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Abstract

Statistical mixtures such as Rayleigh, Wishart or
Gaussian mixture models are commonly used in pat-
tern recognition and signal processing tasks. Since
the Kullback-Leibler divergence between any two such
mixture models does not admit an analytical expres-
sion, the relative entropy can only be approximated nu-
merically using time-consuming Monte-Carlo stochas-
tic sampling. This drawback has motivated the quest
for alternative information-theoretic divergences such
as the recent Jensen-Rényi, Cauchy-Schwarz, or total
square loss divergences that bypass the numerical ap-
proximations by providing exact analytic expressions.
In this paper, we state sufficient conditions on the mix-
ture distribution family so that these novel non-KL sta-
tistical divergences between any two such mixtures can
be expressed in generic closed-form formulas.

1. Introduction and motivation

An exponential family [4] is a set of parametric prob-
ability distributions {pp(z;0) | 6 € ©} whose proba-
bility density (or mass) can be decomposed canonically
as pp(x;0) = eM@) 0 -FO+k()  where t(x) denotes
the sufficient statistics, 6 the natural parameter, F'(6)
the log-normalizer, and k(x) the auxiliary carrier mea-
sure. (x,y) = Ty denotes the inner product of vec-
tors. Let © = {0 | [pp(z;0)dz < oo} denote the
natural parameter space. It can be proved [4] that the
log-normalizer F' is a strictly convex and differentiable
function on an open convex set ©. Canonical decompo-
sitions for familiar distributions are reported in the next
Section.
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Now, consider m(z) = Ele w;pr(x;0;) and
m(x) = Zf;l wiprp(x;0;) two finite mixtures of the
same exponential families with k& and &’ components,
respectively (with positive weights w; > 0 and w} > 0
summing up to one). Mixtures of exponential families
are often met in imaging, pattern recognition and com-
puter vision applications: See [10] for Gaussian mixture
models (GMMs), [14] for Rayleigh mixture models
(RMMs), [1] for Laplacian mixture models (LMMs),
[2] for Bernoulli mixture models (BMMs), etc.

A traditional information-theoretic measure of the
statistical dissimilarity between two probability mod-
els m and m/ is the Kullback-Leibler divergence (KL)
KL(m : m') = [ _ym(z)log ;';,((‘;)) dz. The KL
divergence is also called the relative entropy as it
can be expressed as the difference between the cross-
entropy H*(m : m') = [ _—m(z)logm/(z)dzx
minus the entropy H(m) = H*(m : m) =
Jpex —m(z) log m(z)dz.

When k = k' = 1, the mixtures are degenerated to
a single component (with w; = w} = 1), and the KL
divergence between two members of the same exponen-
tial family admits a closed-form expression [3, 13]:

KL(m : m') :/ pp(:t;&l)log]de7 (1)

zeX pF('Iaall)
= F(0}) — F(61) — (01 — 01, VF(61)),
2)
= Br (0 : 1), 3)

where Br (0] : 01) is a Bregman divergence computed
on the swapped natural parameters [3, 13]. However,
whenever k + k' > 2, the KL divergence does not ad-
mit anymore an analytical expression due to the log-sum
terms [12] in the mathematical expression of the KL di-
vergence between mixtures. One way to circumvent this
problem is to estimate the KL divergence using stochas-
tic Monte-Carlo sampling [7]:



li

KL(m : m') ~ 1 3 (log m(z;) L m (i) 1>

n = m'(z;)  m(x;)
1<i<n

“)

The Monte-Carlo simulation requires in practice a
large sample (say, million to billion size) to get a close
estimate [5], but is much better than a naive numeri-
cal integration of the KL divergence that proceeds by
discretizing the support X, and is therefore limited to
small dimensions of X. Note that we purposely added
the terms Zie{l,...,n} 7;’;((;:')) — 1 in Eq. 4 that cancels
out as the sampling size increases in order to always en-
sure that KL > 0 (discrete Itakura-Saito divergence for
the z; ~ m).

Another approach to circumvent the lack of closed-
form solution for the KL divergence of mixtures is
to seek for novel notions of statistical distances that
allow closed-form expression between mixtures, and
compare their experimental performance in real-world
applications with respect to the gold standard KL di-
vergence. The Jensen-Rényi divergence [16] based on
Rényi quadratic entropy is such a successful example
when considering Gaussian mixture models for point
set pattern matching in medical applications. Wang et
al. [16] proved that the Jensen-Rényi divergence per-
forms experimentally better than the Jensen-Shannon
divergence for point set registration. Liu et al. [11]
showed that the total square loss (tSL) (an example of
a total Bregman divergence [11]) admits an analytic ex-
pression for GMMs, and use the robust ¢-center defined
as the minimizer of the average tSL to cluster shapes
modeled by GMMs for efficient shape retrieval tasks.

