9.2

Interactive image
Segmentation Based on
GPU Cellular Automata

Frank Nielsen, Sony Computer Science

Laboratories, Inc.

Introduction

Image segmentation consists of grouping pixels into homogeneous regions representing
perceptual units using local and/or global cues. Although the first segmentation algo-
rithms were introduced in the early 1970s, segmentation is still a hot topic of computer
vision. Segmentation can be handled at different image understanding scales [Nielsen05]:
(1) low-level segmentation uses local pixel neighborhood cues such as color or texture
information to infer the global image partition; (2) middle-level segmentation considers
elements of the Gestalt theory such as symmetry detection and rules thereof to improve
the pixel grouping; (3) Aigh-level segmentation relies on (re)cognition to improve the
overall global segmentation (e.g., recognizing first categories of objects lets us later refine
their segmentations). Foreground-background segmentation is a simplified segmenta-
tion task that seeks to decompose the image into two planes: the foreground mask plane
and the background mask plane. Finally, we distinguish between hard and soff segmenta-
tion, which depends on whether masks have only 0/1 binary values or potentially float
values (by analogy to hard/soft clustering). It is well known that segmentation algo-
rithms are time-consuming and that they may work or simply fail, depending on input
images. Thus, it is crucial to allow for a rectification mechanism by letting the user szeer
the segmentation using prior cues [Nock05].

To reduce segmentation computation times, the GPU has already been success-
fully used in the past for fully automatic segmentation, using for example level sets
[Lefohn05]. Here, we present a GPU shader implementation for a recent simple
yet efficient cellular automata-based foreground/background hard segmentation:
GrowCut [Vezhnevets05]. Figure 9.2.1 displays the compositing result obtained after
segmenting of a stuffed furry dog image by a GrowCut shader.

511

512 Section 9 Beyond Pixels and Triangles

©)

FIGURE 9.2.1 Source image of a (A) stuffed furry dog (B) with its binary foreground mask
obtained from GrowCut. Image (C) displays the result of compositing the dog mask with a new
background image.

The G_rov_yQut Cellular Automaton Pl_'inciple

Vezhnevets and Konouchine [Vezhnevets05] recently proposed an elegant and very
simple segmentation algorithm, called GrowCut, based on cellular automata. Grow-
Cut performs well in practice: A Photoshop® plug-in that can also be used with share-
ware or freeware software such as Xnview (xnview.org), IrfanView (irfanview.com), or
Paintshop (jasc.com) is available [Vezhnevets05]. GrowCur first initializes a cellular
automaton (CA) where each cell associated to an image pixel stores its szaze in a three-
tuple (/,:,C) . Parameter / denotes the label of cell, namely, the foreground (/= 1) or
background label (/ = 0) of the underlying cell’s pixel. Scalar variable s denotes the
strength of the cell, which is related to the stability of the label. Finally, vector C
encodes the color information of the corresponding pixel: A triple of RGB colors. To
initialize a GrowCut CA, we set for each pixel p its corresponding CA cell as:
[p1=0,p]=0,Clp]=(R,,G,,B,) . Then, we require the user to initially input fore-

ground and background priors using mouse strokes, as depicted in Figure 9.2.2. We

9.2 Interactive Image Segmentation Based on GPU Cellutlar Automata 513

set the corresponding cell states using the stroke label and enforce the initial hard con-
straints using the maximum strength s = 1. Pixel regions not covered by any stroke are
labeled unknown (/ = 0.5) with zero strength. Thus, pixels are initially annotated as
being either foreground, background, or unknown (initial trimap). A more flexible
initialization will provide a soft background/foreground brush where the strength val-
ues may decrease as we near the stroke borders (values within the unit interval).

ckground stroke

FIGURE 9.2.2 Snapshot of the CPU GrowCut application on a stuffed
furry dog image showing the evolution of pixel labels at the 125th iteration.

Once this initialization step is performed, we let the GrowCut CA evolve on the

trimap until it converges into a stable state at which none of the cell states change.

