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Abstract

We present a generalization of Welzl’s smallest enclosing disk algorithm [E. Welzl, Smallest enclosing disks (balls and ellip-
soids), in: New Results and New Trends in Computer Science, in: Lecture Notes in Computer Science, vol. 555, Springer, 1991,
pp. 359–370] for point sets lying in information-geometric spaces. Given a set of points equipped with a Bregman divergence as a
(dis)similarity measure, we investigate the problem of finding its unique (circum)center defined as the point minimizing the maxi-
mum divergence to the point set. As an application, we show how to solve a statistical model estimation problem by computing the
center of a finite set of univariate normal distributions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Given a set S = {s1, . . . , sn} of n vector points,
we are interested in computing a simplified descrip-
tion that fits well S called its center c∗. Two op-
timization criteria are usually considered for finding
c∗: (MINAVG) minimizes the average distortion c∗ =
argminc

∑
i d(c, si ), or (MINMAX) minimizes the max-

imal distortion c∗ = argminc maxi d(c, si ). These prob-
lems have been widely studied in computational geome-
try (1-center problem), computational statistics (1-point
estimator), and machine learning (1-class classifica-
tion). It is known that for squared Euclidean distance

* Corresponding author. Tel.: +81 3 5448 4380; fax: +81 3 5448
4273.

E-mail addresses: Frank.Nielsen@acm.org (F. Nielsen),
Richard.Nock@martinique.univ-ag.fr (R. Nock).

(L2
2) the centroid is the center of MINAVG(L2

2) [2]. For
the Euclidean distance L2, the circumcenter of S is the
center of MINMAX(L2), and the Fermat–Weber point is
the center of MINAVG(L2). Welzl [5] developed a sim-
ple and elegant recursive Õ(n) randomized algorithm
that is often used in practice. On the Euclidean plane
E

2, the distance measure d(p,q) = ‖p − q‖ defines a
metric space (the L2 norm). In a metric space, the dis-
tance function has important properties: (1) d(p,q) �
0 with equality if and only if p = q, (2) symmetry
d(p,q) = d(q,p), and (3) triangle inequality: d(p, r) �
d(p,q)+ d(q, r). A disk B = Disk(c, r) of center c and
radius r is defined as the set of points that are within dis-
tance r from the center: B = {x ∈ E

2 | d(c,x) � r}. In
computational machine learning, it is seldomly the case
that the L2 geometric distance reflects the distortion be-
tween two d-dimensional data elements. A general dis-
tortion framework, known as Bregman divergences, is
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Table 1
Common Bregman divergences DF

Name Domain F(s) DF (c, s)

Squared Euclidean R
d

∑d
j=1 s2

j

∑d
j=1 (cj − sj )2

I-divergence (R+,∗)d
∑d

j=1 sj log sj − sj
∑d

j=1 cj log(cj /sj ) − cj + sj

extended KL

Itakura–Saito (R+,∗)d −∑d
j=1 log sj

∑d
j=1 (cj /sj ) − log(cj /sj ) − 1

Fig. 1. Visualizing convex and differentiable function F and its corre-
sponding Bregman divergence DF (·, ·).

rather used. Informally speaking, a Bregman divergence
DF is the tail of a Taylor expansion of a strictly con-
vex and differentiable function F : DF (x,y) = F(x) −
F(y) − 〈x − y,∇F (y)〉, where ∇F denotes the gradi-
ent operator, and 〈·, ·〉 the inner product (dot product).
Bregman divergences are parameterized families of dis-
tortions defined on a convex domain X ⊆ R

d for strictly
convex and differentiable functions F on int(X ) (see
Fig. 1 and Table 1).

For Bregman divergences, there exist two types of
Bregman balls depending on the argument position of
the center [4]:

Bc,r = {
x ∈X : DF (c,x) � r

}
and

B′
c,r = {

x ∈X : DF (x, c) � r
}
,

that are not necessarily convex nor identical. We can
further define a third-type disk by taking the symmet-
ric divergence

D′
F (x, c) = D′

F (c,x) = DF (x, c) + DF (c,x)

2
.

In the reminder, we consider only the first-type disks
Bc,r . (Computing second-type disks can be transformed
into first-type disks using the Legendre transformation.)
We have shown in [4] that Bregman smallest enclos-
ing balls are unique, thus generalizing the former results
of Welzl for balls/ellipsoids [5]. We denote by B∗S the

smallest enclosing ball of set S . Moreover, let c∗(S) and
r∗(S) denote the center and radius of the smallest en-
closing ball B∗(S) of S .

2. LP-type and basis procedures

The randomized linear-time algorithm of Welzl [5]
for finding the smallest enclosing ellipsoid is a particu-
lar case of a broader class of algorithms that solve linear
programming-type (LP-type) problems [3]. Finding the
smallest Bregman ball is LP-type because it satisfies the
two sufficient and necessary LP-type axioms [3]:

Monotonicity. For any F and G such that F ⊆ G ⊆X ,
r∗(F) � r∗(G).

