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Abstract—In this paper, we consider the family of total Bregman divergences (tBDs) as an efficient and robust “distance” measure to
quantify the dissimilarity between shapes. We use the tBD based `1-norm center as the representative of a set of shapes, and call it
the t-center. First, we briefly present and analyze the properties of the tBDs and t-centers following our previous work in [1]. Then,
we prove that for any tBD, there exists a distribution which belongs to the lifted exponential family of statistical distributions. Further,
we show that finding the maximum a posteriori estimate of the parameters of the lifted exponential family distribution is equivalent to
minimizing the tBD to find the t-centers. This leads to a new clustering technique namely, the total Bregman soft clustering algorithm.
We evaluate the tBD, t-center and the soft clustering algorithm on shape retrieval applications. Our shape retrieval framework is
composed of three steps: (1) extraction of the shape boundary points (2) affine alignment of the shapes and use of a Gaussian mixture
model (GMM) [2], [3], [4] to represent the aligned boundaries, and (3) comparison of the GMMs using tBD to find the best matches
given a query shape. To further speed up the shape retrieval algorithm, we perform hierarchical clustering of the shapes using our
total Bregman soft clustering algorithm. This enables us to compare the query with a small subset of shapes which are chosen to be
the cluster t-centers. We evaluate our method on various public domain 2D and 3D databases, and demonstrate comparable or better
results than state-of-the-art retrieval techniques.

Index Terms—total Bregman divergence, t-center, lifted exponential families, hard clustering, soft clustering, Gaussian mixture model,
3D shape retrieval

F

1 INTRODUCTION

As the number of images on the Internet, in public
databases and in biometric systems grows larger and
larger, efficient and accurate search algorithms for re-
trieval of the best matches have become crucial for a
variety of tasks. Therefore, image retrieval becomes more
and more fundamental in computer vision and plays
an indispensable role in many potential applications.
In contemporary literature, there are mainly two types
of algorithms for image retrieval, key-words based and
content based. Key-words are an important and easy to
use features for representation and retrieval of images.
However, though efficient, key-words are very subjec-
tive, since different people may use different key-words
to index the same image. Therefore, the accuracy of
key-words based retrieval is very limited. Hence there
is interest in the idea of retrieval based on image fea-
tures [5], [6], [7], [8], [9] such as texture, color, shape,
and so on. Of these, shape is considered more generic
and is one of the best for recognition as studies [10]
have shown. Shape comparison and classification is very
often used in the areas of object detection [11], [12]
and action recognition [13]. Therefore many researchers
[14], [15], [16], [17], [18], [19], [20], [21], [22] have been
developing algorithms for improving the performance
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of shape retrieval. An efficient modern shape retrieval
scheme has the following two components: an accessi-
ble and accurate shape representation, and an efficient
as well as robust distance/divergence measure. There
are many ways to represent shapes, for example, axial
representation [23], [24], primitive-based representation
[25], constructive representation [26], reference points
and projection based representation [27], cover-based
representation [28], histograms of oriented gradients [29]
etc. Of these, contour based representation in object
recognition methods [30], [31], [32], [33], [34], [35], [36]
have shown great performance. Probability density func-
tion (pdf) has emerged as a widely used and success-
ful representation for shape contours [1], [5], [37]. It
is known to be mathematically convenient and robust
to rigid transformations, noise, occlusions and missing
data. Bearing this in mind and following our previous
work in [1], we choose to represent shapes by pdfs in
this paper.

The large size of image/shape databases today need
faster retrieval algorithms (e.g., TinEye reverse image
search and Google image retrieval, both require real-
time response). In this paper, we present a fast and ac-
curate shape retrieval method, which represents shapes
using Gaussian mixture models (GMMs) [2], [3], [4]. The
shapes are divided into smaller groups using a total
Bregman divergence soft clustering algorithm, where
each cluster is represented by a tBD based `1-norm
center, called the t-center [1], [38]. As shown in [1], [38],
the t-center is a weighted combination of all elements in
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the cluster. Moreover, it has a closed form expression,
and is robust to noise and outliers. For the readers’
convenience, we will revisit all of these points in Section
3.

