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Abstract. Finding a point which minimizes the maximal distortion
with respect to a dataset is an important estimation problem that has
recently received growing attentions in machine learning, with the advent
of one class classification. In this paper, we study the problem from a
general standpoint, and suppose that the distortion is a Bregman diver-
gence, without restriction. Applications of this formulation can be found
in machine learning, statistics, signal processing and computational ge-
ometry. We propose two theoretically founded generalizations of a popu-
lar smallest enclosing ball approximation algorithm for Euclidean spaces
coined by Bădoiu and Clarkson in 2002. Experiments clearly display the
advantages of being able to tune the divergence depending on the data’s
domain. As an additional result, we unveil an useful bijection between
Bregman divergences and a family of popular averages that includes the
arithmetic, geometric, harmonic and power means.

1 Introduction

Consider the following problem: given a set of observed data S, compute some ac-
curate set of parameters, or simplified descriptions, that summarize (“fit well”)
S according to some criteria. This problem is well known in various fields of
statistics and computer science. In many cases, it admits two different formula-
tions:

(1.) Find a point c∗ which minimizes an average distortion with respect to S.
(2.) Find a point c∗ which minimizes a maximal distortion with respect to S.

These two problems are cornerstones of different subfields of applied mathemat-
ics and computer science, such as (i) parametric estimation and the computation
of exhaustive statistics for broad classes of distributions in statistics, (ii) one class
classification and clustering in machine learning, (iii) the one center problem and
its generalizations in computational geometry, among others [1, 2, 5, 9].

The main unknown in both problems is what we mean by distortion. Intu-
itively, for any two elements of S, it should be lower-bounded, attain its min-
imum when they represent the same element, and it should otherwise give an
accurate real-valued appreciation of the way they actually “differ”. Maybe the
most prominent example is the squared Euclidean distance (abbreviated L2

2 for
short) for real-valued vectors, which is the componentwise sum of the squared
differences. It is certainly the most commonly used distortion measure in com-
putational geometry, and one of the most favored in machine learning (support



vector machines, support vector domain description / one class clustering, etc.)
[1, 5, 9–11].

In fact, many examples of distortion measures found in domains concerned
by the problems above (computational geometry, machine learning, signal pro-
cessing, probabilities and statistics, among others) fall into a single family of
distortion measures known as Bregman divergences [3]. Informally, each of them
is the tail of the Taylor expansion of a strictly convex function. Using a neat
result in [2], it can be shown that the solution to problem (1.) above is always
the average member of S, regardless of the Bregman divergence. This means that
problem (1.) can be solved in optimal linear time / space in the size of S: since S
may be huge, this property is crucial. Unfortunately, the solution of (2.) does not
seem to be as affordable; tackling the problem with quadratic programming buys
an expensive time complexity cubic in the worst case, and the space complexity
is quadratic [10]. Notice also that it is mostly used with L2

2. Instead of finding
an exact solution, a recent approach due to [1] approximates the solution of the
problem for L2

2: the user specifies some ε > 0, and the algorithm returns, in time
linear in the size of S and 1/ε and in space linear in the size of S, the center c of a
ball which is at L2

2 divergence no more than ε2r∗ from c∗. Here, r∗ is the squared
radius of the so-called smallest enclosing ball of S, whose center c∗ is obviously
the solution to problem (2.). Let us name this algorithm the Bădoiu-Clarkson
algorithm, and abbreviate it BC. The key point of the algorithm is its simplicity,
which deeply contrasts with quadratic programming approaches: basically, after
having initialized c to a random point of S, we iterate through finding the far-
thest point away from the current center, and then move along the line between
these two points. The main limiting factor of BC is its time complexity’s linear
dependence in 1/ε, which means an exponential dependence in the coding size
of the approximation parameter [8]. However, from an experimental standpoint,
good approximations may be obtained for reasonable values of ε, and the pop-
ularity of the algorithm, initially focused in computational geometry, has begun
to spread to machine learning as well, with its adaptation to fast approximations
of SVM training [10].

