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1] Introduction 
 
Voronoi diagrams are fundamental geometric structures that have been both deeply and 
widely investigated since their inception in disguise by René Descartes for analyzing the 
gravitational influence of stars, in the 17th century. Voronoi diagrams find countless 
applications in science and engineering beyond graphics as attested by the long 
representative, and yet non-exhaustive, list of applications reported at the web portal 
www.voronoi.com (eg., collision detection, path planning, meshing and surface 
reconstruction, etc.).  

The Voronoi diagram of a finite set of points },....,{ 1 nPPS =  partitions the underlying 
space into elementary structures called Voronoi cells that define combinatorial proximity 

location information. The Voronoi cell of a site  is defined as the locii of points closer 

to site  than to any other site. That is mathematically, 
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thus an essential combinatorial structure that splits the continuous space into a finite 
discrete number of bounded and (necessarily) unbounded cells. The ordinary Voronoi 

diagram of a given set of sites  is defined as the cell complex induced by the 

Voronoi cells  for the Euclidean distance 

[VC05]:
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,, )()(||||),Distance( yyixxiii PPPPPPPP −+−== . Note that since 
the Voronoi diagram is defined in terms of distance comparisons, the structure does not 
change if we take any arbitrary monotonously increasing function of the distance, like the 
square function for example, that allows to bypass unnecessary square root computations.  
 
The graphics processor unit (GPU) provides a nice commodity hardware for either 
visualizing these partitions interactively by rasterizing the Voronoi cells, or for computing 
even the exact combinatorial structures per see, as described in papers [JF06][DF06][FG06]. 
Rasterizing 2D Voronoi diagrams is based on computing the index function for each pixel 
position in screen space (or texture space for GPUs using per-pixel shaders). The index 
function reports for a current pixel/point position the index of the closest site ：
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),(minarg)index( },...,1{ ini PPdP ∈= . In all our Cg codes below (9 in total), we return 
both the smallest distance (min function) and its corresponding index (argmin function) in a 
float2 structure by the Cg function called Winner. We may fill Voronoi cells using 
predefined colors based on the index function, or raster the borders of Voronoi cells if 
neighborhood pixels (either in C4 or C8 connectivity) have different indices, ie., different 
closest points. To emphasize on the role of the distance function, we may also further 
rasterize distance isolines at predetermined values by prescribing beforehand a modulo 
offset value. This isoline drawing style emphasizes another interpretation of Voronoi 
diagrams as dynamic crystal growths whose seeds are anchored at sites, better called 
generators in that context (see Section 6). The OpenGL® GLUT program 
OrdinaryVoronoiDiagram allows to interactively pick up a site and move it so that one 
can explore how the overall structure changes globally from the relative point positions. 
Figure 1 displays different snapshots showing the variety of drawing styles rasterized in 
real-time by the per-pixel Cg shader. An excerpt of the OrdinaryVoronoi.cg code is given 
below: 
 
 
// Report the index of the closest point 
float2 Winner(float2 p) 
{ 
int i, winner; 
float dist,mindist; 
 
mindist=distance(p,position[0]); 
 
for(i=1;i<MAXN;i++) 
 { 
 dist=distance(p,position[i]); 
 if (dist<mindist) {mindist=dist;winner=i;} 
    } 
return float2(winner,mindist); 
} 
 
 
// Voronoi diagram rasterization 
float3  OrdinaryVoronoi(float2 pos: TEXCOORD0) : COLOR0 
{ 
// Index for current and x- y-neighborhood position  
float2 w,wx,wy; 
int index, indexx,indexy;  
// position of the shader pixel 
float2 posx,posy;  
 



float3 color; 
float3 bordercolor=float3(0,0,0); 
float3 isolinecolor=float3(0.5,0.5,0.5); 
float iso, iso2, f; 
 
pos=ToDomain(pos);posx=ToDomain(pos)+float2(s,0);posy=ToDomain(pos)+float2(0,s); 
 
w=Winner(pos);wx=Winner(posx);wy=Winner(posy); 
 
index=w[0];indexx=wx[0];indexy=wy[0]; 
 
// number of isoline strips 
iso=30.0*frac(w[1]); // period  
iso2=frac(iso);  
 
color=ColorCell(index); 
 
// overwrite isoline 
 if (  ((iso2>t1)&&(iso2<10.0*t2)) ) 
   color=isolinecolor; 
 