This paper is a significant extension of our conference
paper on shape retrieval using tBD [1]. tBD is derived
from total least squares [39] that has been used in linear
regression to fit a line/plane to a set of points. Total least
squares based linear regression seeks to minimize the
orthogonal distance from every point to the line/plane,
whereas ordinary least squares linear regression seeks
to minimize the ordinate distance from each point to the
line/plane. Fig. 1(a) and (b) show the difference between
total least squares and least squares before and after
transforming the coordinate system. In Fig. 1, the dotted
green lines represent least squares and the solid red lines
correspond to total least squares. We can see that when
the coordinate system is rotated, least squares solution
will change, but total least squares will remain the same.
Therefore, it easy to see (and prove) that least squares
regression is coordinate-system dependent. One of the
motivations for defining and using the tBD is to remove
this dependence on the coordinate system.

(a) (b)

Fig. 1. In each figure, the dotted green line is least
squares, and the bold red line is total least squares, and
the two black orthogonal lines indicate the coordinate
system. (a) shows least squares and total least squares
before rotating the coordinate system. (b) shows least
squares and total least squares after rotating the coor-
dinate system.

In [38], we defined tBD along with its induced `1-
norm based t-center, and derived some of its properties,
e.g. statistical robustness to noise and outliers, and a
closed-form expression for the t-center. We introduced
the tBD hard clustering algorithm in [1], and used this
algorithm to divide a large database into hierarchical
clusters, where the objects in the same cluster are more
similar than objects from different clusters. In this paper,
we will introduce other tBD-based centers, including the
arithmetic center, and its special cases: the geometric
center and the harmonic center. Further, we show that
to every tBD, there corresponds a lifted exponential
distribution and prove that estimating the parameters of
this distribution using the MAP estimator is equivalent
to finding the t-center by minimizing the tBD. Based on
this theoretical result, we present the tBD soft clustering
algorithm for use in shape retrieval.

We evaluate the soft clustering algorithm on synthetic
data sets and real image databases, and compare it

to total Bregman hard clustering, as well as Bregman
hard and soft clustering algorithms. Additionally, we
apply tBD soft clustering to the task of shape retrieval
applied to several shape databases. For this, we divide
the database into smaller clusters and use the t-center
to represent each cluster. The only thing that needs to
be stored are the t-centers, which is achieved using
a k-tree, (a hybrid of the B-trees and k-means) [40],
[41]. During retrieval, we only need to compare the
query with the t-centers, and prune the clusters whose
t-centers have large dissimilarity with the query. This
process significantly reduces the number of unnecessary
comparisons, and greatly speeds up the retrieval. We
show that this method also performs well on various 2D
shape databases such as the MPEG-7 database [42], the
Brown database [14] and the Swedish leaf data set [43],
as well as on 3D shape databases such as the Princeton
Shape Benchmark (PSB) database [44].

The rest of this paper is organized as follows. In
Section 2 we review the conventional Bregman diver-
gence and the newly proposed tBD along with their
properties. Section 3 briefly introduces different types
of tBD centers, the `p-norm arithmetic center along with
its special cases (geometric center, harmonic center). We
will mainly focus on the t-center, which is the `1-norm
based tBD median, and delve into its properties. In
section 4, we present the key theoretical result namely,
we show that for every tBD, there corresponds a lifted
exponential distribution, and using the maximum a pos-
teriori (MAP) estimation to estimate the parameters of
this distribution corresponds to minimizing the tBDs
and finding the t-centers. This naturally leads to the
tBD soft clustering algorithm, which is presented in
Section 5. Section 6 describes the detailed shape retrieval
experimental design, and the application of tBD and the
t-center on the classical 2D shape databases, including
the MPEG-7, Brown and Swedish leaf databases, and
also on the 3D PSB database. We quantitatively compare
our results with those from other techniques. Finally, we
draw conclusions in Section 7.

