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Abstract

Statistical mixtures such as Rayleigh, Wishart or
Gaussian mixture models are commonly used in pat-
tern recognition and signal processing tasks. Since
the Kullback-Leibler divergence between any two such
mixture models does not admit an analytical expres-
sion, the relative entropy can only be approximated nu-
merically using time-consuming Monte-Carlo stochas-
tic sampling. This drawback has motivated the quest
for alternative information-theoretic divergences such
as the recent Jensen-Rényi, Cauchy-Schwarz, or total
square loss divergences that bypass the numerical ap-
proximations by providing exact analytic expressions.
In this paper, we state sufficient conditions on the mix-
ture distribution family so that these novel non-KL sta-
tistical divergences between any two such mixtures can
be expressed in generic closed-form formulas.

1. Introduction and motivation

An exponential family [4] is a set of parametric prob-
ability distributions {pF (x; θ) | θ ∈ Θ} whose proba-
bility density (or mass) can be decomposed canonically
as pF (x; θ) = e〈t(x),θ〉−F (θ)+k(x), where t(x) denotes
the sufficient statistics, θ the natural parameter, F (θ)
the log-normalizer, and k(x) the auxiliary carrier mea-
sure. 〈x, y〉 = xT y denotes the inner product of vec-
tors. Let Θ = {θ |

∫
pF (x; θ)dx < ∞} denote the

natural parameter space. It can be proved [4] that the
log-normalizer F is a strictly convex and differentiable
function on an open convex set Θ. Canonical decompo-
sitions for familiar distributions are reported in the next
Section.
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Now, consider m(x) =
∑k
i=1 wipF (x; θi) and

m(x) =
∑k′

i=1 w
′
ipF (x; θ′i) two finite mixtures of the

same exponential families with k and k′ components,
respectively (with positive weights wi > 0 and w′i > 0
summing up to one). Mixtures of exponential families
are often met in imaging, pattern recognition and com-
puter vision applications: See [10] for Gaussian mixture
models (GMMs), [14] for Rayleigh mixture models
(RMMs), [1] for Laplacian mixture models (LMMs),
[2] for Bernoulli mixture models (BMMs), etc.

A traditional information-theoretic measure of the
statistical dissimilarity between two probability mod-
els m and m′ is the Kullback-Leibler divergence (KL)
KL(m : m′) =

∫
x∈Xm(x) log m(x)

m′(x)dx. The KL
divergence is also called the relative entropy as it
can be expressed as the difference between the cross-
entropy H×(m : m′) =

∫
x∈X−m(x) logm′(x)dx

minus the entropy H(m) = H×(m : m) =∫
x∈X−m(x) logm(x)dx.

When k = k′ = 1, the mixtures are degenerated to
a single component (with w1 = w′1 = 1), and the KL
divergence between two members of the same exponen-
tial family admits a closed-form expression [3, 13]:

KL(m : m′) =

∫
x∈X

pF (x; θ1) log
pF (x; θ1)

pF (x; θ′1)
dx, (1)

= F (θ′1)− F (θ1)− 〈θ′1 − θ1,∇F (θ1)〉,
(2)

= BF (θ′1 : θ1), (3)

where BF (θ′1 : θ1) is a Bregman divergence computed
on the swapped natural parameters [3, 13]. However,
whenever k + k′ > 2, the KL divergence does not ad-
mit anymore an analytical expression due to the log-sum
terms [12] in the mathematical expression of the KL di-
vergence between mixtures. One way to circumvent this
problem is to estimate the KL divergence using stochas-
tic Monte-Carlo sampling [7]:



K̃L(m : m′) ≈ 1

n

∑
xi∼m
1≤i≤n

(
log

m(xi)

m′(xi)
+
m′(xi)

m(xi)
− 1

)
(4)

The Monte-Carlo simulation requires in practice a
large sample (say, million to billion size) to get a close
estimate [5], but is much better than a naive numeri-
cal integration of the KL divergence that proceeds by
discretizing the support X, and is therefore limited to
small dimensions of X. Note that we purposely added
the terms

∑
i∈{1,...,n}

m′(xi)
m(xi)

− 1 in Eq. 4 that cancels
out as the sampling size increases in order to always en-
sure that K̃L ≥ 0 (discrete Itakura-Saito divergence for
the xi ∼ m).