Let us consider the Cauchy-Schwarz (CS) diver-
gence that has been recently introduced in [9, 10]:

[ p(x)q(x)dz

)]
\/fp(x)zdqu(x)de

CS(P: Q) =—log

and supported successfully by several information re-
trieval applications [10]. The underlying idea of the CS
divergence is to rely on the Cauchy-Schwarz inequal-
ity of the density functions: 0 < (fp(x)q(a:)da:)2 <
[ p(z)*dz [ q(z)*d.

It follows that 0 < f({o(};ﬁ)j%%
ity if and only if p(z) = ¢(x), Vz € X. The Cauchy-
Schwarz divergence bears some similarities with the
well-known Bhattacharyya divergence:

. vp(x)g(x)dx 6)

< 1 with equal-

B(p,q) = —log/

x

and the squared Hellinger distance:

H*(p,q) = /(\/@f\/@)%x — 91— B,

(7
Both the Bhattacharyya and Helling distances does not
admit closed-form expressions when dealing with mix-
ture models. The key concept of the CS divergence is to
consider the raw product distribution m(z)m’(x) (in-
stead of their square root) that allows one to slide the
integral operand inside the product of components as
explained in the next section. In [10], a closed-form for-
mula is manually derived for Gaussian mixture models.
Since Gaussian mixtures are a special case of exponen-
tial family mixtures [3, 13] (EFMs), we show how to
derive the calculation and prove a sufficient condition
on the exponential families to get a generic closed-form
formula.

2. The CS divergence of EFMs

Consider the mixture product term [ m(z)m/(z)dz,
and let us slide the integral operand inside the
k x k' product terms. We get [m(z)m'(z)dz =
S SN wi) [ pr(a;6)pp (e 6))de. Let us
now give an analytic expression for the expression
[ pr(z;0;)pr(x; 0;)dr whenever the natural parame-
ter space © is a cone (closed under linear combinations
with positive coefficients). WIlog., we may assume
the auxiliary carrier measure is zero (k(x) = 0).
Otherwise, we consider the following change of
variable: dy = e*@dz with y = [ @dx = y(z)
the anti-derivative. For example, cc;nsider the Rayleigh
distributions: p(z;0) = %e_étv*? defined over the

support X = R* for ¢ > 0. Rewriting the density

22 _ 2 .
as e 202 T108TTIBTT e oot the following canon-

ical decomposition: t(z) = —x2/2, § = 1/0?,
k(z) = logz and F(f) = logo? = —logb.
Let dy = ¢€*®dz = azdz. It follows that

Yy = %xz. We can rewrite the Rayleigh distribu-

tion as p(y;0) = e Y9=F©) for y belonging to the
support Y = R¥. The integral of the product of two
such components yields [ pr(z;0;)pr(z;0;)de =
[ eft@)00)=F(0:) ()05 =F () This is equal to
[ elH@ 040 —F @)= FO)—F OO +F O gy —

P (O0:40,)—(F(0)+F(0))) / (1), 0:40))—F (0,4+0]) g,

=1
since 6; + 0;- € O. If the natural parameter space O is
not a cone then the integral [ e{*(®):0i+05)=F(:+05) g

does not converge by definition [4] whenever



0; + 0 & O.

Therefore let us assume in the remainder that © is a
convex cone. The integral of the product of mixtures
can be expressed in closed-form: [ m(z)m/(z)dz =

Zz 1 Zj 1 Wi w/eF(" +00)—(F(0:)+F(6})) _

DIHITD i " w; w;eAF“’ %), with Ap(0;,0) =

F(; + 9") (F'(0;) + F(0})). Plugging this formula
into Eq. 5, we get a closed-form expression of the
CS divergence. Note that the term Ap is symmetric
(Ap(0:,05) = Ap(07,0;)) but it is not a divergence
(Ar(0,0) # 0).

This generic formula generalizes the formula for
Gaussians formerly reported in [10] (Eq. 3) to arbi-
trary exponential families that satisfies the fact that
the natural parameter space © is a cone. In particu-
lar, the closed-form expression applies to mixtures of
Bernoulli [2], zero-centered Laplacian [1], Wishart [8,
6] and Gaussian distributions [10] among others with
the following respective decompositions:

e Bernoulli. p(z;\) = A7(1 — \)17% (with A\ €
(0,1)), 0 =log 125, © =R, F(0) = log(1+¢€’).
v

ABernoulli()\iv )‘]) = IOg

1+ 200+ 2%)

e Zero-centered Laplacian. p(z;0) = ¢ v,
0 =—2.0=(-00,0), F(0) = log(Z%).
Atgaplacian i,04) =log —————
Lapl (03, 05) = log 2(0; +0y)

e Gaussian. p(z;pu, ) =

1 (@ — )5S (@ — p)
emrzi2 P (‘ 2 ) ’

0 = (0,,00) = (7', 271), © = R x Si+
where Sjl_ . denotes the cone of positive definite
matrices of dimension d X d,

1 1
F(0) = 5959&197} —5 log [0ar] + glog 2.