2 TOTAL BREGMAN DIVERGENCES

In this section, we first recall the definitions of BD
[45] and tBD [38]. Both divergences are dependent on
a convex and differentiable function f : X → R that
generates the divergences. It is worth pointing out that if
f is not differentiable, one can mimic the definition and
proofs of properties with gradient substituted by any
of its subdifferentials [46], and the gradient can be any
value contained inside the interval of the subderivatives.
Using this subderivative will retain the properties of tBD.

Definition 2.1. [45] The Bregman divergence d associated
with a real valued strictly convex and differentiable function
f defined on a convex set X between points x, y ∈ X is given
by,

df (x, y) = f(x)− f(y)− 〈x− y,∇f(y)〉, (1)
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where ∇f(y) is the gradient of f at y and 〈·, ·〉 is the inner
product determined by the space on which the inner product
is being taken.

df (·, y) measures the error using the tangent function
at y to approximate f , and can be seen as the distance
between the first order Taylor approximation to f at y
and the function evaluated at x. As shown in Fig. 2,
Bregman divergence measures the ordinate distance, the
length of the dotted green line which is parallel to
the y-axis. It is dependent on the coordinate system,
for example, if we rotate the coordinate system, the
ordinate distance will change (see the dotted lines in Fig.
2(a) and (b)). This coordinate dependent distance has
great limitations because it requires a fixed coordinate
system. This is unrealistic in the cases where a fixed
coordinate system is difficult to build. With the moti-
vation to overcome this shortcoming and free ourselves
from choosing coordinate systems, we proposed total
Bregman divergence.

Definition 2.2. [1] The total Bregman divergence δ associated
with a real valued strictly convex and differentiable function f
defined on a convex set X between points x, y ∈ X is defined
as,

δf (x, y) =
f(x)− f(y)− 〈x− y,∇f(y)〉√

1 + ‖∇f(y)‖2
, (2)

〈·, ·〉 is inner product as in Definition 2.1, and ‖∇f(y)‖2 =
〈∇f(y),∇f(y)〉 generally.
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Fig. 2. In each figure, df (x, y) (dash dotted green line) is
BD, δf (x, y) (bold red line) is tBD, and the two orthogonal
arrows indicate the coordinate system. The length of the
yellow dash line is 〈x− y,∇f(y)〉. (a) shows df (x, y) and
δf (x, y) before rotating the coordinate system. (b) shows
df (x, y) and δf (x, y) after rotating the coordinate system.
Note that df (x, y) changes with rotation unlike δf (x, y)
which is invariant to rotation.

As shown in Fig. 2, tBD measures the orthogonal
distance, and if we translate or rotate the coordinate
system, δ(·, ·) will not change.

Compared to the BD, tBD contains a weight factor
(the denominator) which complicates the computations.
However, this structure brings up many new and in-
teresting properties and makes tBD an ”adaptive” di-
vergence measure in many applications. Note that, in
practice, X can be an interval, the Euclidean space,
the Riemannian space, functions [47]. Also tBD is not

symmetric i.e., δf (x, y) 6= δf (y, x), but we can make it
symmetric very easily in many ways, e.g. total Jensen-
Bregman divergence [48]

δfs = (δf (x, (x+ y)/2) + δf (y, (x+ y)/2))/2 (3)

or

δfs = (δf (x, y) + δf (y, x))/2 or (4)

δfs =
√
δf (x, y)× δf (y, x) . (5)

Table 1 lists some tBDs with various associated convex
functions.

3 TOTAL BREGMAN DIVERGENCE BASED
CENTERS

In many applications of computer vision and machine
learning such as image and shape retrieval, clustering
and classification etc., it is common to seek a represen-
tative or template for a set of objects having similar
features. This representative normally is a cluster center,
thus, it is desirable to seek a center that is intrinsically
representative and easy to compute. In this section, we
will introduce the tBD-based centers, including the `p-
norm mean, the geometric and harmonic means respec-
tively. Specifically, we will focus on the `1-norm cluster
center that we call the total center (t-center for short)
and explore its properties. Some of these centers were
introduced in [1], [38] but are included here to make
this paper more self contained.