// Overwrite 
if ((index!=indexx)||(index!=indexy)) 
 return color=bordercolor;  
  
return color; 
} 
<< 
Code 1. The Cg code OrdinaryVoronoi.cg for rasterizing Voronoi cells with different styles. 
>> 
 
<< Insert icon code OrdinaryVoronoiDiagram.exe here>> 
 
<< Insert Figure 1 here Figure1a-OrdinaryVoronoiDiagram-Border.tif 
Figure1b-OrdinaryVoronoiDiagram-CellBorder.tif 
Figure1c-OrdinaryVoronoiDiagram-IsolineBorder.tif 
Figure1d-OrdinaryVoronoiDiagram-isofilledborder. >> 
<<Caption 
Different rendering styles for the ordinary Voronoi diagram: (a) Rasterizing borders, (b) 
rasterizing color cells with thick borders, (c) rasterizing distance isolines with thick borders, 
and (d) rasterizing all three types of information at once: colored cells, distance isolines, 
and cell borders.  
>> 
 



Voronoi diagrams have been generalized in many ways [CVD06] by considering arbitrary 
objects instead of points for sites or various distance functions instead of the Euclidean 
distance, just to name a few. In computational geometry, there exists also important 
variations called k-order Voronoi diagrams that choose all subsets of k sites instead of a 
single site for defining the notion of ``closest/furthest’’ proximity cells (many cells are 
empty).  
 
In this paper, we emphasize on the educational aspects of interactive GPU applications for 
computing in real-time 2D Voronoi diagrams beyond the Euclidean geometry. Namely, we 
first give brief account and visually depict affine and curved Voronoi diagrams [CVD06]. 
Since there are uncountably infinitely many potential distance functions, each defining a 
proper Voronoi diagram in itself, it does not make really sense to catalog all of them. We 
rather present the reader in the latter part a neat generalization based on the axiomatization 
of distances. Namely, we will describe two classes of generic Voronoi diagrams based on 
the information-theoretic parametric distances [BVD’07]: Bregman and Csiszár 
divergences. Bregman and  Csiszár divergences cover interestingly many familiar 
distances and yet intersect only for the most fundamental information measure: The 
Kullback-Leibler divergence, better known as the relative entropy or information 
discrepancy. This allows one to compute statistical Voronoi diagrams, like for example the 
Voronoi diagrams of a finite set of normal distributions ),( iiN σμ  encoded as 2D 

parameter information points ),( ii σμ . This reveals all the more important for computing 
Voronoi diagrams under uncertainty (eg., points with individual variance-based noise). 
 
But first, let us quickly examine some fundamental properties of the ordinary Euclidean 
Voronoi diagrams.  
 
 
2] Bisectors and dually orthogonal Delaunay triangulations 
 
We previously defined the Voronoi cell of site P as the locii of points closer to P than to any 
other sites. However, that definition of Voronoi cells also implicitly highlights the notion of 
territory of a point P with respect to the other sites. So instead of looking up for each point 
its cell, we rather consider computing the cell boundaries. The notion of territory is 
decomposable and let intervene only the discrete finite set of input points. For a given pair 
of sites P and Q, we consider the boundary of their cells as an elementary territory frontier 
(the mere Voronoi diagram of two points) and called it the bisector: 

)},Distance(),Distance(|{),Bisector( QXPXXQP ≤=  .   
Since the Voronoi cell 

}),Distance(),Distance(|{)Vor( SPPPPPPP jii ∈∀≤=  can be rewritten as 

. The bisector in the plane is a line (generalizes to ),Bisector()Vor( jiiji PPP ≠∩=



plane in 3D and hyperplane in higher dimensions): its characteristic derived from the 

distance equality ),Distance(),Distance( PPPP ji =  yields indeed an affine 

equation for the locii of points at equidistance of  and : iP jP
,0,,)(2,:),Bisector( >=<−><+>−< jjiiijji PPPPPPPPP  where  

yyxx QPQPQP +>=< ,  denotes the 2D inner product (dot product). 
  Thus the Voronoi cell is expressed as the intersection of a set of half-planes yielding a 
convex polygon, also called Dirichlet cell or Thiessen polygon, eventually open to infinity 
for unbounded cells.  
 
