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IN this paper we consider an iterative method of finding the common
point of convex sets. This method can be regarded as a generalization
of 'the methods discussed in [1 - 4. Apart from problems which can be
reduced to finding some point of the intersection of convex sets, the
method considered can be applied to the approximate solution of prob-
lems in linear and convex programming.

1. The problea of finding the common point
of convex sets

Suppose we ‘are given in a linear topological space { some family of
closed convex setsA;, i & [, where I is some set of indices. We shall
assune that B = [ 4; is not empty. It is required to find some point

i€l
of the intersection of the sets 4;,

Let S < X be some convex set such that S 1 & # A,

Let us consider the function U(x, y), defined over 3 x S, and satis-
fying the following conditions.

L D(x, >0, D(x, y) = 0 if and only if x =y.

* Zh. vychisl. idat. mat. Fiz. 7, 3, 620 - 631, 1967,
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I Franyye Sand i & Tapoint z =Py e4; $ exists
such that

D(z,y)= min D(z2).
€A, N8
This point x +il1 be called the J-projection of the point y onto the
set 4.

III, For each i & [ and y € § the function G(z) =)(z, y) -

0z, Pyy) is convex over 4; (I3,

IV, A derivative D,’(x, y) of the function D(z, y) exists when x =y,
wiile J,'(y, y) = 0 (i.e. Im[D(y+159) /] =0 forallze 0.
t+0 :

V. Foreach z €R() S and for every real number L the set T
= {z&S|D(z z) < L} is compact.

VI If D(zn,y") 0, y—>y" €8 (S is the closure of the set 3)
and the set of elements of the series {xn} is compact, we have x" - y*,

Consider the following iterative process:

(1) take an arbitrary point x* € 3;

(2) if the point z* &€ 3 is known, we select in some way the index
i,(x™ & I and we find the point x**1 which is the D-projection of the
point x" oato the set d . R

in(zh)

The sequence {xn} obtained as a result of this process will be called
the relaxation sequence. :

The sequence of indices, chosen during each of the iterations
{ig(x®, i1(c1), ...}, will be called, folloving [], the control of the
relaxation,

Below we shall consider some relaxation controls, under which the
relaxation sequence {x"} converges to some point z* & 2.

Me have the following lemmas.

Lenna 1

Let 7 €4;[) S. Then for any y € S the inequality D(Pwy,y) <
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9z, y) =0(, Pyy) 1s valid.
%roof. According to condition I, for all A [0, 1] we have

D{iz+(1=N)Py,y)—D(As+ (1= WPy, Py) <
SMD(z,9)—D(z,Py))+(1 =)D (Py,y).

Whence when A > 0 we obtain

D(z,y)—D(s,Py)~D(Py,y) > (1)
5 D0+t = WPy, y)~D(Pw,y) _ D(iz+(1=1)Pu, Py)
= A, A, 3

Stiee Az 4 (1—MPy € Aif)S, the first tern on the right-hand
side of (1.1) is non-negative (in view of condition II), and the second
tern tends to zero when A - 0 (in view of condition IY). Hence Nz,y) -
Mz, P3) = 0Py, >0, :

Lenng 9

For any relaxation control we have the following:
(1) The set of elenents of the relaxation sequence {x"} is compact ;
(2) For any 2 & 1 there exists lim D(z, zn);
=00
(3) (%L, 20y 5 0 when - a0,
Proof. e take ; €R() 3. According to Lemma 1,
D(wmgn) < D(z,27)— D (z,2™), _ (12)

Since D(xmtl, 1) 220, ye have J(z, Sz, 1), Consequently,
there exists i{(z, xM), which together with (1,2) gives Dxntl, ) -0,

Since the set of elements of the relaxation sequence {x"} is con-
tained in the 52t T'= {z = §|D(s,2) < D(3,2%)}, which, according to

condition V, is coazact, therefore statement (1) of the Lemma is also
true,

Let us now consider some relaxation controls for which the limiting
point of the sequence {x7} belongs to the intersection of the sets 4;,
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Theoren 1

let 7=1{1, 2, ..., n} and let the indices be chosen in cyclic order,
Le b(®) =1, b(eh) =2....ins(e™) =m, iy(z" =1, and s0 on,
Then any limiting voint x* of the relaxational sequence {x"} is a comon
point of the sets d;,