Another approach to circumvent the lack of closed-
form solution for the KL divergence of mixtures is
to seek for novel notions of statistical distances that
allow closed-form expression between mixtures, and
compare their experimental performance in real-world
applications with respect to the gold standard KL di-
vergence. The Jensen-Rényi divergence [16] based on
Rényi quadratic entropy is such a successful example
when considering Gaussian mixture models for point
set pattern matching in medical applications. Wang et
al. [16] proved that the Jensen-Rényi divergence per-
forms experimentally better than the Jensen-Shannon
divergence for point set registration. Liu et al. [11]
showed that the total square loss (tSL) (an example of
a total Bregman divergence [11]) admits an analytic ex-
pression for GMMs, and use the robust t-center defined
as the minimizer of the average tSL to cluster shapes
modeled by GMMs for efficient shape retrieval tasks.

Let us consider the Cauchy-Schwarz (CS) diver-
gence that has been recently introduced in [9, 10]:

CS(P : Q) = − log

∫
p(x)q(x)dx√∫

p(x)2dx
∫
q(x)2dx

, (5)

and supported successfully by several information re-
trieval applications [10]. The underlying idea of the CS
divergence is to rely on the Cauchy-Schwarz inequal-
ity of the density functions: 0 <

(∫
p(x)q(x)dx

)2 ≤∫
p(x)2dx

∫
q(x)2dx.

It follows that 0 <
(
∫
p(x)q(x)dx)2∫

p(x)2dx
∫
q(x)2

≤ 1 with equal-
ity if and only if p(x) = q(x), ∀x ∈ X. The Cauchy-
Schwarz divergence bears some similarities with the
well-known Bhattacharyya divergence:

B(p, q) = − log

∫
x∈X

√
p(x)q(x)dx (6)

and the squared Hellinger distance:

H2(p, q) =

∫
(
√
p(x)−

√
q(x))2dx = 2(1−e−B(p,q)).

(7)
Both the Bhattacharyya and Helling distances does not
admit closed-form expressions when dealing with mix-
ture models. The key concept of the CS divergence is to
consider the raw product distribution m(x)m′(x) (in-
stead of their square root) that allows one to slide the
integral operand inside the product of components as
explained in the next section. In [10], a closed-form for-
mula is manually derived for Gaussian mixture models.
Since Gaussian mixtures are a special case of exponen-
tial family mixtures [3, 13] (EFMs), we show how to
derive the calculation and prove a sufficient condition
on the exponential families to get a generic closed-form
formula.

2. The CS divergence of EFMs

Consider the mixture product term
∫
m(x)m′(x)dx,

and let us slide the integral operand inside the
k × k′ product terms. We get

∫
m(x)m′(x)dx =∑k

i=1

∑k′

j=1 wiw
′
j

∫
pF (x; θi)pF (x; θ′j)dx. Let us

now give an analytic expression for the expression∫
pF (x; θi)pF (x; θ′j)dx whenever the natural parame-

ter space Θ is a cone (closed under linear combinations
with positive coefficients). Wlog., we may assume
the auxiliary carrier measure is zero (k(x) = 0).
Otherwise, we consider the following change of
variable: dy = ek(x)dx with y =

∫
ek(x)dx = y(x)

the anti-derivative. For example, consider the Rayleigh

distributions: p(x;σ) = x
σ2 e
− x2

2σ2 defined over the
support X = R+ for σ > 0. Rewriting the density

as e−
x2

2σ2
+log x−log σ2

, we get the following canon-
ical decomposition: t(x) = −x2/2, θ = 1/σ2,
k(x) = log x and F (θ) = log σ2 = − log θ.
Let dy = ek(x)dx = xdx. It follows that
y = 1

2x
2. We can rewrite the Rayleigh distribu-

tion as p(y; θ) = e−yθ−F (θ) for y belonging to the
support Y = R+. The integral of the product of two
such components yields