Please refer to subfolders, CPU GrowCut UI and CPU Image Composite, in the

(< article’s folder on the CD-ROM. The evolution rules are inspired by bacteria behav-
ONTHE®D jors. Bacteria may spread if they can successfully attack some of their neighbors, or
conversely, they shrink and potentially vanish if they have been killed by other fami-

lies of bacteria. Bacteria of a same family are indexed by their common label /. We

summarize in pseudo-code the GrowCut CA evolution rule as originally proposed in
[Vezhnevets05]:

/| Pseudo-code for GrowCut CA evolution rules
For all cells
/] Copy the previous state (colors do not change)

514 Section 9 Beyond Pixels and Triangles

1'[p] = 1lpl, s'[pl = s[p]
For all C4 or C8 neighbor g of the current cell
if g(Dist(C[p],Clgl)slgl>s[p] then

// q successfully attacked p

{] update the cell state

;'Ipl = 1lg],s'[q] = g()Dist(Clp],Clal,Clqls[ql

Dist() recurns the distance between two RGB colors, and function g() is a
monotonous decreasing function bounded to the unit interval [0,1] that guarantees

convergence. For example, we can choose g(x)=1~ —l— €[0,1].
ax.

(AY
Choosing the 3D Euclidean distance for comparing (RGB) triples yields

MaxDist = 255+/3 (approximately 441.67). (CIE LAB color space may yield better
Fuclid

esults, as th

e

e idean distance makes sense but would require an extra image con-
version step.)
Cellular automara bring to segmentation a fully dynamic aspect of region labeling,
where pixels” labels may oscillate a few times before reaching their final states. More-
over, at any time, users can further interactively input foreground/background strokes
or edit previous strokes to gear the overall segmentation in difficult areas. A naive
CPU implementation (GrowCutuI) using a thread for computing the GrowCut cellu-
lar automaton yields a low refresh rate. CA, coupled map lattice (CML), or Petri nets
are well known to be easily ported to GPU architectures [Harris03] [Lefohn05] (e.g.,
Conway’s game of life). We describe in the next section the GrowCut shader and its
performance compared with the nonoptimized CPU version.

A GPU GrowCut Shader

We implemented a simple shader, growcut. cg, that examines in a deterministic order
the C4 (four-connectivity of pixels) neighbors of a pixel to decide whether to relabe!
its neighbor. Because computations are carried out in parallel between any two succes-
sive iterations, this amounts to deciding for each pixel whether it keeps its label, and
updating its strength accordingly. Our shader is a direct translation of the basic C++
loop code. In this implementation we deterministically examine the neighborhood of
pixels and store the five parameters (R, G, B, /, 5) into two texture units: the source
color image (R, G, B) and the label-strength image (/, 5). Considering a random order
of inspection of a pixel’s neighborhood will yield a better segmentation but remove
privileged-direction-growth artifacts. The shader in the following listing and its
accompanying program can further be improved in several ways such as taking into
account several objects instead of plain foreground/background segmentation (multi-
label), handling 3D volumetric image stacks, and smoothing the object boundaries
using a somewhat more complex evolution rule [Vezhnevets05].

9.2

Interactive Image Segmentation Based on GPU Cellular Automata 515

float Dist(float3 p, float3 q)
{return sqrt((p[01-q[0])*(p[0]-q[0]
(P[11-ql11)+(pl2]-ql2})*(p[2]-ql2])

J+(p[1]-a01])~
)5}

sqrt(3) is approximately 1.7321

float g(float x)

{return 1.0-x/(1.7321});}

void GrowCut(float2 texCoord:TEXCOORDO, out float3 color: COLOR,
uniform samplerRECT Image, uniform samplerRECT Label)

{

{/ Neighborhood in color RGB image

float3 pixel = f3texRECT(Image, texCoord);

float3 neighUp = f3texRECT(Image, texCoord+floatZ(0,1)

float3 neighDown = f3texRECT(Image, +°V“ﬁOPHLF1vut2(O, 1) H
float3 neighleft = f3texRECT(Image, texCoord+float2(-1,0)) ;
float3 neighRight = f3texRECT(Image, texCoord+float2(1,0)) ;

/! Neighborhood in (Label,Strength) image

float3 pixell = f3texRECT(Label, texCoord);

float3 neighUpl = f3texRECT(Label, texCoord+float2(0,1)) ;
float3 neighDownl = f3texRECT(Label, texCoord+float2(0,-1})} ;
float3 neighLeftl = f3texRECT(Label, texCoord+float2(-1,0)) ;
float3 neighRightl = f3texRECT(Label, texCoord+float2(1,0)) ;