"roof. Let x* b2 the limiting point of the sequence {x®} and x"* - r*.
Ve separate out from the sequence {x™%} a subsequence #hich is wholly
coat«med in one of the sets 4;, for example in 4). Ve shall assune that
{"} < 4. We sevarate out. from the sequences {x"¥ '~} those Waich
are convergant, It can be assuved that the sequences {x"t'i~!} then-

seives are coavergent, let
» g =g,
Wt 12',
Zhptm=i _,_ I.,;'.
Sirze {EmTY <y ve ave 1t S AL

v oording the Leam 2 we aavy D(zmeM z™) (), According to con-
5 =", Consequently, 1* € 4y 1t

dition VT, imz™*H = lim 2™

can he © E452" e 4y, and so on. Consequently

’e i 4i
il

o a
e am

upnose thal for each y = ¥ thery 2yists

max min D(z, ).
[T Y i

For i,(x% we shail caoose that index which realizes

rax min D(z, 2%,
izt A,

Then any linitirg point of the relaxation sequeacs (x7} is a comron
oint cf the sets d;, .

, n ’ R . m N . n
Procf. Let x"® < x*) We denote tue Li-projection of the point x™ ontn

the set 4; by y;"*. Then
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D(y,."*,z”*)@?gn(y? b =D(eM oMy,

gt
Since according to Lemna 2 we have J(z"% 1, P 0, therefore also

D(yim, am)—0, (13)
According to Lemma 1, for any z & H we have
D(z,ym) < Dz, am) D(z,2%).

Consequently, according to condition V, the set {yi"k} is compact which,
together with (1.3) on the basis of condition VI, gives )’i"l' - x* for
alli el

Since y;"t & 4;, we have 1* =04,
iel
Vote 1. In many cases the relaxation sequence {r,} has a unique
liniting point x* & 2. This happens, for example, if ome of the follow-
ing conditions is satisfied:

(1) The set 3 is closed, and for any z), zy € R N1 S the function
Ay) = D(z), y) - Dlzg, y) is continuous. over S;

(2) the fuction D(x, y) is defined ahen z = S, and if y + y* & 3,
then D(y*, yn) = 0,

In fact, let condition (1) be satisfied and let
- =™ —fz'ER, M —s** R
According to Lemma 2, there exists
lim £(2) = lim(D(s*, 2%) = D(s*", 2")).
For the subsequences x"*

lim A(z™) = —D(z**, 2*) 0.

For the subsequences z" '
lim A(z™) = D(s*, 2**) >0,

Consequently D(x*, x**) =D{x**, z*) = 0 and according to condition (1),
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1=,

LY

Suppose condition. (2) is satisfied and again +"P -+ x*e &, x
x** € R, Then

0=limD(s*, ") = lim D(s*, 2™) = lim D(z*, zv),
Hence, according to condition VI, it follows that x* = x**.

Let us now consider some examples of functions satisfying the condi-
tions I - VI,

1. Let X be a real Hilbert space, S =X and D(x, y) = (x - y, x - y).
The function D(x, y), obviously satisfies condition I, -

Condition I is satisfied, since the J-projection onto a convex set
is in this case the same as an ordinary projection.

The function defined in coudition II1 } -
G())=D(z,y)—D(sPy)=(s—y,5—y)—
(z—P,y,z— ty) 2(z P,‘l/ y)+(yl ) (Piyvpiy)

is linear, and consequently this condition is also satisfied.

Furthermore,

tr—y,y+ 15—
D/(yyy)=lim (y+z yy+ ¥)

>0

=lim#(z, z)=0.

0
Consequently condition IV is satisfied.

The set T={y = S|(x - ¥, % - y)SL} oceurring in condition V is
not compact, but is bounded and it will therefore be compact if we
assume that a weak topology is introduced in X,

Condition VI is satisfied if by convergence we mean weak convergence.
In fact, let (x" - y", 2" - y") = 0, y" - -~ y* and let the set of

elements of the sequence {x"} be Weakly compact. Let x™ - = — z*. Then
for every u & Y we have

[ (2™ — yma) | < lull a7 — yma] 0.