Locality. For any F and G such that F ⊆ G ⊆ X with
r∗(F) = r∗(G), and any point p ∈ X , r∗(G) <

r∗(G ∪ {p}) → r∗(F) < r∗(F ∪ {p}).

The latter locality property holds because of the
uniqueness of Bregman balls. Thus, we are able to use
Welzl’s abstract randomized recursive algorithm [5]:

MINIINFOBALL S = {p1, . . . ,pn},B
1. � Initially B = ∅. Returns B∗ = (c∗, r∗) �
2. if |S ∪B| � 3
3. then return B = SOLVEINFOBASIS(S ∪B)

4. else
5. Select at random p ∈ S
6. B∗ = MINIINFOBALL(S\{p},B)

7. if p /∈ B∗
8. then � Then add p to the basis �
9. return MINIINFOBALL (S\{p},B ∪ {p})

We still need to solve the basis problem: solving the
smallest enclosing disk of (at most) three points B. We
do this by computing all enclosing disks of B generated
by either two or three points of B on their boundaries,
and choose the disk that has minimum radius (i.e., min-
imum divergence). For computing exactly the center of
a Bregman disk passing through three points, we first
define the Bregman bisectors. Let Bisector(p,q) = {c ∈
X | DF (c,p) = DF (c,q)} be the Bregman bisector of
locii p and q. That is, Bisector(p,q) represents the set of
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Fig. 2. Three Itakura-Saito bisectors: first-type (red), second-type
(blue) and third-type (green). The first-type Bregman bisector is al-
ways a linear separator. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this
article.)

points that have the same divergence to p and q. We ob-
serve that the first-type Bregman bisector is linear. (But
not necessarily the second- nor the third-type, as de-
picted in Fig. 2.) Proof: We write DF (c,p) = DF (c,q).
That is,

F(c) − F(p) − 〈
(c − p),∇F (p)

〉
= F(c) − F(q) − 〈

(c − q),∇F (q)
〉
,〈

c,
(∇F (p) − ∇F (q)

)〉 + F(p) − F(q)

+ 〈
q,∇F (q)

〉 − 〈
p,∇F (p)

〉 = 0.

This is a linear equation in c. Thus, the bisector
Bisector(p,q) = {x | 〈x,dpq〉 + kpq = 0} (with dpq =
∇F (p) − ∇F (q) a vector and kpq = F(p) − F(q) +
〈q,∇F (q)〉 − 〈p,∇F (p)〉 a constant) is geometrically
an hyperplane (e.g., a line for 2D vectors).

It follows that for any Bregman divergence, the exact
circumcenter of the Bregman disk passing through three
points p1,p2 and p3 can be computed exactly as the in-

tersection point of any two bisectors. We get: c∗ = l12 ×
l13 = l12 × l23 = l13 × l23, where lij is the projective point
associated to the linear bisector Bisector(pi ,pj) and ×
denote the vector cross-product operation. That is, the
“circumcenter” of three points is the Bregman trisec-
tor, as shown in Fig. 3. Observe that although we com-
pute exactly the circumcenter, the border of the Breg-
man ball is rasterized approximately (require to solve
a convex optimization). To solve for the exact circum-
center c∗ of the smallest Bregman disk passing through
two points p and q, we consider c∗ ∈ Bisector(p,q)

and minimize DF (c,p). For Mahalanobis distance, c∗
is simply the intersection of the bisector with the line
passing through p and q (for L2, it is simply (p + q)/2).
This is not always the case for Bregman divergences
(e.g., Kullback–Leibler or Itakura–Saito divergences).
However, for any Bregman divergence, we get a convex
optimization problem that can be solved approximately
within b bits (machine precision) in O(b) time. In fact,
we do not need to compute the circumcenter of the disk,
but rather implicitly represent and manipulate the disk
using its combinatorial basis (two or three points). To
decide whether a point p falls inside, on, or outside
the Bregman disk defined by two points p1 and p2,
We compute the exact radius of the disk Disk(p1,p2,p)

and check whether that radius is strictly larger than the
radius of the smallest disk Disk(p1,p2) or not. This
becomes a decision problem (better known as the In-
Sphere predicate) that can be solved only within some
prescribed precision (bit complexity model). (Note that
Bregman co-circularities can be detected exactly by
checking the centers of any 3-point subsets.)

Fig. 3. Examples of smallest enclosing information disks, all chosen with basis size 3. Observe that the center may fall outside the convex hull of
the support points. Snapshots from http://www.sonycsl.co.jp/person/nielsen/BregmanBall/MINIBALL/.
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Fig. 4. Identification/change detection by model selection: each
observation of a person P yields a statistical Normal distribu-

tion (μ
(i)
p , σ

(i)
p ). A person is modeled using a Normal distribution

(μp,σp) by minimizing the MinMax KL divergence and a variabil-
ity parameter r : the radius of the smallest enclosing Bregman disk.
A person Q is different from P iff KL(P‖Q) > r .

