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Abstract. We review the information-geometric framework for statisti-
cal pattern recognition: First, we explain the role of statistical similarity
measures and distances in fundamental statistical pattern recognition
problems. We then concisely review the main statistical distances and
report a novel versatile family of divergences. Depending on their intrin-
sic complexity, the statistical patterns are learned by either atomic para-
metric distributions, semi-parametric finite mixtures, or non-parametric
kernel density distributions. Those statistical patterns are interpreted
and handled geometrically in statistical manifolds either as single points,
weighted sparse point sets or non-weighted dense point sets. We ex-
plain the construction of the two prominent families of statistical mani-
folds: The Rao Riemannian manifolds with geodesic metric distances, and
the Amari-Chentsov manifolds with dual asymmetric non-metric diver-
gences. For the latter manifolds, when considering atomic distributions
from the same exponential families (including the ubiquitous Gaussian
and multinomial families), we end up with dually flat exponential family
manifolds that play a crucial role in many applications. We compare the
advantages and disadvantages of these two approaches from the algorith-
mic point of view. Finally, we conclude with further perspectives on how
“geometric thinking” may spur novel pattern modeling and processing
paradigms.

Keywords: Statistical manifolds, mixture modeling, kernel density estima-
tor, exponential families, clustering, Voronoi diagrams.

1 Introduction

1.1 Learning statistical patterns and the Cramér-Rao lower bound

Statistical pattern recognition [1] is concerned with learning patterns from ob-
servations using sensors, and with analyzing and recognizing those patterns effi-
ciently. We shall consider three kinds of statistical models for learning patterns
depending on their intrinsic complexities:

1. parametric models: A pattern is an atomic parametric distribution,
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2. semi-parametric models: A pattern is a finite mixture of parametric distri-
butions, and

3. non-parametric models: A pattern is a kernel density distribution.

Given a set of n observations {x1, ..., xn}, we may estimate the pattern pa-
rameter λ of the atomic distribution p(x;λ) by using the maximum likelihood
principle. The maximum likelihood estimator (MLE) proceeds by defining a
function L(λ;x1, ..., xn), called the likelihood function and maximizes this func-
tion with respect to λ. Since the sample is usually assumed to be identically and
independently distributed (iid.), we have:

L(λ;x1, ..., xn) =
∏
i

p(xi;λ).

This maximization is equivalent (but mathematically often more convenient) to
maximize the log-likelihood function:

l(λ;x1, ..., xn) = logL(λ;x1, ..., xn) =
∑
i

log p(xi;λ).

This maximization problem amounts to set the gradient to zero:∇l(λ;x1, ..., xn) =

0, and solve for the estimated quantity λ̂ provided that it is well-defined (ie., that

ML does not diverge to ∞). We can view the MLE as a function λ̂(X1, ..., Xn)
on a random vector and ask for its statistical performance. (Indeed, we can build
a family of moment estimators by matching the sample l-th moments with the
distribution l-th moments. This raises the question to compare them by ana-
lyzing, say, their variance characteristics.) Cramér [2], Fréchet [3] and Rao [4]
independently proved a lower bound on the variance of any unbiased estimator
λ̂:

V [λ̂] � I(λ)−1,

where � denotes the Löwner partial ordering1 on positive semidefinite matrices,
and matrix I(λ) is called the Fisher information matrix:

I(λ) = [Iij(λ)], Iij(λ) = E[∂il(x;λ)∂j l(x;λ)],

with ∂k the shortcut notation: ∂k = ∂
∂λk

. The Fisher information matrix [5]

(FIM) is the variance of the score function s(λ) = ∇λ log p(λ;x): I(λ) = V [s(λ)].
This lower bound holds under very mild regularity conditions.

Learning finite mixtures of k atomic distributions is traditionally done using
the Expectation-Maximization algorithm [6]. Learning a non-parametric distri-
bution using a kernel density estimator (KDE) proceeds by choosing a kernel
(e.g., Gaussian kernel), and by then fitting a kernel at each sample observation

1 A symmetric matrix X is positive definite if and only if ∀x 6= 0, x>Xx > 0, and
A � B iff. A − B � 0. When the inequality is relaxed to include equality, we have
the semi-positive definiteness property.



(controlling adaptively the kernel window is important in practice). Those three
ML estimation/EM/KDE algorithms will be explained using the framework of
information geometry in Section 5 when considering dually flat statistical expo-
nential family manifolds (EFMs).

We now describe briefly the fundamental tasks of pattern recognition us-
ing eiher the unsupervised setting or the supervised setting. We recommend the
introductory textbook [7] of Fukunaga for further explanations.

1.2 Unsupervised pattern recognition

Given a collection of n statistical patterns represented by their distributions
(or estimated parameters λ1, ..., λn), we would like to categorize them. That is,
to identify groups (or clusters) of patterns inducing pattern categories. This is
typically done using clustering algorithms. Observe that since patterns are repre-
sented by probability distributions, we need to have clustering algorithms suited
to statistical distributions: Namely, clustering algorithms tailored for informa-
tion spaces. We shall explain and describe the notions of statistical distances in
information spaces in the following Section.

1.3 Supervised pattern recognition

When we are given beforehand a training set of properly labeled (or annotated)
patterns, and seek to classify incoming online patterns, we may choose to label
that query pattern with the label of its most similar annotated pattern in the
database, or to vote by considering the k “nearest” patterns. Again, this requires
a notion of statistical similarity that is described in Section 2.

1.4 Core geometric structures and algorithmic toolboxes

Since we are going to focus on two types of construction for defining statistical
manifolds of patterns, let us review the wish list tools required by supervised or
unsupervised pattern recognition. We need among others:

– Clustering (e.g., hard clustering à la k-means) with respect to statistical
distances for unsupervised category discovery,

– To study the statistical Voronoi diagrams induced by the distinct category
patterns,

– Data-structures for performing efficiently k-NN (nearest neighbor) search
with respect to statistical distances (say, ball trees [8] or vantage point
trees [9]),

– To study minimum enclosing balls (MEB) [10,11,12,13] (with applications
in machine learning using vector ball machines [14])

– Etc.