The sum of natural parameters 0; + 0; yields
(S i+ 25y, 57+ 5 = 9” This is by
definition equivalent to (Z” Wijs Xy ) with

We express the term Agaussian Using the conven-
tional (u, X) parameterization as:

1
AGaussian((Mh 22)7 (/’LWZJ)) = 5 (

szz;ijluij - (uz > Y + H; Z uj)
-1 7| il j1|—dl 2m)

o} o)

& |Ei_1||2j_1| &

Note that for zero-centered covariance matri-
ces (mixtures of centered Gaussians), p;; =

p#i = p; = 0 and the expression simplifies
1. ST 57

to AGaussian(EivZj) = _§logW‘E;—1| -

glog27r.

e Wishart [8, 6]

IX| n—d-1 _lu(s—lx)

p(z;n, S) =

, with .S > 0 the scale matrix

2’ 1515, (2)
and n > d — 1 the number of degrees of freedom,
where I'j is the multivar(iiate Gamma function
La(z) = pdld=1)/4 Hj:lr(x+ (1-7)/2).
0 = (0,,0n) = (=FL,871) with
© = Ry x S¢, the cone of positive defi-
nite matrices. F(0) = W log2 + (05 +

1) log |0ar| + log Ta(0s + 451).
3. JR and SL divergences of EFMs

The square roots of probability density functions
correspond to unit vectors in the space of square in-
tegrable functions. The Hellinger distance of Eq. 7
between densities amounts to compute the Ly norm
of the difference unit vectors but does not provide a
closed-form expression for mixture models. However,
the squared Euclidean divergence (also called Squared
Loss, or SL for short) on densities (not a metric since
it does not satisfy the triangle inequality) also yields a
closed-form solution for mixtures of the same exponen-
tial families: [(m(z) — m/(z))%dz = [ m?(z)dz —

2 [ m(z)m/(z dx+fm’2 )da. That is,
k
Zzw O QZwa/ Ar(0:,0))
im1 =1 j=1
KoK
+ 303 whwer ) (8)
=1 j=1

Rényi quadratic entropy Ho is defined as Ha(p) =
—log f p“(z)dz [16], and can be computed as



Hy(m) = —log Y5, S8 wiw;e®r @0 Since
the mixture of mixtures is a mixture, it follows that the
Jensen-quadratic Rényi divergence [16]:

JRo(m,m') = Hy (m+m'> _ Hs(m) + Hy(m')

2 2 ’
©)
can also be expressed in closed-form. Similarly, the
total Square Loss [11] (tSL) also admits a closed-
form expression since it is defined by tSL(m
J(m(z)—m’(2))*dz

closed-form formulas apply for Wishart Mixture Mod-
els (WMMs) [6] that have been recently considered for
tensor sparse coding [15] of image region covariances.

m') = In particular, all those

4. Concluding remarks

We derived a generic closed-form formula for the
Cauchy-Schwarz/Jensen-Rényi/(total)Square Loss sta-
tistical divergences of two mixtures of the same expo-
nential family provided that the natural parameter space
© is a convex cone. Those properties ensure that the
product of mixtures is again a mixture for those fam-
ilies. Our generic formula casts some light by gener-
alizing the former ad-hoc expressions manually calcu-
lated for Gaussian mixtures [10], and applies to mix-
tures of Bernoulli [2], Wishart [6] and zero-centered
Laplacian [1] distributions among others. Bypassing
the stochastic approximation of KL allows us to im-
prove by a 6-fold to 9-fold factor (million to billion)
the time requires to compute a divergence between mix-
tures! This may prove particularly useful for informa-
tion retrieval [11] and real-time applications like video
tracking [15]. Closed-form expressions of divergences
also allow one to design center-based clustering algo-
rithm, where centroids are defined as minimum av-
erage divergence minimizers. For example, the total
Square Loss divergence has been successfully used to
design the center of a set of Gaussian mixture models,
and derive an efficient shape information retrieval en-
gine [11]. We expect similar advances for other non-
Gaussian mixture models. A key open problem is to
find axiomatization properties of the CS/JR/(t)SL diver-
gences that prove theoretically their advantages other
the KL divergence, and to derive rules of thumb for
choosing in applications the proper dissimilarity mea-
sure in that sea of divergences.
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