Definition 3.1. Let f : X → R be a convex and differentiable
function and E = {x1, x2, · · · , xn} be a set of n points in X ,
then, the `p-norm distance based on tBD, Ap

f , between a point
x ∈ X and E with associated f and the `p-norm is defined
as

Ap
f (x,E) =

(
1

n

n∑
i=1

(δf (x, xi))
p

)1/p

(6)

The `p-norm mean x̄p of E is defined as

x̄p
a = argmin

x
Ap

f (x,E). (7)

It is well known that the conventional geometric,
harmonic and arithmetic means (in the Euclidean case)
have a strong relationship. This is also the case for the
tBD centers. When p = 1, the tBD center is the arithmetic
mean of δf , and when p = −1, the tBD mean becomes
the harmonic mean, and when p→ 0, the mean becomes
the geometric mean [49].

These means also bear the name of circumcenter (p→
∞), centroid (p = 2) and median (p = 1) respectively [50].
In this paper, we call the median (p = 1) the t-center and
we will derive an analytic form for the t-center and focus
on its applications to shape retrieval. We would like to
mention that the `2-norm center for tBD is not in closed
form and is not as robust as `1-norm counterpart, thus
motivating us to seek the `1-norm t-center.
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X f(x) δf (x, y) t-center `1-norm BD center Remark

R x2 (x−y)2√
1+4y2

∑
i wixi

∑
i xi total square loss (tSL)

R− R− x log x
x log x

y
+x̄ log x̄

ȳ√
1+y(1+log y)2+ȳ(1+log ȳ)2

∏
i(xi)

wi
∑

i xi

[0, 1] − log x
x
y
−log x

y
−1√

1+y−2

∑
i(xi/(1−xi))

wi

1+
∑

i(xi/(1−xi))
wi

∑
i xi total logistic loss

R+ − log x
x
y
−log x

y
−1√

1+y−2

1∑
i wi/xi

∑
i xi total Itakura-Saito distance

R ex
ex−ey−(x−y)ey√

1+e2y

∑
i wixi

∑
i xi

Rd ‖x‖2 ‖x−y‖2√
1+4‖y‖2

∑
i wixi

∑
i xi total squared Euclidean

Rd xtAx
(x−y)tA(x−y)√

1+4‖Ay‖2
∑

i wixi
∑

i xi total Mahalanobis distance

∆d
∑d

j=1 xj log xj

∑d
j=1 xj log

xj
yj√

1+
∑d

j=1 yj(1+log yj)2
c
∏

i(xi)
wi

∑
i xi total KL divergence (tKL)

Cm×n ‖x‖2F
‖x−y‖2F√
1+4‖y‖2

F

‖x−y‖2F√
1+4‖y‖2

F

∑
i xi total squared Frobenius

TABLE 1
TBD δf and the corresponding t-center. ẋ = 1− x, ẏ = 1− y. c is the normalization constant to make it a pdf,

wi =
1/
√

1+‖∇f(xi)‖2∑
j 1/
√

1+‖∇f(xj)‖2
.

3.1 `1-norm t-center
Given a set E = {x1, x2, · · · , xn}, we can obtain

the `1-norm t-center x̄ of E by solving the following
minimization problem

x̄ = argmin
x

δ1f (x,E) = argmin
x

n∑
i=1

δf (x, xi) (8)

Using the `1-norm t-center x̄ has advantages over other
centers since it has a closed form which makes its
computationally attractive. The advantage is evident in
the experiments presented subsequently.

The t-center is closely related with other kinds of tBD-
based centers, like the geometric mean and harmonic
mean. We will show in the next section that, based on
tKL, the t-center of a set of pdfs is a weighted geometric
mean of all pdfs, and the t-center of a set of symmetric
positive definite matrices is the weighted harmonic mean
of all matrices.

3.2 Properties of t-center
In [38], we proved that the t-center exists, is unique

and can be written in an explicit form. The proof made
use of the convexity of f and the the Legendre dual space
of tBD. We will now illustrate this result using examples.
But prior to doing that, we present some definitions
which are used in the example illustrations.

Definition 3.2. Let x ∈ X , (X can be Rn, Rn
+, or the set of

probability distributions in Rn
+, i.e.