1.5 Outline of the paper

The paper is organized as follows: In Section 2, we review the main statistical
divergences, starting from the seminal Kullback-Leibler divergence, and explain
why and how the intractable distribution intersection similarity measure needs
to be upper bounded. This allows to explain the genesis of the Bhattacharyya
divergence, the Chernoff information and the family of α-divergences. Following
this interpretation, we further present the novel concept of quasi-arithmetic α-
divergences and quasi-arithmetic Chernoff informations. Section 3 recalls that
geometry is grounded by notion of invariance, and introduces the concepts of
statistical invariance with the class of Ali-Silvey-Csiszár f -divergences [15,16].
We then describe two classical statistical manifold constructions: In Section 4,
we present the Rao Riemannian manifold and discuss on its algorithmic consid-
erations. In Section 5, we describe the dual affine Amari-Chentsov manifolds,
and explain the process of learning parametric/semi-parametric/non-parametric
patterns on those manifolds. Finally, Section 6 wrap ups this review paper and
hints at further perspectives in the realm of statistical pattern analysis and
recognition.

2 Statistical distances and divergences

2.1 The fundamental Kullback-Leibler divergence

The Kullback-Leibler divergence between two probability distributions P (x) and
Q(x) (with density p(x) and q(x) with respect to a measure ν) is equal to the
cross-entropy H×(P : Q) minus the Shannon entropy H(P ):

KL(P : Q) =

∫
p(x) log

p(x)

q(x)
dν(x) = H×(P : Q)−H(P ) ≥ 0,

with

H×(P : Q) =

∫
−p(x) log q(x)dν(x),

H(P ) =

∫
−p(x) log p(x)dν(x) = H×(P : P ).

In practice, the Kullback-Leibler divergence KL(P̃ : P ) [17] can be inter-
preted as the distance between the estimated distribution P̃ (derived from the
observed samples) and the true hidden distribution P . The Kullback-Leibler di-
vergence does not satisfy the metric axioms of symmetry and triangular inequal-
ity. Therefore we call this dissimilarity2 measure a divergence as it is a smooth
and differentiable distance function that satisfies the essential separability prop-
erty: KL(P : Q) = 0 if and only if P = Q. Computing the Kullback-Leibler may
not be tractable analytically (eg., for patterns modeled by mixtures or KDEs)

2 Note that there are Finslerian distances [34] that preserve the triangular inequality
without being symmetric.



and requires costly Monte-Carlo stochastic approximation algorithms to esti-
mate. To bypass this computational obstacle, several alternative distances like
the Cauchy-Schwarz divergences [18] have been proposed. Since the inception
of the Kullback-Leibler divergence, many other statistical distances have been
proposed. We shall review in the context of classification the most prominent
divergences.

2.2 Genesis of statistical distances

How can we define a notion of “distance” between two probability distributions
P1 and P2 sharing the same support X with respective density p1 and p2 with
respect to a dominating measure ν? What is the meaning of defining statistical
distances? A distance D(·, ·) can be understood as a non-negative dissimilarity
measure D(P1, P2) ≥ 0 that is related to the notion of a similarity measure
0 < S(P1, P2) ≤ 1. We present an overview of statistical distances based on the
framework of Bayesian binary hypothesis testing [7].

Consider discriminating P1 and P2 with the following classification problem
based on the mixture P = 1

2P1 + 1
2P2. To sample mixture P , we first toss an

unbiased coin and choose to sample from P1 if the coin fell on heads or to sample
from P2 if it fell on tails. Thus mixture sampling is a doubly stochastic process.
Now, given a random variate x of P (i.e., an observation) we would like to decide
whether x was sampled from P1 or from P2? It makes sense to label x as class
C1 if p1(x) > p2(x) and as class C2, otherwise (if p2(x) ≥ p1(x)). Since the
distribution supports of P1 and P2 coincide, we can never be certain, and shall
find a decision rule to minimize the risk. We seek for the best decision rule that
minimizes the probability of error Pe, that is, the probability of misclassification.

Consider the decision rule based on the log-likelihood ratio log p1(x)
p2(x)

:

log
p1(x)

p2(x)

C2

Q
C1

0.

The expected probability of error is:

Pe = EP [error(x)] =

∫
x∈X

error(x)p(x)dν(x),

where p(x) = 1
2p1(x) + 1

2p2(x) denotes the mixture density, and

error(x) = min

(
1

2

p1(x)

p(x)
,

1

2

p2(x)

p(x)

)
.

Indeed, suppose that at x (with probability 1
2 ), p1(x) < p2(x). Since we label

x as C2 then we misclassify with proportion p1(x)
p(x) , and vice-versa [7]. Thus the

probability of error Pe = 1
2S(P1, P2) where:

S(P1, P2) =

∫
min(p1(x), p2(x))dν(x).



S is a similarity measure since S(P1, P2) = 1 if and only if P1 = P2. It is known in
computer vision, in the discrete case, as the histogram intersection similarity [19].

In practice, computing S is not tractable3, specially for multivariate distri-
butions. Thus, we seek to upper bound S using mathematically convenient tricks
purposely designed for large classes of probability distributions. Consider the
case of exponential families [20] that includes most common distributions such
as Poisson, Gaussian, Gamma, Beta, Dirichlet, etc. distributions. Their natural
canonical density decomposition is:

pi = p(x|θi) = exp(〈θi, t(x)〉 − F (θi) + k(x)),

where θi is the natural parameter belonging to natural parameter space Θ. Func-
tion F is strictly convex and characterize the family. t(x) is the sufficient statistic
and k(x) is an auxiliary carrier term [20]. Table 1 summarizes the canonical de-
composition and related results for the multinomial and Gaussian families, with
pi = p(x|λi) = p(x|θ(λi)). We can upper bound the probability intersection
similarity S using the fact that:

min(p1(x), p2(x)) ≤
√
p1(x)p2(x).

