams since any spherical diagram
can be computed as a Möbius diagram too.

iiii rPPwPP −−= 2||||),Moebius(

 Apollonius diagram of a set of spheres is defined by the following distance function:

iii rPPPP −−= ||||),(Apollonius . In a sense, it is conceptually similar to power
diagrams except that the Euclidean distance is not squared. The name of that diagram
comes from the fact that at each vertex of the diagram there exists a circle tangent to three
input circles. Computing such a circle was first raised by Apollonius and is known as
Appolonius’ Tenth problem. Bisectors are characterized by arcs of hyperbolae, and the

diagram is also called Johnson-Mehl diagram in the physics/chemistry literature.

 Anisotropic Voronoi diagrams are defined by the following weighted distance

function . They recently gained
attention in the computer graphics and computational geometry community for
meshing anisotropically CAD objects with sharp ridges. The bisectors of anisotropic
Voronoi diagrams are quadratic curves, and again there is a corresponding universality
theorem that proves that any quadratic Voronoi diagram can be obtained from an
anisotropic diagram.

iii
T

ii rPPQPPPP −−−=)()(),c(Anisotropi

Figure 3 displays these different diagrams, and the program VorPDMöbiusAppolonius
allows to interact real-time with all these diagrams.

<< Insert Figure 3 here>>
<< Caption:
A gallery of affine and curved Voronoi diagrams: (a) Power diagram, (b) Apolonius
diagram, (c) Möbius diagram, and (d) Anisotropic diagram. These diagrams can also be
rendered using the distance isoline style.>>

<< Insert code icon here VorPDMöbiusAppolonius.exe >>

Next, we will now present and interactively visualize a few Voronoi diagrams on
non-Euclidean geometries. The power diagram can be interpreted as one of those for the
Laguerre geometry.

4] Spherical and hyperbolic Voronoi diagrams

For a very long time, Euclidean geometry derived from Euclid’s five postulates was
considered the unique geometry prevailing on Earth. Failing to prove that the more
complicated fifth parallel postulate could be derived from the first four axioms, yielded
eventually to one of the greatest discovery of mankind: The birth of non-Euclidean
geometry in the 17th Century. The hyperbolic and spherical non-Euclidean geometries were
thoroughly investigated in the 18th Century. Historically, these abstract geometries were
called imaginary geometries. To visualize them, we need to map their structures on the
Euclidean space. This is always possible by virtue of the Riemann mapping theorem.

The Voronoi diagram of a set of points on the 3D sphere, can be rasterized using the GPU
per-pixel shader using the spherical coordinates on a texture map. The distance between
any two points on a sphere is taken as the angle formed by any two 3D points of the unit
sphere: The arccosine of the inner product of these points, namely

)arccos(),(Distance ,,, zizyiyxixiSphere PPPPPPPP ++= .
Figure 4 depicts such a Voronoi diagram rasterized on the texture map using the latitude
and longitude spherical coordinates, and textured on the 3D unit sphere for visualization.

<<Insert Code icon EllipticalGeometryVoronoi.exe>>

The Cg code follows the same spirit of the ordinary Voronoi diagram except for the
computations of the spherical distance:

//
// Convert latitude longitude to 3D xyz Cartesian coordinate
// Unit vector
float3 Spherical2Cartesian(float2 tp)
{float3 xyz;

xyz[0]=cos(tp[1])*sin(tp[0]);
xyz[1]=sin(tp[1]);
xyz[2]=cos(tp[1])*cos(tp[0]);

return xyz;
}

float norm(float3 P)
{
return P[0]*P[0]+P[1]*P[1]+P[2]*P[2];
}

float DistanceSphere(float2 tp, float2 tq)
{
float3 P, Q;
float angle;

P=Spherical2Cartesian(tp);
Q=Spherical2Cartesian(tq);
angle=acos(P[0]*Q[0]+P[1]*Q[1]+P[2]*Q[2]);

return abs(angle);
}

<< Insert Figure 4 here Figure4a-SphericalVoronoiTexture.tif,
Figure4b-SphericalVoronoiSphere.tif and Figure4c-HyperboloicVoronoi.tif>>
<< Caption
Spherical (latitude-longitude map and textured 3D sphere) and hyperbolic Voronoi

diagrams (conformal Poincaré disk in red and non-conformal affine Beltrami-Klein disk in
blue).>>

There are several realizations of the hyperbolic geometry. The two most famous ones are
the conformal Poincaré disk preserving the angles, and the non-conformal Beltrami-Klein
disk. The notion of conformality indicates that the mapping preserves the incidence angles,
an important feature first used historically in cartography, and later considered in texture
mapping of 3D meshes. For Cartesian point coordinates lying on a unit disk centered at the
origin, we have the respective hyperbolic distance functions given as;

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

><−><−
><−

=
),1)(,1(

,1arccosh),(Distance
QQPP

QPQPKlein

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

+=
)||||1)(||||1(

||||21arccosh),(Distance 22

2

QP
PQQPPoincare

where)1log()arccosh(2 −+= xxx and yyxx QPQPQP +>=< , .