The applications of BC have remained so far focused on L2
2, yet the fact that

the algorithm gives a clean and simple approach to problem (2.) for one Breg-
man divergence naturally raises the question of whether it can be tailored to
approximating problem (2.) for any Bregman divergence as well. Figure 1 high-
lights the importance of this issue. Suppose that the elements of S are observed
speech spectrums, in which case problem (2.) amounts to finding a model spec-
trum [12] which minimizes the maximal distortion with respect to the elements
of S. A popular distortion measure in this case is (discrete) Itakura-Saito [7,
12]. Figure 1 gives the example of an Itakura-Saito ball with its center c∗, the
solution to problem (2.). We can consider e.g. that the elements of S are sampled
uniformly at random in the ball. As usual, running BC on S approximates the
center of its smallest L2

2 enclosing ball (see Figure 1), and not its smallest en-
closing Itakura-Saito ball. Regardless of the value of ε, the result is an extremely
poor approximation of c∗.
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Fig. 1. An optimal Itakura-Saito ball and its smallest enclosing L2
2 ball, for d = 2.

Notice the poor quality of this optimal approximation: the center of the L2
2 ball does

not even lie inside the Itakura-Saito ball.

In this paper, we propose two theoretically founded generalizations of BC to
arbitrary Bregman divergences, along with a bijection property that has a flavor
similar to a Theorem of [2]: we show a bijection between the set of Bregman
divergences and the set of the most commonly used functional averages, which
yields that each element of the latter set encodes the minimax distortion solution
for a Bregman divergence. This property is the cornerstone of our modifications
to BC. The next Section presents some definitions. Section 3 gives the theoretical
foundations and Section 4 the experiments regarding our generalization of BC.
A last Section concludes the paper.

2 Definitions

Our notations mostly follow those of [1, 2]. Bold faced variables such as x and
α, represent column vectors. Sets are represented by calligraphic upper-case
alphabets, e.g. S, and enumerated as {si : i ≥ 1} for vector sets, and {si : i ≥ 1}
otherwise. The jth component of vector s is noted sj , for j ≤ 1. Vectors are
supposed d-dimensional. We write x ≥ y as a shorthand for xi ≥ yi, ∀i. The
cardinal of a set S is written |S|, and 〈., .〉 defines the inner product for real valued
vectors, i.e. the dot product. Norms are L2 for a vector, and Frobenius for a
matrix. Bregman divergences are a parameterized family of distortion measures:
let F : X → IR be strictly convex and differentiable on the interior int(X ) of
some convex set X ⊆ IRd. Its corresponding Bregman divergence is:

DF (x’,x) = F (x’) − F (x) − 〈x’− x, ∇F (x)〉 . (1)
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Fig. 2. Examples of Bregman Balls, for d = 2. Blue dots are the centers of the balls.

Here, ∇F is the gradient operator of F . A Bregman divergence has the following
properties: it is convex in x’, always non negative, and zero iff x = x’. Whenever
F (x) =

∑d

i=1 x2
i = ‖x‖2

2, the corresponding divergence is the squared Euclidean
distance (L2

2): DF (x’,x) = ‖x − x’‖2
2, with which is associated the common

definition of a ball in an Euclidean metric space:

Bc,r = {x ∈ X : ‖x− c‖2
2 ≤ r} , (2)

with c ∈ S the center of the ball, and r ≥ 0 its (squared) radius. Eq. (2)
suggests a natural generalization to the definition of balls for arbitrary Bregman
divergences. However, since a Bregman divergence is usually not symmetric, any
c ∈ S and any r ≥ 0 define actually two dual Bregman balls :

Bc,r = {x ∈ X : DF (c,x) ≤ r} , (3)

B′
c,r = {x ∈ X : DF (x, c) ≤ r} . (4)

Remark that DF (c,x) is always convex in c while DF (x, c) is not always, but
the boundary ∂Bc,r is not always convex (it depends on x, given c), while ∂B′

c,r

is always convex. In this paper, we are mainly interested in Bc,r because of
the convexity of DF in c. The conclusion of the paper extends some results to
build B′

c,r as well. Figure 2 presents some examples of Bregman balls for three
popular Bregman divergences (see Table 1 for the analytic expressions of the
divergences). Let S ⊆ X be a set of m points that were sampled from X . A
smallest enclosing Bregman ball (SEBB) for S is a Bregman ball Bc∗,r∗ with r∗

the minimal real such that S ⊆ Bc∗,r∗ . With a slight abuse of language, we will
refer to r∗ as the radius of the ball. Our objective is to approximate as best as
possible the SEBB of S, which amounts to minimizing the radius of the enclosing
ball we build. As a simple matter of fact indeed, the SEBB is unique.

Lemma 1. The smallest enclosing Bregman ball Bc∗,r∗ of S is unique.