∑n
i=1 xi = 1, xi > 0) and

f(x) be a convex function. We then have the dual coordinates
through the Legendre transformation

x∗ = ∇f(x), (9)

and the dual convex function

f∗(x∗) = supx{〈x∗, x〉 − f(x)}. (10)

For the Legendre transformation, the derivative of the function
f becomes the argument to the function f∗. In addition, if f
is convex, then f∗ satisfies the functional equation

f∗(∇f(x)) = 〈x,∇f(x)〉 − f(x). (11)

The Legendre transformation is its own inverse, i.e. f∗∗ = f .
If f is a closed (lower-continuous) convex function, then f∗

is also closed and convex.

We already know that the gradient at the `1-norm t-
center x̄ is a weighted Euclidean average of the gradient
of all the elements in the set E = {x1, x2, · · · , xn} [38],
as in

∇f(x̄) =

(
n∑

i=1

wi∇f(xi)

)/(
n∑

i=1

wi

)
, (12)

with the weights wi =
(
1 + ‖∇f(xi)‖2

)−1/2. Utilizing
the Legendre dual transformation, and let f∗ be the
Legendre dual function of f , i.e.

f∗(y) = sup
x
{yx− f(x)}, (13)

then
x̄ = ∇f∗(y0), (14)

and

y0 =

(
n∑

i=1

wi∇f(xi)

)/(
n∑

i=1

wi

)
, (15)

which is the weighted average of gradients. For example,
if f(x) = x2, then

f∗(y) = sup
x
{〈y, x〉 − f(x)} = y2

2
, (16)

and
x̄ = y0, (17)
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where

y0 =

(
2

n∑
i=1

wixi

)/(
n∑

i=1

wi

)
, (18)

and
wi =

1√
1 + 4‖xi‖2

. (19)

The t-center has a closed form expression, which is
a weighted average, and the weight is inversely pro-
portional to the magnitude of the gradient of f at
the corresponding element. Table 1 lists the t-centers
corresponding to various associated (commonly used)
convex functions. Obviously, this list is not exhaustive
and there maybe convex functions for which the t-
centers are not in closed form because for certain classes
of convex functions, the computation of the inverse can
be intractable [51]. Table 1 also contains a column (] 5)
showing the `1-norm centers derived using the BD [45]
corresponding to the given convex functions in column
2. Note that regardless of the chosen convex generating
function, BD center is the same for all of them. This is
in sharp contrast to the t-centers, which we believe are
a richer class.

Also, as an `1-norm mean, the t-center is closely re-
lated to the geometric mean and the harmonic mean. The
relationship is obvious when using the tKL between two
pdfs. Let f(q) =

∫
q(x) log q(x)dx, which is the negative

entropy [52], and E = {q1, q2, · · · , qn} be a set of pdfs,
the t-center is then given by

q̄ = c
n∏
i

q
wi/

∑
j wj

i , wi =
1√

1 +
∫
(1 + log qi(x))2qi(x)dx

,

(20)
where c is a normalization constant to make q̄ a pdf,
i.e.

∫
q̄(x)dx = 1. q̄ is a weighted geometric mean of

{qi}ni=1 which belongs to the exponential family gener-
ated by q1, ..., qn. This is very useful in order two tensor
interpolation, where the order two tensor is a symmetric
positive definite (SPD) matrix. The tBD between two
such tensors Qi and Qj (which can be considered as the
covariances of two distinct normal distributions) can be
taken as the tKL between two normal distributions

p(x;Qi) =
1√

(2π)d detQi

exp

(
−1

2
x′Q−1

i x

)
, (21)

q(x;Qj) =
1√

(2π)d detQj

exp

(
−1

2
x′Q−1

j x

)
, (22)

and

tKL(Qi, Qj) = tKL(p, q)

=
log(det(Q−1

i Qj)) + tr(Q−1
j Qi)− d

2
√
c+

(log(detQj))2

4 − d(1+log 2π)
2 log(detQj)

,

where c = 3d
4 + d2 log 2π

2 + (d log 2π)2

4 , and d is the number
of rows/columns of Qi. The t-center Q̄ for {Qi}ni=1 is the
weighted harmonic mean:

Q̄ =

(
n∑

i=1

wi

Q

−1

i

)−1

, (23)

wi =

(
2

√
c+

(log(detQi))
2

4 − d(1+log 2π)
2 log(detQi)

)−1

∑
j

(
2

√
c+

(log(detQj))
2

4 − d(1+log 2π)
2 log(detQj)

)−1 .