Consequently, lim(u, xn”) = lim(u, y"k) ='(u, y*), and this means that



206 L.il. Bregnan

=yt

Cordition (1) is also satisfied since the function
B(y)=(s=p u—=y) (=¥ 2= )= (a2~ (8 5) + 22 —32 §)
is linear and therefore continuous in the weak topology.

Hence it follows that for certain relaxation controls (for eiaiple
thos2 satisfying the conditions of Theorems 1 or 2) the relaxation

‘sequence {xn} will be weakly convergent to some elemeat 2’ &()4;

iel
This has been proved eariier in [4].

"2, Let f(v) be a strictly coavex differentiable function given cver
the convex set S < P, and let z(x) be its gradient at the point s.

Let us consider the function
D{z,y)=f(z)—F{y)—(8(y).c—¥)- (14)
e shall show that ['(x, y) satisfies conditions I - IV.

Iadeed, condition I represents one of the properties of convex func-
tions, whica is thal the graph of a coavex function lies only on one
side of a tangeatial plape (see [6]).

Condition Il is satisiied, since for eachy € S, min J(x, ¥) =0
ES
axists and consequently min [(x, y) exists for every closed convex

eSN4
set 4.

The function (z) occurring in condition III is convex, siuce

Glz)=—1(u)+1(Pw)—(g(y),y) +{8(Py), Py) —
—(g()—g(Pw), ).
Farthernore, U,'(y, y) = 1(y) - g(y) = 0, so condition IV is satis-
ried.

Conditions VI and (1) are satisfied if some auxiliary assumptions are
nade with respect to the function f(x). For example, they are sabisfied
if the set S is closed, and the function f(x) is continously differnenti-
able,



Finding the common point of convex sets 207

Condition V is not a consequence of the convexity of f(x), and for
this reason we shall only consider functions for #hich condition V is
satisfied,

An example of a function f(x), for which the fuaction [(x, y), con-
structed according to formula (1.4), satisfies conditions I - VI and
(1), is given by a positive definite quadratic form given over the
Whole space £P, The corresponding function D(x, y) = (x - v, Cx, y),
as is easy to see, satisfies conditions I - VI and (1).

Another example of such & funz:tion will be

P
. flz)= Y ailz;
=t

given over the set §= {r < E?|z> (}. Its corresponding function
D(x, y) has the form

?
D(ay) =3 (i~2+5(lng—lyy)). (15)
=1
According to the previous considerations, function (1.5) satisfies
conditions I - VI, It is easy to see that D(x, y) also satisfies con-
dition V. -

Let us verify that function (1.5) satisfies condition VI, Let D(x", '
y™) - 0 and yn -.y‘ = (yl’, }’2" ey yp'). If yj* =0, then also
%" ~ 0, since otherwise X(x", y") »®, If y;* > 0, then "=yt in
view of the continuous nature of the function J(x, y) when yj> 0.

As can be seen from (1.5), the function D(z, y) satisfies condition
(2).-

Consequently a relaxation sequence {xn} constructed by means of the
function (1.5) will for any system of closed convex sets 4; converge
to the point z* () 4; with an appropriate selection of the relaxation

iel
control.

In concluding this section we remark that for the functions fitx)
and fy(x), the difference between which is a linear function, the
functions

Difz,y)=hi(2)~Hi(y)—(g1(y), 2 —y)
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and
Dy(z,y) = h(z)— h(y) — (&2(¥). = —V)

are identical.

2. Solving some problems of convex programming

If R=()A; does not consist of a single point, the limit of the
el

relaxation sequence will depend on the choice of the initial approxima-
tion and of the relaxation control, Therefore by a suitable choice of
the iaitial approximation and of the relaxation control it can be en-
sured that the limiting point x* will have certain specified properties,
for example, that it will minimize a certain function over i, We shall
make use of these considerations to solve certain problems in convex
programuing.