We get:

S(P1, P2) ≤ ρ(P1, P2) =

∫ √
p1(x)p2(x)dν(x).

The right hand-side is called the Bhattacharrya coefficient or Bhattacharrya
affinity. For distributions belonging to the same exponential family (e.g., P1 and
P2 are multivariate Gaussians [20]), we have:

ρ(P1, P2) = e−JF (θ1,θ2),

where JF is a Jensen divergence defined over the natural parameter space:

JF (θ1, θ2) =
F (θ1) + F (θ2)

2
− F

(
θ1 + θ2

2

)
≥ 0.

Of course, the bound is not the tightest. Therefore, we may consider for
α ∈ (0, 1) that min(p1(x), p2(x)) ≤ p1(x)αp2(x)1−α. It follows the α-skewed
Bhattacharrya coefficient upper bounding S:

S(P1, P2) ≤ ρα(P1, P2) =

∫
p1(x)αp2(x)1−αdν(x).

3 In fact, using the mathematical rewriting trick min(a, b) = a+b
2
− 1

2
|b − a|, the

probability intersection similarity is related to computing the total variation metric
distance: S(P1, P2) = 1 − TV(P1, P2), with TV(P1, P2) = 1

2

∫
|p1(x) − p2(x)|dν(x).

Bayes error that relies on a cost design matrix [7] to account for the different cor-
rect/incorrect classification costs extends the concept of the probability of error.
Similarly, Bayes error can also be expressed using total variation distance on scaled
probabilities (with scales depending on the prior mixture weights and on the cost
design matrix).



This definition of affinity coefficient is still mathematically convenient for expo-
nential families since we find that [20]:

ρα(P1, P2) = e−J
(α)
F (θ1,θ2),

where J
(α)
F denotes a skewed Jensen divergence defined on the corresponding

natural parameters:

J
(α)
F (θ1, θ2) = αF (θ1) + (1− α)F (θ2)− F (αθ1 + (1− α)θ2) ≥ 0,

with equality to zero if and only if θ1 = θ2 since F is a strictly convex and
differentiable function. Setting α = 1

2 , we get back the Bhattacharrya coefficient.
The upper bound can thus be “best” improved by optimizing over the α-

range in (0, 1):

S(P1, P2) ≤ min
α∈[0,1]

ρα(P1, P2) = ρα∗(P1, P2)

The optimal value α∗ is called best error exponent in Bayesian hypothesis
testing [7]. For an iid. sequence of n observations, the probability of error is thus
bounded [21] by:

P (n)
e ≤ 1

2
ρnα∗(P1, P2)

Historically, those similarity or affinity coefficients upper bounding the prob-
ability intersection similarity yielded respective notions of statistical distances:

Bα(P1, P2) = − log ρα(P1, P2) = J
(α)
F (θ1, θ2),

the skew Bhattacharyya divergences. Let us rescale Bα by a factor 1
α(1−α) , then

we have for α 6∈ {0, 1}:

B′α(P1, P2) =
1

α(1− α)
Bα(P1, P2) =

1

α(1− α)
J
(α)
F (θ1, θ2) = J ′

(α)
F (θ1, θ2).

When α → 1 or α → 0, we have B′α that tends to the direct or reverse
Kullback-Leibler divergence. For exponential families, that means that the scaled

skew Jensen divergences J ′(α)F tends to the direct or reverse Bregman diver-
gence [22]:

lim
α→0

J ′F
(α)

(θ1, θ2) = BF (θ1, θ2),

where a Bregman divergence is defined for a strictly convex and differentiable
genetor F by:

BF (θ1, θ2) = F (θ1)− F (θ2)− (θ1 − θ2)>∇F (θ2).

Furthermore, the Chernoff divergence (historically called Chernoff informa-
tion) is defined by:



C(P1, P2) = max
α∈[0,1]

− log ρα(P1, P2) = Bα∗(P1, P2)

The mapping of a similarity coefficient by the monotonous function − log(·)
mimicked the unbounded property of the Kullback-Leibler divergence. However,
we can also map a similarity coefficient S ∈ (0, 1] to a distance D ∈ [0, 1) by
simply defining:

D(P1, P2) = 1− S(P1, P2)

For example, we can define dα(P1, P2) = 1− ρα(P1, P2). Since distances are
used relatively to compare distributions and rank them as nearer or farther away,
we can also rescale them. Another mathematical convenience is to scale dα by

1
α(1−α) so that we get:

Dα(P1, P2) =
1− ρα(P1, P2)

α(1− α)
=

1−
∫
p(x)αq(x)1−αdν(x)

α(1− α)

This is known as the α-divergences of Amari that are the canonical divergences in
information geometry [23]. When α→ 1, we get the Kullback-Leibler divergence.
When α → 0, we get the reverse Kullback-Leibler divergence. When α = 1

2 , we
find the (scaled) squared of the Hellinger distance. In information geometry,
it is customary to set α ∈ [− 1

2 ,
1
2 ] instead of [0, 1] by remapping α ← α − 1

2 .
For members P1 and P2 belonging to the same exponential family, we have the
following closed-formula for the α-divergences:

Aα(P : Q) =
4

1− α2

(
1−

∫
x∈X

p
1−α
2 (x)q

1+α
2 dx

)
,

Aα(P : Q) =
4

1− α2

(
1− e−J

( 1−α
2 )

F (θ(P ) : θ(Q))

)
.

2.3 Novel quasi-arithmetic α-divergences and Chernoff information

Note that we can design many similar divergences by similarly upper bounding
the probability intersection histogram similarity S. By definition, a weighted
mean should have the property that it lies inside the range of its elements. Thus
we can bound min(a, b) by any other kind of weighted means:

min(a, b) ≤M(a, b;α),

with α ∈ [0, 1]. Instead of bounding S by a geometric weighted mean, let us con-
sider for a strictly monotonous function f the quasi-arithmetic weighted means:

Mf (a, b;α) = f−1(αf(a) + (1− α)f(b)).