∫
pF (x; θi)pF (x; θ′j)dx =∫

e〈t(x),θi〉−F (θi)e〈t(x),θ′j〉−F (θ′j)dx. This is equal to∫
e〈t(x),θi+θ

′
j〉−F (θi)−F (θ′j)−F (θi+θ

′
j)+F (θi+θ

′
j)dx =

eF (θi+θ
′
j)−(F (θi)+F (θ′j))

∫
e〈t(x),θi+θ

′
j〉−F (θi+θ

′
j)dx︸ ︷︷ ︸

=1

,

since θi + θ′j ∈ Θ. If the natural parameter space Θ is
not a cone then the integral

∫
e〈t(x),θi+θ

′
j〉−F (θi+θ

′
j)dx

does not converge by definition [4] whenever



θi + θ′j 6∈ Θ.
Therefore let us assume in the remainder that Θ is a

convex cone. The integral of the product of mixtures
can be expressed in closed-form:

∫
m(x)m′(x)dx =∑k

i=1

∑k′

j=1 wiw
′
je
F (θi+θ

′
j)−(F (θi)+F (θ′j)) =∑k

i=1

∑k′

j=1 wiw
′
je

∆F (θi,θ
′
j), with ∆F (θi, θ

′
j) =

F (θi + θ′j) − (F (θi) + F (θ′j)). Plugging this formula
into Eq. 5, we get a closed-form expression of the
CS divergence. Note that the term ∆F is symmetric
(∆F (θi, θ

′
j) = ∆F (θ′j , θi)) but it is not a divergence

(∆F (θ, θ) 6= 0).
This generic formula generalizes the formula for

Gaussians formerly reported in [10] (Eq. 3) to arbi-
trary exponential families that satisfies the fact that
the natural parameter space Θ is a cone. In particu-
lar, the closed-form expression applies to mixtures of
Bernoulli [2], zero-centered Laplacian [1], Wishart [8,
6] and Gaussian distributions [10] among others with
the following respective decompositions:

• Bernoulli. p(x;λ) = λx(1 − λ)1−x (with λ ∈
(0, 1)), θ = log λ

1−λ , Θ = R, F (θ) = log(1 + eθ).

∆Bernoulli(λi, λj) = log
1 +

λi+λj
1−λi−λj

(1 + λi
1−λi )(1 +

λj
1−λj )

• Zero-centered Laplacian. p(x;σ) = 1
2σ e
− |x|σ ,

θ = − 1
σ , Θ = (−∞, 0), F (θ) = log( 2

−θ ).

∆Laplacian(σi, σj) = log
1

2(σi + σj)

• Gaussian. p(x;µ,Σ) =

1

(2π)d/2|Σ|1/2
exp

(
− (x− µ)TΣ−1(x− µ)

2

)
,

θ = (θv, θM ) = (Σ−1µ,Σ−1), Θ = Rd × Sd++

where Sd++ denotes the cone of positive definite
matrices of dimension d× d,

F (θ) =
1

2
θTv θ

−1
M θv −

1

2
log |θM |+

d

2
log 2π.

The sum of natural parameters θi + θj yields
(Σ−1

i µi + Σ−1
j µj ,Σ

−1
i + Σ−1

j ) = θij . This is by
definition equivalent to (Σ−1

ij µij ,Σ
−1
ij ) with

Σij = (Σ−1
i + Σ−1

j )−1,

µij = (Σ−1
i + Σ−1

j )−1(Σ−1
i µi + Σ−1

j µj)

We express the term ∆Gaussian using the conven-
tional (µ,Σ) parameterization as:

∆Gaussian((µi,Σi), (µj ,Σj)) =
1

2
(

µTijΣ
−1
ij µij − (µTi Σ−1

i µi + µTj Σ−1
j µj)

− log
|Σ−1
i + Σ−1

j |
|Σ−1
i ||Σ

−1
j |

− d log 2π )

Note that for zero-centered covariance matri-
ces (mixtures of centered Gaussians), µij =
µi = µj = 0 and the expression simplifies

to ∆Gaussian(Σi,Σj) = − 1
2 log

|Σ−1
i +Σ−1

j |
|Σ−1
i ||Σ

−1
j |
−

d
2 log 2π.