Let f(x) be a strictly convex function which is continuously differ-
entiable over the convex set S c 7P, and let it be continuous over 3.
Consider the following problem:

to minimize

f(=) (@1}

subject to the conditions
dz=b, . (22)
ze8. (2.3)

Here 4 = ” e ” is a matrix with n rows and p columis, x & E?, b E™

Let us denote the i-th row of the matrix 4 by 4;. We assume that all
4; 7 0.

Let  be the set of permissible vectors of problem (2.1) - (2.3),
ie. R={reE?|dz=b,z =5} Ve shall assue that 1 is not
empty.

%e assume that the function 7(x, y) constructed according to formula
(1.4) satisfies conditions I - VI and condition (2).

%e note that in this case condition (2) is a consequence of
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condition (1). Indeed, if f(x) is continuously differentiable over the
closed set S, D(x, y) is continuous, end condition (2) is satisfied.

Let us denote by Z the set of those z €S for which there exists
such u & En, that g(x) = ud ((g(x) is the gradient of the function
f(z)). Let Z be the closure of the set Z.

Lemna 3
If y*=RNZ, y* is e solution of the problem (2.1) - (2.3).

Proof. Since y* & 1, therefore
f(y') > inf f(2).
=R
Therefore there exists x* & & such that

Hy') —f(z")=ax0. (24)

In order to prove this lemma it is sufficient to show that a« = 0.
Since y* € Z, we can find a sequence {yn} such that y* & Z and y» - y*.

For every n We can find u® € E® such that z(y") = u™, Hence it

follows that (g(y™), v) = 0 for all v, for which v = 0. We put v =
y* --x*, Then for all n ve have

() y" —2")=0. (25)

Taking into account (2.5) and (1.4) we have

a=1(")— 1) = ("), y =¥+ D"y~ (28)
— (g™, 2" —ym) = D(="y") =D(y"y") = D(="y").

From (2.6) it follows that a<SD(y*, y™).
Hence, using condition (2) and (2.4), we obtain ¢ = 0.

Theoren 3

Let the D-projection of any point x belonging to the interior of the
set S onto the set

4= {zEEP l iai,-z,: bi}

i=t
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also belong to the interior of S. Suppose we select such a relaxation
control for which x" » x* € & (for example, of the kind as in Theorems
1 - 3). Then if the initial approximation is xy €Z(). int 3 (int S
denotes the interior of the set §), x* is a solution of the problem
(2.1) - (2.3).

Proof. Let x"*1 be a D-projection of the point x" onto the set 4.
Then :
g(em) = g(a") + M, @7
{As,2mH)=Db;, (28)
Hence it can be seen that if »* € Z, we have z7*! & Z also. Con-

sequently, »* € 7 and, according to Lemma 3, z* is a solution of the
problem (2.1) - (2.3),

Note 9. Both z**1 and \ are uniquely deternined from the conditions
(2.7) and (2.8). :

Indeed, let there be y, z & £P and nuabers A and u such that

gly) = gle") + M, gls) = gla®) +pds
(Aiyy)=by, (dry2) =biandy# 1

Then

1) = 1) > (gla), y—3) = (g(z"), y—12) + (29)
e, y—2) = (g(z"), y—12)

He) = 1) > (g(w), 2—y) = (g(=), s—y) + (210)

M 1—y) = (g(e), 2 —y).

Adding equations (2.9) and (2.10) we obtain 0 > 9, Consequently y = z.
This means that A = also.

Note 3. If f(x) has & global minimun inside S, then as an initial
approximation % we can take a point at which this minimum is achieved,
since g(x% =0, u% = 0 and consequently z% & Z.

Let us now consider a problem in which the restrictions are given in
the form of inequalities:

Minimize
1) @)

under the conditions
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Az >b, @42)
zed. (249)

Let the function f(x) have the same properties as earlier, and let
R={rcEr|dz 2bze 8} # A

Let Zy = { ESl, there exists u = (u), ug, ..., up) Such that u>>0.

To solve the problem (2.11) - (2.13) the relaxational method requires
some modifications.

We shall assume that the conditions of Theorem 3 are satisfied.