But there is more and this is obviously a key reason of their success and fame in computer 
graphics: Voronoi diagrams exhibit a unique dual structure called the Delaunay 
triangulations which enjoy nice properties (eg., no thin triangles – that is maximizes the 
smallest angle and minimizes the radius of the smallest enclosing disks of triangles) for 
points in general position (that is, no four co-circular points). The Delaunay triangulation 
meshing the input point set is derived from the Voronoi diagram by linking with straight 
line segments (ie., geodesics) the sites of adjacent cells. The boundary of the mesh is the 
convex hull of the point set and contains all finite Voronoi cells. Further, since the line 
segment joining two sites is provably perpendicular to their bisector, it follows that the 
Delaunay triangulation structure is globally orthogonal to the Voronoi diagram.  
Observe that the intersection point of the bisector/line segment joining two sites may not 
belong to the Voronoi boundaries. Although the Delaunay edges can be derived from the 
second-order Voronoi diagram [FG06] by checking non-empty cells, we rather proceed by 
expanding the former ordinary Voronoi code and detect the edges yielding corresponding 
Delaunay edges by scanlining the frame buffer.   
 
The program DelaunayTriangulation demonstrates that technique (Cg code 
DelaunayTriangulation.cg). Observe that it is not flawless as sometimes the program will 
fail to report edges (notably on the convex hull, if not all bounded Voronoi cells are fully 
rendered in the viewport) but yet is interesting for educational purposes. It can be checked 
that the maximum number of Delaunay edges is 3n-6. This number may varies according to 
the configuration of the point set, namely depending on the size of the convex hull.  
 
<< Insert Figure 2 Figure2-DelaunayTriangulation.tif here>> 
<<Caption 
The dual Delaunay triangulation is orthogonal to the primal Voronoi diagram. 
>> 
 
3] Affine and curved Voronoi diagrams 
 
Having lines (planes or hyperplanes in higher dimensions) as bisectors is definitively a 
convenient property since cells can be computed as convex polygons (polyedra and 



polytopes in higher dimensions). Another classic Voronoi diagram is the power diagram of 
a set of disks. The power distance of a point P to a disk (C,r) centered at C with radius is 

defined as . The power distance is symmetric, and 
positive if and only if the point P lies outside the disk. Power diagrams generalize ordinary 
Voronoi diagrams (all radii set to zero) but note that some Voronoi cells of Power diagrams 
may be empty (and by virtue of the pigeonhole principle some cells may contain (partially) 
several points). Affine diagrams a;so include interestingly the Voronoi diagram for the 

generalized quadratic distance 

22||||),;Power( rCPrCP −−=

)()(),( i
T

iiQ PPQPPPPd −−=  for a positive 
semi-definite matrix Q (the usual ordinary Euclidean distance is obtained by setting Q to 
the identity matrix),  and k-order diagrams. It is therefore natural to ask whether there 
exists a common universal methodology for computing these affine diagrams? The striking 
result is that any affine diagram can be computed as the power diagram of a set of disks. 
(Thus, we can also compute the Delaunay edges from a power diagram representing the 
second-order point Voronoi diagram since 2nd order diagrams are affine.) Another common 
distance variation of Voronoi diagrams is to add or multiply the distance by a weight 
anchored at each site (these parameters can be interpreted as a time lag and a speed attribute 
for each generator). These generalizations yield the so-called additively and 
multiplicatively weighted Voronoi diagrams. In [CVD06], the most common curved and 
affine Voronoi diagrams are presented. They can all be computed from the following 

generic distance function ( ) αα

iii
T

iii rPPQPPwPPd −−−= )()(),( . That is, to 

each disk  we further attach a weight  and a positive semi-definite symmetric 

matrix  (often taken as the inverse of a variance-covariance matrix). The radii of disks 
can potentially be imaginary, ie. negative. Equipped with that parametric distance function, 
we get the following diagrams explained in details in [CVD06]: 

),( ii rP iw
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 Möbius diagrams  obtained by the following distance: 

. Möbius diagrams have the particularity of 
having their bisectors as arcs of circles. The Voronoi diagrams with arcs of circle 
bisectors are called spherical diagrams by analogy to affine diagrams. Similarly, there 
is a universality theorem for that class of Voronoi diagrams since any spherical diagram 
can be computed as a Möbius diagram too. 

iiii rPPwPP −−= 2||||),Moebius(

 
 Apollonius diagram of a set of spheres is defined by the following distance function: 

iii rPPPP −−= ||||),(Apollonius . In a sense, it is conceptually similar to power 
diagrams except that the Euclidean distance is not squared. The name of that diagram 
comes from the fact that at each vertex of the diagram there exists a circle tangent to three 
input circles. Computing such a circle was first raised by Apollonius and is known as 
Appolonius’ Tenth problem. Bisectors are characterized by arcs of hyperbolae, and the 



diagram is also called Johnson-Mehl diagram in the physics/chemistry literature. 
 