<<Insert Code icon GPUHyperbolicVoronoi.exe>>

Interestingly, it can be checked that the Beltrami-Klein hyperbolic Voronoi diagram is
affine and can thus be computed equivalently as a power diagram. Moreover, there exists
simple one-to-one mappings for going from one hyperbolic realization to another.

In the 19th Century, Riemann further proved that there exist infinitely many abstract
geometries, generalizing the elliptical and spherical geometries using the notion of
Riemann metric, that can eventually further be defined locally using a tensor metric. This
formalization is at the heart of the general space-time relativity theory of Einstein.

5] Information-theoretic Voronoi diagrams

Most of the common distance functions we usually meet in practice either belong to the
generic class of Csiszár divergences, or to the class of Bregman divergences. These
parametric distance functions are not necessarily symmetric nor do they respect the triangle
inequality. Their justification is based on the characterization of least square problems as
“projections” and the existence of generalized Pythagorean theorems. Details are out of
scope of this paper, see [BVD’07]. Again interactive GPU rasterization allows the user to
explore and gain intuition of their properties fostering visual thinking and mathematical

intuition.

The Csiszár divergence is defined for a strictly convex generator function f such that f(1)=0
as the following statistical distance:

x
xP
xQfxPQPI f d
)(
)()()||(∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ,

where P and Q are probability distributions (ie., both 1d)(=∫ xxP and

). For example, the total variation distance is obtained for

 Table 1 lists a few usual generators encountered in practice. This
diagram is equivalent to the L1 norm Voronoi diagram.

1d)(=∫ xxQ
.|1|)(−= xxf

Because the distance measure may not be symmetric, it is also called divergence and the
 notation emphasizes on the non-metric property of these distance

functions. For asymmetric divergences, we may further define two-types of cells depending
on the position (left/right) of the the site for defining Voronoi cells:

)||Distance(QP

})||()||(|{)(Vor jPPIPPIPP jfifif ∀≤= (right-type)

})||()||(|{)(Vor * jPPIPPIPP jfifif ∀≤= (left-type)

We may associate to a Csiszár generator function a dual *-conjugate function

⎟
⎠
⎞

⎜
⎝
⎛=

x
xfxf 1)(*

 so that we have)||()||(* PQIQPI
ff = . Therefore, we deduce

that . For example, the *-conjugate of the negative Shannon

entropy is

)(Vor)(Vor *
*

ifif PP =

x
xx

x
x

xfxf log1log11)(* −==⎟
⎠
⎞

⎜
⎝
⎛= , the Burg entropy (often used in

sound processing).

For symmetric Csiszár divergences, the generator is self-dual and both left-type and
right-type Voronoi cells coincide. Figure 5 displays some examples of Csiszár Voronoi
diagrams derived from the Cg code CsiszárVoronoi.cg.

<< Insert Figure 5 here>>
<< Caption

Examples of Csiszár Voronoi diagrams: (a) Total variation distance (L1), (b) Perimeter
divergence, (c) Kullback-Leibler divergence, and (d) Chi squared distance. Because the
divergences may not be symmetric, we define two dual Voronoi diagrams, rasterized here in
blue and red colors.
>>

Csiszár divergence Generator function
Kullback-Leibler divergence xx log (negative Shannon entropy)
Chi squared divergence

2)1(
2
1

−x

Total variation distance |1| −x
Perimeter divergence

2
11 2 xx +

−+

<< Table 1: Common examples of Csiszár divergences. >>

The other generic family of distortion measures are Bregman divergences. Bregman
divergences are informally defined as the tail of a Taylor expansion for a strictly convex
and differentiable function F as follows:

>∇−<−−=)(,)()()||(QFQPQFPFQPDF .

Bregman divergences include among many others the squared Euclidean distance and the
statistical Kullback-Leibler divergence. Table 2 summarizes the usual ones.

Bregman divergence Bregman generator
Squared Euclidean distance 2x
Kullback-Leibler divergence xxx −log (Ext. neg. Shannon entropy)
Itakura-Saito divergence xlog− (Burg entropy)
Exponential divergence xexp

<<Table 2: Common Bregman divergences.>>

Since there are not necessarily symmetric, we define again two types of Voronoi cells:

})||()||(|{)(Vor jPPDPPDPP jFiFiF ∀≤= (right-type)

})||()||(|{)(Vor * jPPDPPDPP jFiFiF ∀≤= (left-type)

Similarly, a dual divergence may be defined using the Legendre transformation that
associates to a convex function a unique dual convex function as follows:

)}(,'{sup)'(* PFPPPF P −><= .