Let us consider the following method of solving the problem (2.11) -
(2.13).

1. Ve shall assume that a cyclic relaxatioa control is adopted. We
shall demote by i, the index selected on the n-th iteration.

9. PFor the initial approximation we choose the point x0 € Zo()
int S. The vector u® = (u;%, 4,0, ..., u,%) is such that g(z%) = uld.

3. (@) If (Ay, 2% <by, then for x™! we take the D-projection
of the point z* oa the set A, ={@EE"|(4y, 2) =0y}, i.e. x"*1 is
determined from the conditions

(@) =g () +Mdiye (2.44)
(g ™) = by, @45)

(According to Note 2, zn*1 and A, are uniquely determined from condi-
tions (2.14) - (2.15).) Furthermore

4+ n nH : .
ui: = thn W =u,;" when | ¥ i,,

(b) If (A;., 2 =b;, or (Ay. 29 >by, butu; =0, we have
ML= gnogngd uin*l =g
(€) If (Ay 2% >b;, ad 4, >0, ve deternine x"t1 from the

relationship
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g™ = g (@) — pads,, (2.16)

and ™1 {5 deternined from the formala u, = u, — by 0y = vhen

i # .
Here
Y = T0in (', "), (247)

where y," is determined from the conditions

£ =g (") — Ay {2.18)
(Ais 1) =1y, .19

and " = L

Theoren 4

* The sequence {xn} obtained as a result of the process just described
converges to the point z*, which is a solution of the problem -(2.11) -
(2.13),

Proof. 1. We shall show that x" & Z; for all n. According to (2), we
have z0 € Zy. Let x" € Z;, when n<Ck. If for the index iy or (3¢) is
satisfied then, as can be seen from formle (2.16), x**l & Z, (since
ukt1>0, in view of the fzct that mSuh.

Let us take the case (3a). Vrom (2.14) we obtain

(6=, =)= (e 2. 2)

It is easy to obtain from formula (1.4) that the left-hand side of (2.20)
is equal to D(zh* z%) 4 D(z*, z4H). Hence, taking into account (2.15),
we obtain

D(a 2¥) 4 D(zh, i)

b= (A, )

y= >0 @)

Consequently, uf*1>0and z¥*l & Z,

2, Let us consider the function g(x, u) = f(x) - (u, dx -'b). We
show that
(e umH) > (27, u%); (222)
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olart, wrH) —glat, w7) = fla™H) —fla") — (%, 44 —D) +
+ (17, Az — b) = D(soH, 27) + (gla"), 2™ —2%) — (g(&), ™) +
+ (g(z), o) + (@ —ur, b) =D, &) +
+ (un# — u?, b) - (g (a") — g (27H), ™).
If for the index i, condition (3a) is valid
(P(InH, un+l) - Q(zn’ un) = D(I"‘H, J:") (223)
and consequeptly (2.22) is satisfied.
If for the index i, condition (30} is valid we have
gl ) —glan,un) = (e, )+ (s, 2%) = b, ).
n g n

In the same way as formula (2.21), ¥e can obtain

Dz, z)+ D(an, znt)
by —(4i.,2")

n

Since from (2.17) - (2.19) (di., &™) —b; >0, therefore
n
(et urtt) —g(amut) > Dz, 2%), (2.24)
and consequently, (2.22) is satisfied.

3. Let z = R. Then
D(z,2") = f(z)—f(a") — (8 (a"),2—2") = (2.25)
= f(z) —f(e") — (w4, 2 —2") <f(z) — f(2") -
—(ur, b= Aan)= f(z) — (", u") < f(2) — @ (2" u")
Hence, in view of condition V, it follows that the set of elements of
the sequence {x"} is compact. In addition, fron (2.25) it follows that
(=", u") < f(2), (2.26)
This together with (2.22) shows that there exists
lim g(z", ") < f(2). (2.27)
n-»0

4, From (2.23), (2.24) and (2.27) it follows that D(zm, z7) =1,
Therefore, repeating the reasoning of Theorem I it can be shown that
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any limiting point z* of the sequence {xn} belongs to the set A. Apart
from this, since condition (2) is satisfied, we have " el

5. Let
L= {iE {i,2,...,m}| (A.‘.,I')> b{),
L={ie{l2...,m}|(4n2")= bi}.
We choose N so that when n > i for i & I, we have (4;., ™ > bi.