We get:



S(P1, P2) ≤ ρ(f)α (P1, P2) =

∫
Mf (p1(x), p2(x);α)dν(x),

for α ∈ (0, 1), since the extremities α = 0, 1 are not discriminative:

ρ
(f)
0 (P1, P2) = ρ

(f)
1 (P1, P2) = 1.

When distributions coincide, notice that we have maximal affinity: ρ
(f)
α (P, P ) =

1.
Similarly, we can also generalize the Chernoff information to quasi-arithmetic

f -Chernoff information as follows:

Cf (P1, P2) = max
α∈[0,1]

− log

∫
Mf (p1(x), p2(x))dν(x).

For example, if we consider distributions not belonging to the exponential
families like the univariate Cauchy distributions or the multivariate t-distributions
(related to the unnormalized Pearson type VII elliptical distributions), in order
to find a closed-form expression for

∫
Mf (p1(x), p2(x))dν(x), we may choose the

harmonic mean with f(x) = 1
x = f−1(x) instead of the geometric weighted

mean.
To summarize, we have explained how the canonical α-divergences upper

bounding the probability of error have been designed to include the sided (i.e.,
direct and reverse) Kullback-Leibler divergence, and explained the notion of
probability separability using a binary classification task. We now turn our focus
to build geometries for modeling statistical manifolds.

3 Divergence, invariance and geometry

In Euclidean geometry, we are familiar with the invariant group of rigid transfor-
mations (translations, rotations and reflections). The Euclidean distance d(P1, P2)
of two points P1 and P2 does not change if we apply such a rigid transformation
T on their respective representations p1 and p2:

d(P1, P2) = d(p1, p2) = d(T (p1), T (p2)).

In fact, when we compute the distance between two points P1 and P2, we
should not worry about the origin. Distance computations require numerical at-
tributes that nevertheless should be invariant of the underlying geometry. Points
exist beyond a specific coordinate system. This geometric invariance principle
by a group of action has been carefully studied by Felix Klein in his Erlangen
program.

A divergence is basically a smooth C2 function (statistical distance) that may
not be symmetric nor satisfy the triangular inequality of metrics. We denote by
D(P : Q) the divergence from distribution P (with density p(x)) to distribution
Q (with density q(x)), where the “:” notation emphasizes the fact that this
dissimilarity measure may not be symmetric: D(P : Q) 6= D(Q : P ).
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It is proven that the only statistical invariant divergences [23,24] are the Ali-
Silvey-Csiszár f -divergences Df [15,16] that are defined for a functional convex
generator f satisfying f(1) = f ′(1) = 0 and f ′′(1) = 1 by:

Df (P : Q) =

∫
x∈X

p(x)f

(
q(x)

p(x)

)
dν(x).

Indeed, under an invertible mapping function (with dim(X ) = dim(Y) = d):

m : X → Y
x 7→ y = m(x)

a probability density p(x) is converted into another probability density q(y) such
that:

p(x)dx = q(y)dy, dy = |M(x)|dx,
where |M(x)| denotes the determinant of the Jacobian matrix [23] of the trans-
formation m (i.e., the partial derivatives):

M(x) =


∂y1
∂x1

. . . ∂y1
∂xd

...
. . .

...
∂yd
∂x1

. . . ∂yd
∂xd

 .
It follows that we have:

q(y) = q(m(x)) = p(x)|M(x)|−1.

For any two densities p1 and p2, we have the f -divergence on the transformed
densities q1 and q2 that can be rewritten mathematically as:

Df (q1 : q2) =

∫
y∈Y

q1(y)f

(
q2(y)

q1(y)

)
dy,

=

∫
x∈X

p1(x)|M(x)|−1f
(
p2(x)

p1(x)

)
|M(x)|dx,

= Df (p1 : p2).

Furthermore, the f -divergences are the only divergences satisfying the data-
processing theorem [25]. This theorem characterizes the property of information
monotonicity [26]. Consider discrete distributions on an alphabet X of d letters.
For any partition B = X1 ∪ ...Xb of X that merge alphabet letters into b ≤ d
bins, we have

0 ≤ Df (p̄1 : p̄2) ≤ Df (p1 : p2),

where p̄1 and p̄2 are the discrete distribution induced by the partition B on
X . That is, we loose discrimination power by coarse-graining the support of
the distributions. The most fundamental f -divergence is the Kullback-Leibler
divergence [17] obtained for the generator f(x) = x log x: In general, statis-
tical invariance is characterized under Markov morphisms [27,24] (also called



sufficient stochastic kernels [24]) that generalizes the deterministic transforma-
tions y = m(x). Loosely speaking, a geometric parametric statistical manifold
F = {pθ(x)|θ ∈ Θ} equipped with a f -divergence must also provide invariance
by:

Non-singular parameter re-parameterization. That is, if we choose a dif-
ferent coordinate system, say θ′ = f(θ) for an invertible transformation f ,
it should not impact the intrinsic distance between the underlying distri-
butions. For example, whether we parametrize the Gaussian manifold by
θ = (µ, σ) or by θ′ = (µ5, σ4), it should preserve the distance.

Sufficient statistic. When making statistical inference, we use statistics T :
Rd → Θ ⊆ RD (e.g., the mean statistic Tn(X) = 1

n

∑n
i=1Xi is used for

estimating the parameter µ of Gaussians). In statistics, the concept of suffi-
ciency was introduced by Fisher [28]:
Mathematically, the fact that all information should be aggregated inside
the sufficient statistic is written as

Pr(x|t, θ) = Pr(x|t).

It is not surprising that all statistical information of a parametric distribution
with D parameters can be recovered from a set of D statistics. For example,
the univariate Gaussian with d = dim(X ) = 1 and D = dim(Θ) = 2 (for
parameters θ = (µ, σ)) is recovered from the mean and variance statistics.
A sufficient statistic is a set of statistics that compress information without
loss for statistical inference.