Besides the closed form expression, another funda-
mental property of the t-center is that it is provably ro-
bust to outliers (see [38] for the analysis of the influence
function). We will state its theoretical robustness here in
the form of a theorem that was proved in [38] and depict
its robustness property in practice through examples in
the experimental section.

Theorem 3.1. [38] The t-center is statistically robust to
outliers. The influence function of the t-center from outliers
is upper bounded.

Using the `1-norm t-center x̄ has advantages over
other centers resulting from the norms with p > 1 in
the sense that, besides robustness, x̄ has an analytic
form which makes it computationally attractive. This
advantage is explicitly evident in the applications of
clustering described later.

4 TBDS AND LIFTED EXPONENTIAL FAMILIES

In this section, we will elucidate a stochastic aspect of
tBD by proving a relationship between tBD and lifted
exponential family distributions. The l1-norm t-center
corresponds to the Bayesian Maximum a posteriori es-
timation (MAP) estimator of the associated probability
distribution.

In probability theory and statistics, a family of prob-
ability density functions or probability mass functions
is said to be an exponential family (EF) if it can be
expressed in the following standard form,

p(x; θ) = h(x) exp (〈θ,x〉 − g(θ)) (24)

where θ is called the natural parameter, which is a
vector lying in the natural parameter space, h(x) > 0
is a dominating measure, x is a vector-valued random
variable, 〈θ, x〉 is the inner product

∑
i θixi and g(θ) is

a convex function of θ. g(θ) is called the log partition
function or cumulant generating function. There are two
common types of exponential families [53], including
the continuous families (e.g. normal, Gamma, Beta, Log-
normal, Weibull and inverse Gaussian distributions), and
discrete families (e.g. Poisson, Binomial, and Multino-
mial distributions). In the case of discrete families, h(x)
is a counting measure and

∫
will be replaced by

∑
.

A multivariate parametric family of distributions
p(x, θ) in (24) is said to be a regular exponential family,
when x is a minimal sufficient statistic [54], [55] and g(θ)
is convex and strictly differentiable. In this paper, we will
use the regular exponential family distributions.
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Banerjee et al. [45] have shown that there is a bijection
between the regular exponential family distributions and
BDs such that

p(x; θ) = b(x) exp (−df (x, η(θ))) , (25)

where f is the Legendre conjugate function of g, η =
∇g(θ), and b(x) = h(x) exp (−f(x)).

There is a bijection between BD and tBD such that
every BD corresponds to a unique convex differentiable
function f and every convex differentiable f corresponds
to a unique tBD and vice versa. According to the bijec-
tion transitivity, we can recover the exponential family
distribution (25) as

p(x; θ) = b(x) exp
(
−δf (x, η)

√
1 + ‖∇f(µ)‖2

)
(26)

since δf (x, y) = df (x, y)/
√
1 + ‖∇f(y)‖2.

In order to find the distribution induced by tBD
δf (x, y), we consider a probability distribution of the
form

pδ(x; θ) = h̃(x) exp (−δf (θ,x)− g̃(θ)) (27)

where g̃ is a normalization term depending only on θ.
We call this the tBD distribution, since x are distributed
according to the tBD values. This is not an exponen-
tial family but is a lifted exponential family. Given an
exponential family (24), we define its lift by a curved
exponential family

p̃(x; θ) = h̃(x) exp
(
〈θ̃, x̃〉 − g̃(θ)

)
, (28)

where

θ̃ =

(
f(θ)

θ

)
, x̃ =

1

w(x)

(
1

x

)
(29)

with w(x) =
√
1 + ‖∇f(x)‖2. Here, h̃(x) is adequately

defined such that the integration of (28) converges and
g̃(θ) corresponds to the normalization factor. We lifted
p(x; θ) to the space having one extra dimension and
embed it (29) as a hyper-surface.