Thez when n > ¥ + n for i € I, we obtain u;® = 0. Therefore When
n>N+a

m

(@ Az —b)= Jur(di, A=) = Qo2 = 2=
' " igh i=t

=(g(a"), 3 —2) =D(s",2") = f{') +1(").

S'mce_condition (2) is satisfied and the function f(x) is continuous

over S, (nn, 4z" - b) = 0. Hence lim (z®, a") =lim f(2") —

(un, dz»—b)) = f(x"). Comaring this with (2.20), ve obtain that x*

is a solution of the problem (2.11) - (2.13). The theorem is proved.

Note 4. Let us consider a problem which is the dual of (2.11) -
@.13) (see (1)
to maximize

9z, u) =f(z) — (, 4z—1) (238}

subject to the conditions

() = ud, . (2.29)
320, zel (230)

Fron Theoren 4 we have min f(x) = sup q(x, y), Where thé minimum is
taken over the set of vectors x, satisfying conditions (2.12) and (2.13),
while the upper bound is taken over the whole set of pairs (x, u),
satisfying conditions (2.29) and (2.30).

5. 1t the sequence {u} bas the liniting point u*, the pair (x*,u")
is a solution of the problem (2.28) - (2.30).

We shall give an example, Suppose We are given the problem:

to minimize
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?
> zilng (2.31)
j=t '
subject to the conditions
?
E ;%= b{ (i = 1, 2,. vy m), (232)
=t _ :
zES, (2.33)

where $ = {x < EP|z> o},

v
fe shall assune that Zazi,~> 0 for all i. As has been shown in
=t
Section 1, ‘the function J(z, y) in this case satisfies conditions I -
VI and (2). Apart from this, the fuuctign (2.31) is continuously differ-
entiable over S and is continuous over S. Let y & S, and x be the D-
projection of the point y onto the set

A,~={z] ia;;zj=b,}. X

=t
Then it follows from formulae (2.17) and (2.8) that
z; = ysexp(haij), , (2.34)

where A is the unique root of the equation

P
X g exp (e = bi. (2.35)

=t

As can be seen from (2.34), if y €S, then also x € S. Consequently,
with a suitable relaxation control the conditions of Theorem 3 are
satisfied. Therefore the relaxation sequence will converge to the point
{x*}, that is, to the solution of the problem (2.31) - (2.33), if the
point of absolute minimm of the function (2.31), i.e. xj° =e-l is
chosen as the initial approximation. :

We remark that equation (2.35) is converted into a linear relation-
ship in terms of el if all the coefficients a;; are equal to 0 or 1.
This happens in particular for problems with transport restrictions,
i.e. restrictions of the kind
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o 1
Jzy=a, Yay=Dh
=t =t

The relaxation method for problems with this kind of restriction is
{dentical with the method of Sheleikhovskii (8].

Finally we remark that the relaxation method can be used for the
approxinate solution of problems in linear programing.

Suppose We are given the linear programaing problem:

to minimize

?
z ¢it; (2.36)
jest
subject to the conditions
?
Za“:tj=b( (i=1120"'1m)l (2'37)
j=1
- 23>0, (239)

Instead of this problem we shall solve the problem of minimizing tpe
function

oty +ef(2) (239)

=t

subject to the conditions (2.37) and (2.38). Here e > 0, and f(x) is.
the same as earlier.

If the set of vectors x, satisfying conditions (2.37) and (2.38) is
finite and € is sufficiently small, the solution of the problem (2.39),
(2.37) - (2.38) will be an approximate solution of the problem (2.36) -

(2.38).
?
If for f(x) we take the function Z Z;In 2y, we can solve the prob-
j=t

len of mininizing the function (2.39) #ith only the restriction (2.37),
since the restrictionsz; >0 will be eutonatically satisfied.

Translated by @ Kiss
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