Proof. Suppose that there exists two SEBBs of S, Bc∗,r∗ and Bc’∗,r∗
, with c∗ 6=

c’∗. Then we have c”∗ = (c∗+c’∗)/2 ∈ X and ∀s ∈ S, DF (c”∗, s) < (DF (c∗, s)+
DF (c’∗, s))/2 ≤ r∗, the strict inequality following from the strict convexity of F .
But this shows the existence of an enclosing Bregman ball for S, Bc”∗

,r′∗
with

r′∗ < r∗, thereby contradicting the fact that Bc∗,r∗ and Bc’
∗

,r∗
are SEBBs of S.

Algorithm 1 presents Bădoiu-Clarkson’s algorithm for the SEBB approximation
problem with the L2

2 divergence [1].

Algorithm 1: BC(S, T)

Input: Data S = {s1, s2, ..., sm};

Output: Center c;

Choose at random c ∈ S;
for t = 1, 2, ..., T − 1 do

s← arg maxs′∈S ‖c− s′‖22;
c← t

t+1
c + 1

t+1
s;

3 Extending BC

The primal SEBB problem is to find:

arg min
c∗,r∗

r∗ s.t. DF (c∗, si) ≤ r∗, ∀1 ≤ i ≤ m . (5)

Its Lagrangian is:

L(S, α) = r∗ −
m
∑

i=1

αi(r
∗ − DF (c∗, si)) , (6)

with the additional KKT condition α ≥ 0. The solution to (5) is obtained
by minimizing L(S, α) for the parameters c∗ and r∗, and then maximize the
resulting dual for the Lagrange multipliers. We obtain

∂L(S, α)/∂c∗ = ∇F (c∗)

m
∑

i=1

αi −
m
∑

i=1

αi∇F (si) ,

∂L(S, α)/∂r∗ = 1 −
m
∑

i=1

αi .

Setting ∂L(S, α)/∂c∗ = 0 and ∂L(S, α)/∂r∗ = 0 yields

m
∑

i=1

αi = 1 , (7)

c∗ = ∇
−1
F

(

m
∑

i=1

αi∇F (si)

)

. (8)



Because F is strictly convex, ∇F is bijective, and c∗ lies in the convex closure
of S. Finally, we are left with finding:

argmax
α

m
∑

i=1

αiDF



∇
−1
F





m
∑

j=1

αj∇F (sj)



 , si



 s.t. α ≥ 0,

m
∑

i=1

αi = 1 . (9)

This problem generalizes the dual of support vector machines: whenever F (s) =
∑d

i=1 s2
i = 〈s, s〉 (Table 1), we return to their kernel-based formulation [4]. There

are essentially two categories of Lagrange multipliers in vector α. Those corre-
sponding to points of S lying on the interior of Bc∗,r∗ are zero, since these points
satisfy their respective constraints. The others, corresponding to the support
points of the ball, are strictly positive. Each αi > 0 represents the contribution
of its support point to the computation of the circumcenter of the ball. Eq. (8)
is thus some functional average of the support points of the ball, to compute c∗.

3.1 The Modified Bădoiu-Clarkson algorithm, MBC

There is more on eq. (8). A Bregman divergence is not affected by linear terms:
DF+q = DF for any constant q [6]. Thus, the partial derivatives of F in ∇F (.)
determine entirely the Bregman divergence. The following Lemma is then im-
mediate.

Lemma 2. The set of functional averages (8) is in bijection with the set of
Bregman divergences (1).

The connection between the functional averages and divergences is much inter-
esting because the classical means commonly used in many domains, such as
convex analysis, parametric estimation, signal processing, are valid examples of
functional averages. A nontrivial consequence of Lemma 2 is that each of them
encodes the SEBB solution for an associated Bregman divergence. Apart from
the SEBB problem, this is interesting because means are popular statistics, and
we give a way to favor the choice of a mean against another one depending on
the domain of the data and its “natural” distortion measure. Table 1 presents
some Bregman divergences and their associated functional averages, for the most
commonly encountered. Speaking of bijections, previous results showed the exis-
tence of a bijection between Bregman divergences and the family of exponential
distributions [2]. This has helped the authors to devise a generalization of the
k-means algorithm. In our case, Lemma 2 is also of some help to generalize BC.
Clearly, the dual problem in eq. (9) does not admit the convenient representa-
tion of SVMs, and it seems somehow hard to use a kernel trick replacing the
elements of S by local transformations involving F prior to solving problem (9).
However, the dual suggests a very simple algorithm to approximate c∗, which
consists in making the parallel between ∇(c∗) =