4 Rao statistical manifolds: A Riemannian approach

4.1 Riemannian construction of Rao manifolds

We review the construction first reported in 1945 by C.R. Rao [4]. Consider a
family of parametric probability distribution {pθ(x)}θ with x ∈ Rd (dimension
of the support) and θ ∈ RD denoting the D-dimensional parameters of the
distributions. It is called the order of the probability family. The population
parameter space is defined by:

Θ =

{
θ ∈ RD

∣∣∣ ∫ pθ(x)dx = 1

}
.

A given distribution pθ(x) is interpreted as a corresponding point indexed by
θ ∈ RD. θ also encodes a coordinate system to identify probability models:
θ ↔ pθ(x).

Consider now two infinitesimally close points θ and θ+ dθ. Their probability
densities differ by their first order differentials: dp(θ). The distribution of dp over
all the support aggregates the consequences of replacing θ by θ+dθ. Rao’s revolu-
tionary idea was to consider the relative discrepancy dp

p and to take the variance



of this difference distribution to define the following quadratic differential form:

ds2(θ) =

D∑
i=1

D∑
j=1

gij(θ)dθidθj ,

= (∇θ)>G(θ)∇θ,

with the matrix entries of G(θ) = [gij(θ)] as

gij(θ) = Eθ

[
1

p(θ)

∂p

∂θi

1

p(θ)

∂p

∂θj

]
= gji(θ).

In differential geometry, we often use the symbol ∂i as a shortcut to ∂
∂θi

.
The elements gij(θ) form the quadratic differential form defining the elemen-

tary length of Riemannian geometry. The matrix G(θ) = [gij(θ)] � 0 is posi-
tive definite and turns out to be equivalent to the Fisher information matrix:
G(θ) = I(θ). The information matrix is invariant to monotonous transformations
of the parameter space [4] and makes it a good candidate for a Riemannian met-
ric as the concepts of the concepts of invariance in statistical manifolds[29,27]
later was revealed.

4.2 Rao Riemannian geodesic metric distance

Let P1 and P2 be two points of the population space corresponding to the dis-
tributions with respective parameters θ1 and θ2. In Riemannian geometry, the
geodesics are the shortest paths. The statistical distance between the two pop-
ulations is defined by integrating the infinitesimal element lengths ds along the
geodesic linking P1 and P2. Equipped with the Fisher information matrix tensor
I(θ), the Rao distance D(·, ·) between two distributions on a statistical manifold
can be calculated from the geodesic length as follows:

D(pθ1(x), pθ2(x)) = min
θ(t)

θ(0)=θ1,θ(1)=θ2

∫ 1

0

(√
(∇θ)>I(θ)∇θ

)
dt (1)

Therefore we need to calculate explicitly the geodesic linking pθ1(x) to pθ2(x)
to compute Rao’s distance. This is done by solving the following second order
ordinary differential equation (ODE) [23]:

gkiθ̈i + Γk,ij θ̇iθ̇j = 0,

where Einstein summation [23] convention has been used to simplify the mathe-
matical writing by removing the leading sum symbols. The coefficients Γk,ij are
the Christoffel symbols of the first kind defined by:

Γk,ij =
1

2

(
∂gik
∂θj

+
∂gkj
∂θi

− ∂gij
∂θk

)
.



For a parametric statistical manifold with D parameters, there are D3 Christoffel
symbols. In practice, it is difficult to explicitly compute the geodesics of the
Fisher-Rao geometry of arbitrary models, and one needs to perform a gradient
descent to find a local solution for the geodesics [30]. This is a drawback of the
Rao’s distance as it has to be checked manually whether the integral admits a
closed-form expression or not.

To give an example of the Rao distance, consider the smooth manifold of
univariate normal distributions, indexed by the θ = (µ, σ) coordinate system.
The Fisher information matrix is

I(θ) =

[
1
σ2 0
0 2

σ2

]
� 0. (2)

The infinitesimal element length is:

ds2 = (∇θ)>I(θ)∇θ,

=
dµ2

σ2
+

2dσ2

σ2
.

After the minimization of the path length integral, the Rao distance between
two normal distributions [4,31] θ1 = (µ1, σ1) and θ2 = (µ2, σ2) is given by:

D(θ1, θ2) =


√

2 log σ2

σ1
if µ1 = µ2,

|µ1−µ2|
σ if σ1 = σ2 = σ,√

2 log
tan

a1
2

tan
a2
2

otherwise.

where a1 = arcsin σ1

b12
, a2 = arcsin σ2

b12
and

b12 = σ2
1 +

(µ1 − µ2)2 − 2(σ2
2 − σ2

1)

8(µ1 − µ2)2
.

For univariate normal distributions, Rao’s distance amounts to computing the
hyperbolic distance for H( 1√

2
), see [32].

The table below summarizes some types of Rao geometries:

Riemannian geometry Fisher-Rao statistical manifold

Euclidean Normal distributions with same covariance matrices
Spherical Discrete distributions (multinomials)
Hyperbolic Location-scale family (i.e, univariate normal, Cauchy)

4.3 Geometric computing on Rao statistical manifolds

Observe that in any tangent plane Tx of the Rao statistical manifold, the inner
product induces a squared Mahalanobis distance:

Dx(p, q) = (p− q)>I(x)(p− q).



Since matrix I(x) � 0 is positive definite, we can apply Cholesky decomposition
on the Fisher information matrix I(x) = L(x)L>(x), where L(x) is a lower trian-
gular matrix with strictly positive diagonal entries. By mapping the points p to
L(p)> in the tangent space Tp, the squared Mahalanobis amounts to computing
the squared Euclidean distance DE(p, q) = ‖p− q‖2 in the tangent planes:

Dx(p, q) = (p−q)>I(x)(p−q) = (p−q)>L(x)L>(x)(p−q) = DE(L>(x)p, L>(x)q).