 Anisotropic Voronoi diagrams are defined by the following weighted distance 

function . They recently gained 
attention in the computer graphics and computational geometry community for 
meshing anisotropically CAD objects with sharp ridges. The bisectors of anisotropic 
Voronoi diagrams are quadratic curves, and again there is a corresponding universality 
theorem that proves that any quadratic Voronoi diagram can be obtained from an 
anisotropic diagram. 

iii
T

ii rPPQPPPP −−−= )()(),c(Anisotropi

 
Figure 3 displays these different diagrams, and the program VorPDMöbiusAppolonius 
allows to interact real-time with all these diagrams.  
 
 
<< Insert Figure 3 here>> 
<< Caption: 
A gallery of affine and curved Voronoi diagrams: (a) Power diagram, (b) Apolonius 
diagram, (c) Möbius diagram, and (d) Anisotropic diagram. These diagrams can also be 
rendered using the distance isoline style.>>   
 
 
<< Insert code icon here VorPDMöbiusAppolonius.exe >> 
 
Next, we will now present and interactively visualize a few Voronoi diagrams on 
non-Euclidean geometries. The power diagram can be interpreted as one of those for the 
Laguerre geometry. 
 
 
4] Spherical and hyperbolic Voronoi diagrams 
 
For a very long time, Euclidean geometry derived from Euclid’s five postulates was 
considered the unique geometry prevailing on Earth. Failing to prove that the more 
complicated fifth parallel postulate could be derived from the first four axioms, yielded 
eventually to one of the greatest discovery of mankind: The birth of non-Euclidean 
geometry in the 17th Century. The hyperbolic and spherical non-Euclidean geometries were 
thoroughly investigated in the 18th Century. Historically, these abstract geometries were 
called imaginary geometries. To visualize them, we need to map their structures on the 
Euclidean space. This is always possible by virtue of the Riemann mapping theorem. 
 
The Voronoi diagram of a set of points on the 3D sphere, can be rasterized using the GPU 
per-pixel shader using the spherical coordinates on a texture map. The distance between 
any two points on a sphere is taken as the angle formed by any two 3D points of the unit 
sphere: The arccosine of the inner product of these points, namely 



)arccos(),(Distance ,,, zizyiyxixiSphere PPPPPPPP ++= . 
Figure 4 depicts such a Voronoi diagram rasterized on the texture map using the latitude 
and longitude spherical coordinates, and textured on the 3D unit sphere for visualization.  
 
<<Insert Code icon EllipticalGeometryVoronoi.exe>> 
 
The Cg code follows the same spirit of the ordinary Voronoi diagram except for the 
computations of the spherical distance: 
 
// 
// Convert latitude longitude to 3D xyz Cartesian coordinate 
// Unit vector 
float3 Spherical2Cartesian(float2 tp) 
{float3 xyz; 
 
xyz[0]=cos(tp[1])*sin(tp[0]); 
xyz[1]=sin(tp[1]); 
xyz[2]=cos(tp[1])*cos(tp[0]); 
 
return xyz;  
} 
 
float norm(float3 P) 
{ 
return P[0]*P[0]+P[1]*P[1]+P[2]*P[2]; 
} 
 
float DistanceSphere(float2 tp, float2 tq) 
{ 
float3 P, Q; 
float angle; 
 
P=Spherical2Cartesian(tp); 
Q=Spherical2Cartesian(tq); 
angle=acos(P[0]*Q[0]+P[1]*Q[1]+P[2]*Q[2]); 
 
return abs(angle); 
} 
 
<< Insert Figure 4 here Figure4a-SphericalVoronoiTexture.tif, 
Figure4b-SphericalVoronoiSphere.tif and Figure4c-HyperboloicVoronoi.tif>> 
<< Caption 
Spherical (latitude-longitude map and textured 3D sphere) and hyperbolic Voronoi 



diagrams (conformal Poincaré disk in red and non-conformal affine Beltrami-Klein disk in 
blue).>>   
 
There are several realizations of the hyperbolic geometry. The two most famous ones are 
the conformal Poincaré disk preserving the angles, and the non-conformal Beltrami-Klein 
disk. The notion of conformality indicates that the mapping preserves the incidence angles, 
an important feature first used historically in cartography, and later considered in texture 
mapping of 3D meshes. For Cartesian point coordinates lying on a unit disk centered at the 
origin, we have the respective hyperbolic distance functions given as; 
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where  )1log()arccosh( 2 −+= xxx  and yyxx QPQPQP +>=< , . 
 