3. An application example

Let N denote the statistical exponential family of
univariate Normal distributions. A Normal probability
distribution N(μ,σ) ∈N with mean μ and variance σ 2

(σ is called the standard deviation) has a corresponding
probability density function (pdf)

N(x|μ,σ) = 1

σ
√

2π
exp

(
− (x − μ)2

2σ 2

)

(with ∀x N(x|μ,σ) � 0 and
∫ ∞
−∞ N(x|μ,σ)dx = 1).

Let S = {N1, . . . ,Nn} be a set of n univariate Nor-
mal distributions Ni = N(μi, σi). Estimating the pop-
ulation center of S amounts to find the Normal dis-
tribution N∗(μ∗, σ ∗) ∈ N such that the maximum di-
vergence of N∗ to any Ni ∈ S is minimized. That is,
the population mean μ∗ and population variance σ ∗2

defines the center of the smallest enclosing disk of
the 2D set P = {p1, . . . ,pn} with pi = (μi, σi) for all
i ∈ {1, . . . , n}. This statistical model selection is useful
for person/machine identification or change detection
algorithms that require to take into account variabil-
ity of distributions, as depicted in Fig. 4. We need to
choose an appropriate divergence DF for Normal dis-
tributions. The entropy H(f ) of a pdf f is defined as
H(f ) = ∫

x
f (x) log2

1
f (x)

, and mathematically repre-
sents the amount of information in bits. The relative
entropy KL, also known as the Kullback–Leibler diver-
gence [1], measures the dissimilarity of two probability
distributions f and g: KL(f ‖g) = ∫

x
f (x) log2

f (x)
g(x)

.

The relative entropy corresponds to the average number
of additional bits required for coding f when using an
optimal code for g. The measure is therefore not sym-
metric nor does the triangle inequality hold. It turns out
that the relative entropy KL is a good distortion measure
of distributions, and belongs to the family of Bregman
divergences. In fact, we can rewrite the pdf of the Nor-
mal distribution as

N(x|μ,σ) = 1

Z(θ)
exp

{〈
θ , f(x)

〉}
, with

Z(θ) = √
2πσ exp

{
μ2

2σ 2

}
=

√
−θ1

2
exp

{
− θ2

2

4θ1

}
,

f(x) = [x2 x]T is called the sufficient statistics and
θ = [− 1

2σ 2
μ

σ 2 ]T is called the natural parameters of
the statistical exponential family of Normal distribu-
tions. Exponential families contain many famous dis-
tributions such as Poisson, Gaussian and multinomial
distributions, and have been thoroughly studied in Infor-
mation Geometry [1]. The Kullback–Leibler divergence
between any two models p and q of an exponential fam-
ily is obtained from the Bregman divergence by choos-
ing F(θ) = − logZ(θ), and swapping arguments. This
yields

KL(θq‖θp) = DF (θp, θq)

= 〈
(θp − θq), θp[f]〉 + log

Z(θq)

Z(θp)
,

with:

θp[f] =
⎡
⎣ ∫

x
x2

Z(θp)
exp{〈θp, f(x)〉}∫

x
x

Z(θp)
exp{〈θp, f(x)〉}

⎤
⎦ =

[
μ2

p + σ 2
p

μp

]
.

The equation of the linear bisector is:〈
(θp − θq), θc[f]

〉 + log
Z(θp)

Z(θq)
= 0.

Thus, we choose to change variables as (μ,σ ) →
(μ2 + σ 2,μ) = (x, y) to get the proper coordinate sys-
tem on which to apply Welzl’s algorithm [5]. It comes
that

Z(x, y) =
√

x − y2 exp

{
y2

2(x − y2)

}
,

logZ(x, y) = log
√

x − y2 + y2

2(x − y2)
and

∇F (x, y) =
(

1

2(x − y2)
− y2

2(x − y2)
,

y3

(x − y2)2

)
.

Once the center (x∗, y∗) of the smallest enclosing ball is
computed, we retrieve the corresponding (μ∗, σ ∗) para-
meters as (y∗, x∗−(y∗)2). For example, the ball passing
through exactly three Normal “statistical” points (μ1 =
2, σ1 = 1), (μ2 = 2, σ2 = 3

2 ) and (μ3 = 3, σ3 = 1)

has center (μ∗, σ ∗) � (2.67446,1.08313) and radius
r∗ � 0.801357. Note that for two normal distributions
Ni(μi, σi) and Nj(μj , σj ), the relative Kullback–Leib-
ler entropy KL(Ni‖Nj) admits the following closed-
form solution

KL(Ni‖Nj) = 1

2

(
σ 2

j

σ 2
i

+ 2 log2
σi

σj

− 1 + (μj − μi)
2

σ 2
i

)
.
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Thus, if we assume the standard deviations identical,
this KL-divergence becomes simply a weighted squared
Euclidean distance.
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