∑m

i=1 αi∇F (si) (8) and the
arithmetic mean in Table 1, and consider (8) as the solution to a minimum
distortion problem involving gradients into a L2

2 space. We can thus seek:

arg min
g∗,r′∗

r′∗ s.t. ‖g∗ − ∇F (si)‖2
2 ≤ r′∗, ∀1 ≤ i ≤ m . (10)



domain F (s) DF (c, s) cj (1 ≤ j ≤ d)

L2
2 norm arithmetic mean

IRd
∑d

j=1
s2

j

∑d

j=1
(cj − sj)

2
∑m

i=1
αisi,j

(IR+,∗)d (I/KL)-divergence geometric mean

/ d-simplex
∑d

j=1
sj log sj − sj

∑d

j=1
cj log(cj/sj)− cj + sj

∏m

i=1
sαi

i,j

Itakura-Saito distance harmonic mean

(IR+,∗)d −
∑d

j=1
log sj

∑d

j=1
(cj/sj)− log(cj/sj)− 1 1/

∑m

i=1
(αi/si,j)

Mahalanobis distance arithmetic mean

IRd sT As (c− s)T A(c− s)
∑m

i=1
αisi,j

p ∈ IN\{0, 1} weighted power mean

IRd/IR+d
(1/p)

∑d

j=1
sp

j

∑d

j=1

c
p

j

p
+

(p−1)s
p

j

p
− cjs

p−1
j

(
∑m

i=1
αis

p−1
i,j

)1/(p−1)

Table 1. Some common Bregman divergences and their associated functional averages.
The second row depicts the general I (information) divergence, also known as Kullbach-
Leibler (KL) divergence on the d-dimensional probability simplex. On the fourth row,
A is the inverse of the covariance matrix [2].

Finally, approximating (5) amounts to running the so-called Modified Bădoiu-
Clarkson algorithm, as indicated in algorithm 2 below. Because ∇F is bijec-

Algorithm 2: MBC(S, T)

Input: Data S = {s1, s2, ..., sm};

Output: Center c;

S ′ ← {∇F (si) : si ∈ S};
g← BC(S ′, T );
c←∇

−1
F (g);

tive, this is guaranteed to yield a solution. The remaining question is whether
∇

−1
F (g) = c is close enough from the solution c∗ of (5). The following Lemma

upperbounds the sum of the two divergences between c and any point of S, as a
function of r′∗. It shows that the two centers can be very close to each other; in
fact, they can be much closer than with a naive application of Bădoiu-Clarkson
directly in S. The Lemma makes the hypothesis that the Hessian of F , HF , is non
singular. As a matter of fact, it is diagonal (without zero in the diagonal) for all
classical examples of Bregman divergences, see Table 1, so this is not a restriction
either. In the Lemma, we let f denote the minimal non zero value of the Hessian
norm inside the convex closure of S: f = minx∈co(S):‖HF (x)‖2>0 ‖HF (x)‖2.

Lemma 3. ∀s ∈ S, we have:

DF (s, ∇−1
F (g)) + DF (∇−1

F (g), s) ≤ (1 + ε)2r′∗/f , (11)

where g is defined in algorithm 2, r′∗ is defined in eq. (10), and ε is the error
parameter of BC.



Proof. We know from BC that g is at Euclidean distance no more than (1+ε)
√

r′∗

of any other points in the image of S by ∇F . Thus, we have ‖g − ∇F (s)‖2 ≤
(1 + ε)

√
r′∗, and ∇F (s) = g + a(1 + ε)u, for some real a ≤

√
r′∗ and u ∈ IRd for

which ‖u‖2 = 1. Fixing ∇
−1
F (g) = c yields for any s ∈ S:

DF (s, c) + DF (c, s) = F (s) − F (c) − 〈s− c,g〉 + F (c) − F (s) − 〈c − s, ∇F (s)〉
= 〈s− c, ∇F (s) − g〉
= (1 + ε)a〈s− c,u〉
≤ (1 + ε)

√
r′∗‖s− c‖2 . (12)

Provided F is continuous (a mild assumption, given its strict convexity), the
mean-value theorem brings that there exists ĉ in the convex closure of S such
that ∇F (s) = g + HF (ĉ).(s − c). The non singularity of the Hessian yields
s − c = H−1

F (ĉ).(∇F (s) − g), and ‖s − c‖2 ≤ ‖H−1
F (ĉ)‖2‖∇F (s) − g‖2 ≤

(1 + ε)
√

r′∗/‖HF (ĉ)‖2. Plugging this into ineq. (12) and using the fact that
‖HF (ĉ)‖2 ≥ f yields the statement of the Lemma.