<<Insert Code icon GPUHyperbolicVoronoi.exe>> 
 
 
Interestingly, it can be checked that the Beltrami-Klein hyperbolic Voronoi diagram is 
affine and can thus be computed equivalently as a power diagram. Moreover, there exists 
simple one-to-one mappings for going from one hyperbolic realization to another. 
 
In the 19th Century, Riemann further proved that there exist infinitely many abstract 
geometries, generalizing the elliptical and spherical geometries using the notion of 
Riemann metric, that can eventually further be defined locally using a tensor metric. This 
formalization is at the heart of the general space-time relativity theory of Einstein. 
 
5] Information-theoretic Voronoi diagrams 
 
Most of the common distance functions we usually meet in practice either belong to the 
generic class of Csiszár divergences, or to the class of Bregman divergences. These 
parametric distance functions are not necessarily symmetric nor do they respect the triangle 
inequality. Their justification is based on the characterization of least square problems as 
“projections” and the existence of generalized Pythagorean theorems. Details are out of 
scope of this paper, see [BVD’07]. Again interactive GPU rasterization allows the user to 
explore and gain intuition of their properties fostering visual thinking and mathematical 



intuition. 
 
The Csiszár divergence is defined for a strictly convex generator function f such that f(1)=0 
as the following statistical distance:  
 

x
xP
xQfxPQPI f d
)(
)()()||( ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= , 

where P and Q are probability distributions (ie., both 1d)( =∫ xxP  and 

). For example, the total variation distance is obtained for 

 Table 1 lists a few usual generators encountered in practice. This 
diagram is equivalent to the L1 norm Voronoi diagram.  

1d)( =∫ xxQ
.|1|)( −= xxf

Because the distance measure may not be symmetric, it is also called divergence and the 
 notation emphasizes on the non-metric property of these distance 

functions. For asymmetric divergences, we may further define two-types of cells depending 
on the position (left/right) of the the site for defining Voronoi cells:  

)||Distance( QP
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})||()||(|{)(Vor * jPPIPPIPP jfifif ∀≤=  (left-type) 
 
We may associate to a Csiszár generator function a dual *-conjugate function 
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that . For example, the *-conjugate of the negative Shannon 

entropy is 
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sound processing). 
 
For symmetric Csiszár divergences, the generator is self-dual and both left-type and 
right-type Voronoi cells coincide. Figure 5 displays some examples of Csiszár Voronoi 
diagrams derived from the Cg code  CsiszárVoronoi.cg. 
 
<< Insert Figure 5 here>> 
<< Caption   



Examples of   Csiszár Voronoi diagrams: (a) Total variation distance (L1), (b) Perimeter 
divergence, (c) Kullback-Leibler divergence, and (d) Chi squared distance. Because the 
divergences may not be symmetric, we define two dual Voronoi diagrams, rasterized here in 
blue and red colors. 
>>   
 
 
Csiszár divergence Generator function 
Kullback-Leibler divergence xx log  (negative Shannon entropy) 
Chi squared divergence 

2)1(
2
1

−x  

Total variation distance |1| −x  
Perimeter divergence 

2
11 2 xx +

−+  

 
<< Table 1: Common examples of Csiszár divergences. >> 
 
The other generic family of distortion measures are Bregman divergences. Bregman 
divergences are informally defined as the tail of a Taylor expansion for a strictly convex 
and differentiable function F as follows: 
 

>∇−<−−= )(,)()()||( QFQPQFPFQPDF . 
 
Bregman divergences include among many others the squared Euclidean distance and the 
statistical Kullback-Leibler divergence. Table 2 summarizes the usual ones. 
 