Theorem 4.1. Any tBD distribution corresponds to a lifted
exponential family distribution.

It is easy to prove the theorem since δf (θ,x) is written
as

δf (θ,x) = −〈θ̃, x̃〉 −
f(x)

w(x)
. (30)

However, we may choose h̃(x) adequately such that∫
h̃(x) exp (−δf (θ,x)) dx (31)

converges. A typical choice is Gaussian

h̃(x) = c exp

(
−‖x‖

2

2σ2

)
. (32)

We show that the arbitrariness of h̃ does not affect the
stochastic inference given a data set E = {x1, · · · ,xn}.

Theorem 4.2. The t-center of E is the Bayesian MAP
estimator in the lifted exponential family (28) with a prior
distribution

π(θ) = exp (−ng̃(θ)) . (33)

Proof The Bayesian MAP is the maximizer of

log

(∏
i

π(θ)pδ (xi, θ)

)
=
∑
i

log h̃ (xi)−
∑
i

δf (θ,xi) ,

(34)
which is the minimizer of

∑
δf (θ,xi).

When f(x) = ‖x‖2

2 , (2) becomes a special radial basis
function, whose general form is

δf (xi,xj) = exp

(
− ‖xi − xj‖2

2
√

1 + ‖xj‖2

)
. (35)

Therefore, the tBD distribution is

pδ(x; θ) = h̃(x) exp (−δf (θ,x)− g̃(θ)) , (36)

where g̃(θ) is given from∫
pδ(x; θ)dx = 1. (37)

When we use the Bayesian prior π(θ) = exp (g̃(θ)), the
MAP for E is the maximizer of

∏
i π(θ)pδ(xi; θ), which is

the minimizer of
∑

i δf (θ,xi). In the next section, we use
the t−center which is the result of the aforementioned
minimization to develop a soft clustering algorithm.

5 TBD HARD AND SOFT CLUSTERING

When performing retrieval from a small database,
it is possible to apply the brute-force search method
by comparing the query shape with each shape in the
database one by one. However, in the case of retrieval
from a large database, it becomes impractical to use this
brute-force search method because of the extremely high
computational cost. To achieve real-time retrieval in a
large database, we turn to a far more computationally
efficient strategy, namely a divide-and-conquer strategy.
First, utilizing the top down approach, we split the
whole database into sub-clusters, and repeat recursively
the same approach on the sub-clusters. Ideally, the diver-
gence between shapes from the same cluster should be
less than the divergences between images from different
clusters, so that we choose a representative for each
cluster, and assign each shape to the nearest cluster.
There are two ways of assigning a shape to a cluster,
assign it to a cluster deterministically, or assign the shape
to a cluster according to some probability. The former
corresponds to hard clustering, while the later case is soft
clustering. These clustering algorithms were described
in Banerjee et al. [45] for Bregman divergences (BDs),
where the hard clustering chooses the centers of mass,
and the soft clustering is shown to be equivalent to
the celebrated Expectation-Maximization algorithm (EM)
for learning mixtures of dual exponential families (EFs).
In this paper, we consider tBDs instead of BDs and
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the tBD clustering algorithms are adapted accordingly.
For hard clustering, the cluster centers are no longer
centers of mass but barycenters with weights inversely
depending on the norm of the gradient of the tBD
generator. Similarly, the tBD soft clustering can be in-
terpreted as the expectation-maximization algorithm for
learning mixtures of lifted exponential families (lEFs)
based on the bijection described in Section 4. We now
summarize the soft clustering algorithm in the algorithm
block below.

Algorithm 1 Total Bregman Soft Clustering Algorithm

Input: X = {xi}Ni=1, number of clusters c.
Output: M = {mj}j=1 and Q = {qj}j=1, mj is the
cluster center for the jth cluster with probability qj .
Initialization: Randomly choose c elements from X as
M and set Q to the uniform probability.
repeat
{assign xi to clusters}
for i = 1 to N do

for j = 1 to c do
q(j | xi)← qj exp(−δf (mj ,xi))∑c

j′=1
qj′ exp(−δf (mj′ ,xi))

end for
end for
{update cluster centers}
for j = 1 to c do

qj ← 1
N

∑N
i=1 q(j | xi)

mj ← t-center for cluster j
end for

until The change of the results between two consecu-
tive iterations is below some sensitivity threshold.