It can be shown that the supremum is reached at the unique point)(' PFP ∇= .
The gradient of the primal and dual Legendre functions are inverse of each others.
Further, the primal and dual divergences are related by the following equation:

 .)'||'(',)'()()||(*
* PQDQPQFPFQPD

FF >=<−+=

For example the Legendre transform of the extended Shannon entropy is the
exponential entropy , as it can be easily checked that their gradient functions are
inverse of each other.

xxx −log
xexp

Again, as in the case of Csiszár divergences, the arguments swap but observe that this time
the space/gradient spaces swap too. This property is at the core of the dually flat shape
geometry of information geometry [BVD’07].

Figure 6 displays the snapshot of the OpenGL® GLUT program that manages
simulatenously two windows to display the primal and dual Voronoi diagrams. The user can
interactively pick up a point either in the primal space or dual gradient space, and observe
how the structures change and are related to each other. Since the first-type Bregman
Voronoi diagram is affine, it can be conveniently computed as a special power
diagram.(with all non-empty cells). The second-type curved Bregman Voronoi diagram
amounts after space/gradient space mapping to compute the dual affine Bregman Voronoi
diagram from the Legendre convex conjugate.

<<Icon: DualVoronoiGPU.exe code>>

<< Insert Figure 6 here Figure6a-ExponentialLoss.tif and Figure6b-DualShannon.tif>>
<< Caption:
 Primal and dual Bregman Voronoi diagrams for the exponential and Shannon
entropies.>>

6] Voronoi diagrams as minimization diagrams

As mentioned in the introduction, the Voronoi diagram can be computed from the
minimization diagram of a set of distance functions anchored at sites using the index
function.

Namely, let be the function attached to the site . The
Voronoi diagram can be obtained from the minimization diagram

, the lower envelope of the functions. For the (squared)
Euclidean distance function, this amounts to consider the lower envelope of a set of
paraboloids anchored at each respective site, as shown in Figure 7.

),Distance()(ii PPPD = iP

)(min)(},...,1{ PDPD ini∈=

For the affine Bregman Voronoi diagrams, we have
>∇−<−−==)(,)()()||()(iiiiFi PFPPPFPFPPDPD . We can remove the

common terms appearing in all distance functions and get equivalently a set of
planes (or hyperplanes in higher dimensions) thus showing that the right-type Bregman
Voronoi diagram is indeed affine.

)(PF

<< Insert Figure 7 here: Figure7-MinimizationDiagrams.tif>>
<< Caption:
Voronoi diagrams as minimization diagrams: Visualizing lower envelopes. Here for the
case of ordinary Voronoi diagrams, we visualize the lower envelope of corresponding
anchored parabolae shifted upward to improve visibility.
>>

<< Code icon: VoronoiByMinimizationDiagram.exe>>

7] Conclusion

Interactive visualization of Voronoi diagrams for various symmetric/non-symmetric
distance functions allows one to gain better understanding of their fundamental properties
and intrinsic dualities. We encourage the reader to look at the set of 20 videos provided on
the accompanying DVD that recorded interactive sessions. As such, the GPU provides a
fabulous tool and framework to gain intuition for discovering mathematical structural
invariants. The GPU, a powerful visualscope, allows one to foster ``visual thinking’’ and
thus potentially hint at further major mathematical discoveries in the future. We refer the
reader to the paper [BVD’07] for further theoretical insights of information-theoretic
diagrams including a neat extension of the space of spheres from which many
computational geometric algorithms such as the smallest enclosing balls rely on.

<< Icon DVD videos here >>

References

[VC05] Frank Nielsen: Visual Computing: Geometry, Graphics and Vision. Charles River
Media, ISBN: 1-58450-427-7, 2005.

[CVD06] Jean-Daniel Boissonnat, Camille Wormser, Mariette Yvinec: Curved Voronoi
Diagrams. In Effective Computational Geometry for Curves and Surfaces. Springer-Verlag
2006.

[JF06] Guodong Rong, Tiow-Seng Tan: Jump flooding in GPU with applications to Voronoi
diagram and distance transform. ACM Symposium on Interactive 3D graphics and games,
109-116, 2006.

[DF06] Avneesh Sud, Naga K. Govindaraju, Russell Gayle, Dinesh Manocha: Interactive
3D distance field computation using linear factorization. ACM Symposium on Interactive
3D graphics and games, 117-124. 2006.

[FG06] Ian Fischer and Craig Gotsman, Fast Approximation of High-Order Voronoi
Diagrams and Distance Transforms on the GPU, Journal of graphics tools, volume 11,
number 4, pages 39-60, 2006. http://jgt.akpeters.com/papers/FischerGotsman06/

[BVD07] Frank Nielsen, Jean-Daniel Boissonnat and Richard Nock, Bregman Voronoi
Diagrams: Properties, Algorithms and Applications, INRIA Research Report No 6154.
(online at hal.inria.fr), 2007.

http://jgt.akpeters.com/papers/FischerGotsman06/