It follows that after applying the “Cholesky transformation” of objects into
the tangent planes, we can solve geometric problems in tangent planes as one
usually does in the Euclidean geometry. Thus we can use the classic toolbox of
computational geometry in tangent planes (for extrinsic computing and mapping
back and forth on the manifold using the Riemannian Log/Exp).

Let us consider the Rao univariate normal manifold that is equivalent to the
hyperbolic plane. Classical algorithms like the clustering k-means do not apply
straightforwardly because, in hyperpolic geometry, computing a center of mass
e is not available in closed-form but requires a numerical scheme. To bypass this
limitation, we rather consider non-Kärcher centroids called model centroids that
can be easily built in hyperbolic geometry [33,34]. The computational geome-
try toolbox is rather limited even for the hyperbolic geometry. We proved that
hyperbolic Voronoi diagrams is affine in the Klein model and reported an opti-
mal algorithm based on power diagram construction [35,36]. We alo generalized
the Euclidean minimum enclosing ball approximation algorithm using an itera-
tive geodesic cut algorithm in [13]. This is useful for zero-centered multivariate
normal distributions that has negative curvature and is guaranteed to converge.

In general, the algorithmic toolbox on generic Riemannian manifolds is very
restricted due to the lack of closed-form expressions for the geodesics. One of the
techniques consists in using the Riemannian Log/Exp mapping to go from/to
the manifold to the tangent planes. See [37] for a review with applications on
computational anatomy.

The next section explains the dual affine geometry induced by a convex
function (with explicit dual geodesic parameterizations) and shows how to design
efficient algorithms when consider the exponential family manifolds.

5 Amari-Chentsov statistical manifolds

5.1 Construction of dually flat statistical manifolds

The Legendre-Fenchel convex duality is at the core of information geometry: Any
strictly convex and differentiable function F admits a dual convex conjugate F ∗

such that:
F ∗(η) = max

θ∈Θ
θ>η − F (θ).

The maximum is attained for η = ∇F (θ) and is unique since F (θ) is strictly
convex (∇2F (θ) � 0). It follows that θ = ∇F−1(η), where ∇F−1 denotes the
functional inverse gradient. This implies that:

F ∗(η) = η>(∇F )−1(η)− F ((∇F )−1(η)).



The Legendre transformation is also called slope transformation since it maps
θ → η = ∇F (θ), where ∇F (θ) is the gradient at θ, visualized as the slope of
the support tangent plane of F at θ. The transformation is an involution for
strictly convex and differentiable functions: (F ∗)∗ = F . It follows that gradient
of convex conjugates are reciprocal to each other: ∇F ∗ = (∇F )−1. Legendre
duality induces dual coordinate systems:

η = ∇F (θ),

θ = ∇F ∗(η).

Furthermore, those dual coordinate systems are orthogonal to each other since,

∇2F (θ)∇2F ∗(η) = Id,

the identity matrix.
The Bregman divergence can also be rewritten in a canonical mixed coordi-

nate form CF or in the θ- or η-coordinate systems as

BF (θ2 : θ1) = F (θ2) + F ∗(η1)− θ>2 η1 = CF (θ2, η1) = CF∗(η1, θ2),

= BF∗(η1 : η2).

Another use of the Legendre duality is to interpret the log-density of an
exponential family as a dual Bregman divergence [38]:

log pF,t,k,θ(x) = −BF∗(t(x) : η) + F ∗(t(x)) + k(x),

with η = ∇F (θ) and θ = ∇F ∗(η).

5.2 Dual geodesics: Exponential and mixture geodesics

Information geometry as further pioneered by Amari [23] considers dual affine ge-
ometries introduced by a pair of connections: the α-connection and−α-connection
instead of taking the Levi-Civita connection induced by the Fisher information
Riemmanian metric of Rao. The ±1-connections give rise to dually flat spaces
[23] equipped with the Kullback-Leibler divergence [17]. The case of α = −1
denotes the mixture family, and the exponential family is obtained for α = 1.
We omit technical details in this expository paper, but refer the reader to the
monograph [23] for details.

For our purpose, let us say that the geodesics are defined not anymore as
shortest path lengths (like in the metric case of the Fisher-Rao geometry) but
rather as curves that ensures the parallel transport of vectors [23]. This de-
fines the notion of “straightness” of lines. Riemannian geodesics satisfy both the
straightness property and the minimum length requirements. Introducing dual
connections, we do not have anymore distances interpreted as curve lengths, but
the geodesics defined by the notion of straightness only.



In information geometry, we have dual geodesics that are expressed for the
exponential family (induced by a convex function F ) in the dual affine coordinate
systems θ/η for α = ±1 as:

γ12 : L(θ1, θ2) = {θ = (1− λ)θ1 + λθ2 | λ ∈ [0, 1]},
γ∗12 : L∗(η1, η2) = {η = (1− λ)η1 + λη2 | λ ∈ [0, 1]}.

Furthermore, there is a Pythagorean theorem that allows one to define information-
theoretic projections [23]. Consider three points p, q and r such that γpq is the
θ-geodesic linking p to q, and γ∗qr is the η-geodesic linking q to r. The geodesics
are orthogonal at the intersection point q if and only if the Pythagorean relation
is satisfied:

D(p : r) = D(p : q) +D(q : r).

In fact, a more general triangle relation (extending the law of cosines) exists:

D(p : q) +D(q : r)−D(p : r) = (θ(p)− θ(q))>(η(r)− η(q)).

Note that the θ-geodesic γpq and η-geodesic γ∗qr are orthogonal with respect
to the inner product G(q) defined at q (with G(q) = I(q) being the Fisher
information matrix at q). Two vectors u and v in the tangent place Tq at q are
said to be orthogonal if and only if their inner product equals zero:

u ⊥q v ⇔ u>I(q)v = 0.