 
Bregman divergence Bregman generator 
Squared Euclidean distance 2x  
Kullback-Leibler divergence xxx −log  (Ext. neg. Shannon entropy) 
Itakura-Saito divergence xlog−  (Burg entropy) 
Exponential divergence xexp  
 
 
<<Table 2: Common Bregman divergences.>> 
 
 



Since there are not necessarily symmetric, we define again two types of Voronoi cells: 
  

})||()||(|{)(Vor jPPDPPDPP jFiFiF ∀≤=  (right-type) 
 

})||()||(|{)(Vor * jPPDPPDPP jFiFiF ∀≤=  (left-type) 
 
Similarly, a dual divergence may be defined using the Legendre transformation that 
associates to a convex function a unique dual convex function as follows: 
 

)}(,'{sup)'(* PFPPPF P −><= . 
 
It can be shown that the supremum is reached at the unique point )(' PFP ∇= .  
The gradient of the primal and dual Legendre functions are inverse of each others. 
Further, the primal and dual divergences are related by the following equation: 
 

 . )'||'(',)'()()||( *
* PQDQPQFPFQPD

FF >=<−+=

For example the Legendre transform of the extended Shannon entropy  is the 
exponential entropy , as it can be easily checked that their gradient functions are 
inverse of each other. 

xxx −log
xexp

 
Again, as in the case of Csiszár divergences, the arguments swap but observe that this time 
the space/gradient spaces swap too. This property is at the core of the dually flat shape 
geometry of information geometry [BVD’07]. 
 
Figure 6 displays the snapshot of the OpenGL® GLUT program that manages 
simulatenously two windows to display the primal and dual Voronoi diagrams. The user can 
interactively pick up a point either in the primal space or dual gradient space, and observe 
how the structures change and are related to each other. Since the first-type Bregman 
Voronoi diagram is affine, it can be conveniently computed as a special power 
diagram.(with all non-empty cells). The second-type curved Bregman Voronoi diagram 
amounts after space/gradient space mapping to compute the dual affine Bregman Voronoi 
diagram from the Legendre convex conjugate. 
 
<<Icon: DualVoronoiGPU.exe code>> 
 
<< Insert Figure 6 here Figure6a-ExponentialLoss.tif and Figure6b-DualShannon.tif>> 
<< Caption: 
  Primal and dual Bregman Voronoi diagrams for the exponential and Shannon 
entropies.>>   



 
6] Voronoi diagrams as minimization diagrams 
 
As mentioned in the introduction, the Voronoi diagram can be computed from the 
minimization diagram of a set of distance functions anchored at sites using the index 
function. 
 
Namely, let   be the function attached to the site . The 
Voronoi diagram can be obtained from the minimization diagram 

, the lower envelope of the functions. For the (squared) 
Euclidean distance function, this amounts to consider the lower envelope of a set of 
paraboloids anchored at each respective site, as shown in Figure 7. 

),Distance()( ii PPPD = iP

)(min)( },...,1{ PDPD ini∈=

For the affine Bregman Voronoi diagrams, we have 
>∇−<−−== )(,)()()||()( iiiiFi PFPPPFPFPPDPD . We can remove the 

common terms  appearing in all distance functions and get equivalently a set of 
planes (or hyperplanes in higher dimensions) thus showing that the right-type Bregman 
Voronoi diagram is indeed affine.  

)(PF

 
<< Insert Figure 7 here: Figure7-MinimizationDiagrams.tif>> 
<< Caption: 
Voronoi diagrams as minimization diagrams: Visualizing lower envelopes. Here for the 
case of ordinary Voronoi diagrams, we visualize the lower envelope of corresponding 
anchored parabolae shifted upward to improve visibility. 
>> 
 
 
<< Code icon: VoronoiByMinimizationDiagram.exe>> 
 
 
7] Conclusion 
 
Interactive visualization of Voronoi diagrams for various symmetric/non-symmetric 
distance functions allows one to gain better understanding of their fundamental properties 
and intrinsic dualities. We encourage the reader to look at the set of 20 videos provided on 
the accompanying DVD that recorded interactive sessions. As such, the GPU provides a 
fabulous tool and framework to gain intuition for discovering mathematical structural 
invariants. The GPU, a powerful visualscope, allows one to foster ``visual thinking’’ and 
thus potentially hint at further major mathematical discoveries in the future. We refer the 
reader to the paper [BVD’07] for further theoretical insights of information-theoretic 
diagrams including a neat extension of the space of spheres from which many 
computational geometric algorithms such as the smallest enclosing balls rely on.  



 
<< Icon DVD videos here >> 
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