Remark that Lemma 3 is optimal, in the sense that if we consider DF = L2
2,

then each point si ∈ S becomes 2si in S ′. The optimal radii in (5) and (10)
satisfy r′∗ = 4r∗, and we have f = 2. Plugging this altogether in eq. (11) yields
2‖c−s‖2

2 ≤ (1+ε)2×4r∗/2, i.e. ‖c−s‖2 ≤ (1+ε)
√

r∗, which is exactly Bădiou-
Clarkson’s bound [1] (here, we have fixed c = ∇

−1
F (g), like in Lemma 3). Remark

also that Lemma 3 upperbounds the sum of both possible divergences, which is
very convenient given the possible assymetry of DF .

3.2 The Bregman-Bădoiu-Clarkson algorithm, BBC

It is straightforward to check that at the end of BC (algorithm 1), the following
holds true:

{

c =
∑m

i=1 α̂isi ,
∑m

i=1 α̂i = 1 , α̂ ≥ 0 ,
∀1 ≤ i ≤ m, α̂i 6= 0 iff si is chosen at least once in BC .

Since the furthest points chosen by BC ideally belong to ∂Bc∗,r∗ , and the final ex-
pression of c matches the arithmetic average of Table 1, it comes that BC directly
tackles an iterative approximation of eq. (8) for the L2

2 Bregman divergence. If
we replace L2

2 by an arbitrary Bregman divergence, then BC can be generalized
in a quite natural way to algorithm BBC (for Bregman-Bădoiu-Clarkson) below.
Again, it is straightforward to check that at the end of BBC, we have generalized
the iterative approximation of BC to eq. (8) for any Bregman divergence, as we
have:

{

c = ∇
−1
F (

∑m

i=1 α̂i∇F (si)) ,
∑m

i=1 α̂i = 1 , α̂ ≥ 0 ,
∀1 ≤ i ≤ m, α̂i 6= 0 iff si is chosen at least once in BC .

The main point is whether α̂ is a good approximation to the true vector of
Lagrange multipliers α. From the theoretical standpoint, the proof of BC’s ap-
proximation ratio becomes tricky when lifted from L2

2 to an arbitrary Bregman



Algorithm 3: BBC(S)
Input: Data S = {s1, s2, ..., sm};

Output: Center c;

Choose at random c ∈ S;
for t = 1, 2, ..., T − 1 do

s← arg maxs′∈S DF (c, s′);
c←∇

−1
F

(

t
t+1

∇F (c) + 1
t+1

∇F (s)
)

;
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Fig. 3. Average approximation curves for 100 runs of BBC algorithm for three Bregman
divergences: Itakura-Saito, L2

2 and KL (d = 2, m = 1000, T = 200). The dashed curves
are Bădoiu-Clarkson’s error bound as a function of the iteration number t, and the
bottom, plain curves, depict (DF (c∗, c) + DF (c, c∗))/2 as a function of t for each
divergence, where c is the output of BBC and c∗ is the optimal center.

divergence, but it can be shown that many of the key properties of the initial
proof remain true in this more general setting. An experimental hint that speaks
for itself for the existence of such a good approximation ratio is given in the next
Section.

4 Experimental results

4.1 BBC

To evaluate the quality of the approximation of BBC for the SEBB, we have ran
the algorithm for three popular representative Bregman divergences. For each of
them, averages over a hundred runs were performed for T = 200 center updates
(see algorithm 3). In each run, a random Bregman ball is generated, and S is
sampled uniformly at random in the ball. Since we know the SEBB, we have
a precise idea of the quality of the approximation found by BBC on the SEBB.
Figure 3 gives a synthesis of the results for d = 2. [1]’s bound is plotted for each
divergence, even when it holds formally only for L2

2. The other two curves give
an indication of the way this bound behaves with respect to the experimental
results. It is easy to see that for each divergence, there is a very fast convergence
of the center found, c, to the optimal center c∗. Furthermore, the experimental
divergences are always much smaller than [1]’s bound, for each divergence (very



often by a factor 100 or more). We have checked this phenomenon for higher
dimensions, up to d = 20.