Information geometry of dually flat spaces thus extend the traditional self-
dual Euclidean geometry, obtained for the convex function F (x) = 1

2x
>x (and

corresponding to the statistical manifold of isotropic Gaussians).
The construction can be extended to dual constant curvature manifolds using

Amari-Chentsov’s affine α-connections. We omit those details here, but refer the
reader to the textbook [23].

5.3 Learning statistical patterns

We mentioned in the introduction that statistical patterns can either be learned
from (1) a parametric model, (2) a mixture model, or (3) a kernel density es-
timator. We concisely review algorithms to learn those statistical patterns by
taking into consideration the exponential family manifold (EFM).

Parametric distribution Let x1, ..., xn be n data points assumed to be iid.
from an exponential family. The maximum likelihood estimator (MLE) yields [20]:

η(P̂ ) =
1

n
t(xi) = t

The point P̂ on the EFM with η-coordinates t is called the observed point
in information geometry [23]. The MLE is guaranteed to exist [39,40] provided
that matrix:



T =

1 t1(x1) ... tD(x1)
...

...
...

...
1 t1(xn) ... tD(xn)

 (3)

of dimension n× (D + 1) has rank D + 1 [40].
Furthermore, the log-likelihood achieved by the MLE can be expressed as:

l(θ̂;x1, ..., xn) = F ∗(η̂) +
1

n

n∑
i=1

k(xi)

For exponential families, the MLE is consistent and efficient (i.e., matches
the Cramér-Rao lower bound) and has normal asymptotic distribution with co-
variance matrix the inverse of the Fisher information matrix:

√
n(θ̂ − θ) distribution−→ N(0, I−1(θ)).

Notice that to choose between two different exponential family models, say,
parameterized by F1 and F2, we can evaluate their MLE log-likelihood using their
respective convex conjugates F ∗1 and F ∗2 , and choose the model which yielded
the highest likelihood.

Learning finite mixture distributions By using the duality between (regu-
lar) exponential families and (regular) Bregman divergences, Banerjee et al. [38]
showed that the classical EM algorithm for learning mixtures of the same ex-
ponential families amount to a soft Bregman clustering. The EM maximizes the
expected complete log-likelihood [7]. Recently, it has been shown that maxi-
mizing the complete log-likelihood (by labeling all observation data with their
component number) for an exponential family mixture amounts to perform a
k-means clustering for the dual Bregman divergence BF∗ on the sufficient statis-
tic data: {yi = t(xi)}ni=1. Thus by using Lloyd batched k-means algorithm that
optimizes the k-means loss, we obtain an algorithm for learning mixtures. This
algorithm is called k-MLE [41] and outperforms computationally EM since it
deals with hard membership. Furthermore, a generalization of k-MLE considers
for each component a different exponential family and adds a step to choose the
best exponential family of a cluster. This generalized k-MLE has been described
specifically for learning generalized gaussian mixtures [42], gamma mixtures [43],
and Wishart mixtures [44]. (The technical details focus on computing the dual
convex conjugate F ∗ and on how to stratify an exponential family with D > 1
parameters as a family of exponential families of order D − 1.)

Learning non-parametric distributions with KDEs For each datum xi,
we can associate a density with weight 1

n and mode matching xi. This is the
kernel density estimator [7] (KDE). For the kernel family, we can choose the
univariate location-scale families or multivariate elliptical distributions. Normal
distributions belong both to the exponential families and the elliptical families.
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Fig. 1. Simplifying a statistical mixture of exponential families or KDE p̃ to a
single component model amounts to perform a Kullback-Leibler projection of the
mixture onto the exponential family manifold [45]. Optimality is proved using
the Pythagorean theorem of dually flat geometries.

Since the mixture model is dense and has n components, we can simplify this
representation to a sparse model by performing mixture simplification.

Simplifying KDEs and mixtures A statistical mixture or a KDE is repre-
sented on the exponential family manifold as a weighted point set. We simplify a
mixture by clustering. This requires to compute centroids and barycenters with
respect to information-theoretic distances. The Kullback-Leibler and Jeffreys
centroid computations have been investigated in [46].

A neat geometric characterization of the mixture simplification is depicted in
Figure 1. We project the mixture p̃ on the exponential family manifold using the
m-geodesic. This amounts to compute a barycenter of the weighted parameter
points on the manifold. See [45] for further details.

Instead of clustering groupwise, we can also consider hierarchical clustering
to get a dendrogram [7] (a binary tree-structured representation): This yields
a mixture representation with levels of details for modeling statistical mix-
tures [47]. We can extend the centroid computations to the wider class of skewed
Bhattacharrya centroids [22] that encompasses the Kullback-Leibler divergence.
In [48,49], we further consider the novel class of information-theoretic diver-
gences called total Bregman divergences. The total Bregman divergence (and
total Kullback-Leibler divergence when dealing with exponential family mem-
bers) is defined by:

tB(P : Q) =
B(P : Q)√

1 + ‖∇F (θ(Q))‖2
,

and yields conformal geometry [49]. We experimentally improved application
performance for shape retrieval and diffusion tensor imaging.



5.4 Statistical Voronoi diagrams

It is well-known that the k-means algorithm [7] is related to ordinary Voronoi
diagrams since data points are associated to their closest centroid. Namely, the
centroids play the role of Voronoi seeds. The Kullback-Leibler k-means inter-
venes in the description of the k-MLE or the mixture simplification algorithms.
For distributions belonging to the same exponential families, those statistical
Voronoi diagrams amount to perform Bregman Voronoi diagrams on the dis-
tribution parameters (using either the natural θ-coordinates, or the dual η-
coordinates). The Bregman Voronoi diagrams and its extensions have been in-
vestigated in [50,51,52,53]. They can always be reduced to affine diagrams (i.e.,
hyperplane bisectors) which can be computed either as equivalent power dia-
grams or by generalizing the Euclidean paraboloid lifting procedure by choos-
ing the potential function (x, F (x)) instead of the paraboloid [50]. Statistical
Voronoi diagrams can also be used for multiple class hypothesis testing: Figure 2
illustrates a geometric characterization of the Chernoff distance of a set of n dis-
tributions belonging to the same exponential families. Refer to [54] for further
explanations.