// Initialization
float label=pixell[0];
float strength=pixell[1];

float pstrengthUp=neighUpl[1]*g(Dist(neighUp[0],pixel[0]));

float pstrengthDown=neighDownl[1]*g(Dist(neighDown[0],pixel[0]));
float pstrengthLeft=neighleftl[1]*g{Dist(neighLeft{0],pixel[C}])});
float pstrengthRight=neighRightl[1]*g(Dist(neighRight[0],pixel[0]));

float diffUp=pstrengthUp-strength;

float diffDown=pstrengthDown-strength;
float diffLeft=pstrengthLeft-strength;
float diffRight=pstrengthRight-strength;

/1

//Neighbor UP tries to attack me

I

if ((neighUpl[0]!i=pixell[0])&&(diffUp>0.0))

{
{/ Neighbor Up succeeded the attack
label=neighUpl[0];
strength=pstrengthUp;
}
else

{

516

Section 9 Beyond Pixels and Triangles

// Neighbor DOWN tries to attack me

if ((neighDownl[0]!=pixell[0])&&(diffDown>0.0))
{

label=neighDownl{Q];

strength=pstrengthDown;

}
else
{ // Neighbor LEFT tries to attack me
if ((neighLeftl[0]!=pixell[0])&&(diffLeft>0.0))
{
label=neighLeftl{0];
strength=pstrengthLeft;
}
else
{ /! Neighbor RIGHT tries to attack me
if ((neighRightl[0]!=pixell[0])&&
(diffRight>0.0))
{
label=neighRightl[0];
strength=pstrengthRight;
}
}
}

}
// New LS state for the Imagel$S

color=float3(label,strength,0);
}

For pedagogical reasons, we chose to implement a screen-frame buffer rendering
that shows the evolution of the CA state at each iteration. A better-optimized imple-
mentation would consider off-screen rendering using common GPGPU techniques:
render to pbuffer, render to texture, or use a frame buffer object (OpenGL FBO exten-
sion GL_FRAME_BUFFER_EXT [FBO05)).

Finally, we export the foreground mask using the two texture images (ImageRGB,
ImageLs) and using another fragment shader, GrowCutExport (see Figure 9.2.3):

void GrowCutExport(float2 texCoord:TEXCOORDO, out float3 color:
COLOR, uniform samplerRECT ImageRGB, uniform samplerRECT Imagel$S)

{
float3 pixellabel = f3texRECT(ImagelS, texCoord);

// extract only the foreground object from the image
if (pixellabel[0]==1.0)

{

color=f3texRECT(ImageRGB, texCoord);

}

else

{// background color

color=float3(0.1,0.8,0.1);

9.2 Interactive Image Segmentation Based on GPU Cellular Automata 517

(€)
FIGURE 9.2.3 Snapshot of the GPU GrowCut application (A) on a flower image initialized inter-

actively using a foreground/background stroke, (B) on a label-strength image after 300 automaton
iterations, and (C) on an extracted foreground flower.

Conclusion

We have presented a GPGPU pixel shader for speeding up the simple foreground/
background segmentation task using a cellular automaton, which can be found in the
(< article subfolder called GPU GrowCut. The shader implements the simple yet effec-

ONTHECD tive GrowCut segmentation method [Vezhnevets05].

References

T

[FBO05] OpenGL Framebuffer Extension (FBO). Available online at Azep://oss.sgi.
com/projects/ogl-samplelregistry/ EXT/framebuffer_object. txt.

[Lefohn05] Lefohn, Aaron, Ian Buck, Patrick McCormick, John Owens, Timothy
Purcell, and Robert Strzodka. “General Purpose Compurtation on Graphics
Hardware.” [EEE Visualization 2005 (VIS05), 2005.

[Harris03] Harris, Mark J. “Real-time Cloud Simulation and Rendering.” University

of North Carolina, #TR03-040, 2003. Available online at Azp./fwww.mark-
mark. net/dissertation/,

518 Section 9 Beyond Pixels and Triangles

[Nielsen05] Nielsen, Frank. Visual Computing: Geometry, Graphics, and Vision.
Charles River Media, 2005. (http.//www.csl.somy.co.jp/person/nielsen)

[Nock05] Nock, Richard and Frank Nielsen. “Semi-Supervised Statistical Region
Refinement for Color Image Segmentation.” Pattern Recognition, 38(6), (2005):
835-846.

[Vezhnevets05] Vezhnevets, Viadimir and Vadim Konouchine. “Grow-Cut - Interac-
tive Multi-Label N-D Image Segmentation.” Graphicon, 2005. Available online
at hutp:/iresearch.graphicon.rulgrowcut/gml-growcut. html.