To have a visual idea of the way BBC converges for each divergence, Figure
4 plots the Bregman balls found for small number of iterations of BBC with
d = 2. Notice the differences in the Bregman balls, and the accuracy of BBC to
approximate the SEBB on each of them. These three results actually appear to
be representative of all those obtained for the experiments of Figure 3. Each
time, for each divergence and each random Bregman ball, the algorithm displays
a very accurate convergence of c towards c∗. Finally, we have observed that
BBC generally selects a very small number of support points for its approximation
of c∗. In almost all runs, and for each divergence, the number of support points
does not exceed ten (thus, only at most 1% of S). This is certainly a good point
as it tends to confirm that the algorithm finds accurate approximations for the
vector of Lagrange multipliers in eq. (8). Indeed, a small number of support
points (recall that they lie on ∂Bc,r) is required to define the center of any
Bregman ball: if we could e.g. infinitely sample its interior, only two such points
would suffice. Using the Pythagorean theorem of Bregman divergences [6], it is
quite remarkable that BBC would chose only three points in the worst case for
its approximation of c∗: one in the interior of the ball, and two on its boundary.

4.2 MBC

Experimentally, MBC is less accurate than BBC. This is quite predictable, as the
latter directly optimizes the cost function while the former transforms the prob-
lem to fit it into a L2

2 optimization framework. However, when compared to BC,
MBC has displayed much better approximation ratios, in particular for “skewed”
divergences such as Itakura-Saito. Figure 5 displays an example of both algo-
rithms ran on a ball which closely resembles that of Figure 1. Notice that the
final approximation of BC is so bad that all the region of IR+,∗2

which intersects
the image actually belongs to the Bregman ball found, while BBC finds a cen-
ter at divergence < 20% of the optimal radius from c∗. From the experimental
standpoint, we have also witnessed an interesting fact when comparing MBC and
BBC: even when the approximation ratio of the former is not as good, its rate of
convergence towards its final center c seems sometimes better. From the theo-
retical standpoint, a partial explanation comes from the way the ball is sampled:
the uniform sampling is no longer uniform in the gradient space, and sometimes
very few extremal points are available on some regions of the boundary of the
Bregman ball. Since fewer boundary points are available, the center found, c,
gives sometimes the impression to move inside a smaller region of X .

5 Conclusion

In this paper, we bring two non-trivial theoretically founded generalizations
of Bădoiu and Clarkson’s L2

2 smallest enclosing ball algorithm to fit a small-
est enclosing ball for an arbitrary Bregman divergence. Experimentally, the al-
gorithms obtain very good results on approximating the SEBB. As a simple
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Fig. 4. (Best viewed in color) Examples of approximation balls found for Itakura-Saito,
L2

2 and KL divergences, after respectively 10, 20 and 20 iterations of the BBC algorithm
(d = 2, m = 1000). Top plots: gradient colors, ranging from the darkest to the lightest,
depict the balls found from the first to the last iteration: the green gradients are the
balls themselves, and the red gradients their centers. The blue points are the optimal
centers, and the white lines depict the trajectories of the approximated centers. The
blue axes are the x and y axes, and when they are indicated, the small dots on the axes
are the points (50, 0) and (0, 50). Bottom plots: the blue dots are the support points of
the approximated Bregman balls.

matter of fact, the approach can be generalized to build B′
c,r for some Breg-

man divergences that are convex in their both parameters, such as L2
2 or the

(I/KL)-divergences. In this case, the same reasoning may be applied as in Sec-
tion 3, yet the result obtained is much simpler. Indeed, the primal problem
becomes arg minc∗,r∗ r∗ s.t. DF (xi, c

∗) ≤ r∗, ∀1 ≤ i ≤ m. Differentiating its
Lagrangian, we get this time: ∂L(S, α)/∂c∗ = HF (c∗). (c∗ −

∑m

i=1 αixi) and
∂L(S, α)/∂r∗ = 1−∑m

i=1 αi. Mild assumptions on the Hessian, true for all com-
mon Bregman divergences (basically, non singularity), yield that ∂L(S, α)/∂c∗ =
0 implies c∗ =

∑m

i=1 αixi, and we have
∑m

i=1 αi = 1 as well. Most interestingly,
the dual simplifies to finding the observed distribution that maximizes the re-
mainder of Jensen’s inequality: arg maxα

∑m

i=1 αiF (xi)−F (
∑m

i=1 αixi) s.t. α ≥
0,
∑m

i=1 αi = 1.



MBC BC

Fig. 5. Comparison of MBC and BC on an Itakura-Saito ball. Color conventions follow
Figure 4. Notice the poor approximation found by BC on the Bregman ball, compared
to MBC’s (which lies in the SEBB, near c∗, see text for details).
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