pθ1

pθ2

pθ∗12

m-bisector

e-geodesic Ge(Pθ1 , Pθ2)

(a) (b)

η-coordinate system

Pθ∗12

C(θ1 : θ2) = B(θ1 : θ∗12)

Bim(Pθ1 , Pθ2)

Chernoff distribution between
natural neighbours

Fig. 2. Geometry of the best error exponent in Bayesian classification [54]. Bi-
nary hypothesis (a): The Chernoff distance is equal to the Kullback-Leibler diver-
gence from the midpoint distribution Pθ∗12 to the extremities, where the midpoint
distribution Pθ∗12 (×) is obtained as the left-sided KL projection of the sites to
their bisector [55]. (b) Multiple hypothesis testing: The Chernoff distance is the
minimum of pairwise Chernoff distance that can be deduced from statistical
Voronoi diagram by inspecting all Chernoff distributions (×) lying on (d − 1)-
faces. Both drawings illustrated in the η-coordinate system where m-bisectors
are hyperplanes.



6 Conclusion and perspectives

We concisely reviewed the principles of computational information geometry
for pattern learning and recognition on statistical manifolds: We consider sta-
tistical patterns whose distributions are either represented by atomic distri-
butions (parametric models, say, of an exponential family), mixtures thereof
(semi-parametric models), or kernel density estimations (non-parametric mod-
els). Those statistical pattern representations need to be estimated from datasets.
We presented a geometric framework to learn and process those statistical pat-
terns by embedding them on statistical manifolds. A statistical pattern is then
represented either by a single point (parametric model), a k-weighted point set or
a n-point set on the statistical manifold. To discriminate between patterns, we in-
troduced the notion of statistical distances, and presented a genesis that yielded
the family of α-divergences. We described the two notions of statistical invari-
ances on statistical manifolds: invariance by sufficient statistic and invariance by
1-to-1 reparameterization of distribution parameters. We then introduced two
kinds of statistical manifolds that fulfills the statistical invariance: The Rao man-
ifolds based on Riemannian geometry using the Fisher information matrix as the
underlying metric tensor, and the Amari-Chentsov dually flat manifolds based
on the convex duality induced by a convex functional generator. We then ex-
plained why the usual lack of closed-form geodesic expression for Rao manifolds
yields a limited algorithmic toolbox. By contrast, the explicit dual geodesics of
Amari-Chentsov manifolds provides a handy framework to extend the Euclidean
algorithmic toolbox. We illustrated those concepts by reviewing the Voronoi
diagrams (and dual Delaunay triangulations), and considered simplifying mix-
tures or KDEs using clustering techniques. In particular, in the Amari-Chentsov
manifolds, we can compute using either the primal, dual, or mixed coordinate
systems. This offers many strategies for efficient computing. For the exponential
family manifolds, we explained the bijection between exponential families, dual
Bregman divergences and quasi-arithmetic means [10].

We would like to conclude with perspectives for further work. To begin with,
let us say that there are several advantages to think “geometrically”:

– First, it allows to use simple concepts like line segments, balls, projections
to describe properties or algorithms. The language of geometry gives special
affordances for human thinking. For example, to simplify a mixture of expo-
nential families to a single component amount to project the mixture model
onto the exponential family manifold (depicted in Figure 1). Algorithmically,
this projection is performed by computing a barycenter.

– Second, sometimes we do not have analytical solution but nevertheless we
can still describe geometrically exactly where the solution is. For example,
consider the Chernoff information of two distributions: It is computed as
the Kullback-Leibler divergence from the mid-distribution to the extremities
(depicted in Figure 2). The mid-distribution is the unique distribution that
is at the intersection of the exponential geodesic with the mixture bisector.



We implemented those various algorithms in the jMEF4 [56] or PyMEF5 [57]
software libraries.

To quote mathematician Jules H. Poincaré: “One geometry cannot be more
true than another; it can only be more convenient”. We have exemplified this
quote by showing that geometry is not absolute nor ultimate: Indeed, we have
shown two kinds of geometries for handling statistical manifolds: Rao Rieman-
nian manifolds and Amari-Chentsov dual affine manifolds. We also presented
several mathematical tricks that yielded computational convenience: Bounding
the intersection similarity measure with quasi-arithmetic means extends the α-
divergences. Besides the Rao and Amari-Chentsov manifolds, we can also con-
sider Finsler geometry [58] or Hilbert spherical geometry in infinite dimensional
spaces to perform statistical pattern recognition. Non-extensive entropy pio-
neered by Tsallis also gave birth to deformed exponential families that have
been studied using conformal geometry. See also the infinite-dimensional expo-
nential families and Orlicz spaces [59], the optimal transport geometry [60], the
symplectic geometry, Kähler manifolds and Siegel domains [61], the Geometry of
proper scoring rules [62], the quantum information geometry [63], etc, etc. This
raises the question of knowing which geometry to choose? For a specific appli-
cation, we can study and compare experimentally say Rao vs. Amari-Chentsov
manifolds. However, we need deeper axiomatic understandings in future work to
(partially) answer this question. For now, we may use Rao manifolds if we require
metric properties of the underlying distance, or if we want to use the triangular
inequality to improve k-means clustering or nearest-neighbor searches. Some ap-
plications require to consider symmetric divergences: We proposed a parametric
family of symmetric divergences [64] including both the Jeffreys divergence and
the Jensen-Shannon divergence, and described the centroid computations with
respect to that class of distances.

Geometry offers many more possibilities to explore in the era of big data
analytics as we are blinded with numbers and need to find rather qualitative
invariance of the underlying space of data. There are many types of geometries
to explore or invent as mothers of models. Last but not least, we should keep
in mind statistician George E. P. Box quote: “Essentially, all models are wrong,
but some are useful.” When it comes to data spaces, we also believe that all
geometries are wrong, but some are useful.
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