• Wishart [8, 6] p(x;n, S) =

|X|
n−d−1

2 e−
1
2
tr(S−1X)

2
nd
2 |S|

n
2 Γd(n2 )

, with S � 0 the scale matrix

and n > d − 1 the number of degrees of freedom,
where Γd is the multivariate Gamma function
Γd(x) = πd(d−1)/4

∏d
j=1 Γ (x+ (1− j)/2).

θ = (θs, θM ) = (n−d−1
2 , S−1) with

Θ = R+ × Sd++ the cone of positive defi-
nite matrices. F (θ) = (2θs+d+1)d

2 log 2 + (θs +
d+1

2 ) log |θM |+ log Γd(θs + d+1
2 ).

3. JR and SL divergences of EFMs

The square roots of probability density functions
correspond to unit vectors in the space of square in-
tegrable functions. The Hellinger distance of Eq. 7
between densities amounts to compute the L2 norm
of the difference unit vectors but does not provide a
closed-form expression for mixture models. However,
the squared Euclidean divergence (also called Squared
Loss, or SL for short) on densities (not a metric since
it does not satisfy the triangle inequality) also yields a
closed-form solution for mixtures of the same exponen-
tial families:

∫
(m(x) − m′(x))2dx =

∫
m2(x)dx −

2
∫
m(x)m′(x)dx+

∫
m′2(x)dx. That is,

k∑
i=1

k∑
j=1

wiwje
∆F (θi,θj) − 2

k∑
i=1

k′∑
j=1

wiw
′
je

∆F (θi,θ
′
j)

+

k′∑
i=1

k′∑
j=1

w′iw
′
je

∆F (θ′i,θ
′
j) (8)

Rényi quadratic entropy H2 is defined as H2(p) =
− log

∫
p2(x)dx [16], and can be computed as



H2(m) = − log
∑k
i=1

∑k
j=1 wiwje

∆F (θi,θj). Since
the mixture of mixtures is a mixture, it follows that the
Jensen-quadratic Rényi divergence [16]:

JR2(m,m′) = H2

(
m+m′

2

)
− H2(m) +H2(m′)

2
,

(9)
can also be expressed in closed-form. Similarly, the
total Square Loss [11] (tSL) also admits a closed-
form expression since it is defined by tSL(m :

m′) =
∫

(m(x)−m′(x))2dx√
1+4

∫
m′(x)2dx

. In particular, all those

closed-form formulas apply for Wishart Mixture Mod-
els (WMMs) [6] that have been recently considered for
tensor sparse coding [15] of image region covariances.

4. Concluding remarks

We derived a generic closed-form formula for the
Cauchy-Schwarz/Jensen-Rényi/(total)Square Loss sta-
tistical divergences of two mixtures of the same expo-
nential family provided that the natural parameter space
Θ is a convex cone. Those properties ensure that the
product of mixtures is again a mixture for those fam-
ilies. Our generic formula casts some light by gener-
alizing the former ad-hoc expressions manually calcu-
lated for Gaussian mixtures [10], and applies to mix-
tures of Bernoulli [2], Wishart [6] and zero-centered
Laplacian [1] distributions among others. Bypassing
the stochastic approximation of KL allows us to im-
prove by a 6-fold to 9-fold factor (million to billion)
the time requires to compute a divergence between mix-
tures! This may prove particularly useful for informa-
tion retrieval [11] and real-time applications like video
tracking [15]. Closed-form expressions of divergences
also allow one to design center-based clustering algo-
rithm, where centroids are defined as minimum av-
erage divergence minimizers. For example, the total
Square Loss divergence has been successfully used to
design the center of a set of Gaussian mixture models,
and derive an efficient shape information retrieval en-
gine [11]. We expect similar advances for other non-
Gaussian mixture models. A key open problem is to
find axiomatization properties of the CS/JR/(t)SL diver-
gences that prove theoretically their advantages other
the KL divergence, and to derive rules of thumb for
choosing in applications the proper dissimilarity mea-
sure in that sea of divergences.
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