For clustering data sets, one has to first choose an
appropriate divergence. Banerjee et al. [45] showed ex-
perimentally that the clustering result is best when the
divergence is chosen according to the underlying gen-
erative process of data. That is, for a data set drawn
from a mixture of exponential families, the hard cluster-
ing algorithm performs experimentally best if we choose
the corresponding dual Bregman divergence [45] (p.
1737). The same experimental phenomenon holds for
tBD clustering as described below. Further, we present
comparative results for clustering using Bregman and
total Bregman divergences on a synthetic data set. We
see that the total Bregman divergences outperform the
usual Bregman divergences in all experimental scenarios
because of its inherent statistical robustness. In section 6
we further demonstrate that similar experimental results
are obtained for shape retrieval applications on real-
world data sets. We did four experiments using the same
data sets as Banerjee et al. [45]. The first one is based on
several 1D data sets of 300 samples each, generated from
mixtures of Gaussian and Binomial models respectively.
Both mixture models had three components with equal
priors centered at 10, 20 and 40. The standard deviation
of the Gaussian distribution was set to 5 and the number
of trials of the Binomial distribution was set to 300 so as

to make the two models somewhat similar to each other,
in terms of the variance which is almost the same for all
the models. We also use the same method to generate 2D
and 5D data sets and compare the algorithms on them.

The accuracy of clustering was measured by using the
normalized mutual information (NMI) [56] between the
predicted clusters and the original clusters that gener-
ated the samples, and the results were averaged over 30
trials.

Table 2 lists the NMI resulted from soft clustering
using BD1 and tBD. Gaussian mixture and Binomial
mixture represent the models that generated the data
sets. dGaussian and dBinomial represent the Bregman di-
vergences for Gaussian and Binomial distributions while
δGaussian and δBinomial represent the tBD for Gaussian
and Binomial distributions. More specifically,

δGaussian(x1, x2) =
f(x1)− f(x2)− 〈x1 − x2,∇f(x2)〉√

1 + ‖∇f(x2)‖2
(38)

f(x) = 1
2x

2 and q(x) = 1
σ
√
2π

exp
(
− (x−µ)2

2σ2

)
. δBinomial is

in the same format as (38) but q(x) =
(
n
x

)
px(1 − p)n−x,

and p is the probability for a single success.
For Table 2, in ((a), (b), and (c)), rows 1 and 2 corre-

spond to the NMI between the original and the predicted
clusters obtained by applying the Bregman clustering
algorithm using the Bregman divergences dGaussian and
dBinomial [45] respectively. Rows 3 and 4 correspond to
the NMI yielded by the tBD clustering algorithm using
δGaussian and δBinomial respectively. The numbers in
Table 2 demonstrate that using δGaussian to cluster data
sets generated by Gaussian mixture and using δBinomial

to cluster data sets generated by Binomial mixture gives
better NMI than using dGaussian and dBinomial. More
importantly, using δGaussian to measure the data sets
generated by Binomial mixture gives much better NMI
than using dGaussian to perform the same task. This
is also true with δBinomial and dBinomial. This is very
useful in the real applications, because often, one does
not know the model that generates the data, and instead
we have to blindly choose some divergence measure. But
what we are sure now is that tBD is always better than
Bregman divergence when using the same generating
functions.

Remarks: From Table 2, we can see that with the
increasing dimension, tBD soft clustering becomes more
accurate than BD clustering, and the performance differ-
ence between tBD clustering and BD clustering becomes
larger.

Also, if we fix the dimension of data and the original
number of clusters c, and let the predicted cluster num-
ber c̃ approach to c, the NMI of tBD clustering increases
faster than that of BD clustering. This is illustrated in
Table 3. The data set for Table 3 is generated using the
Gaussian generative model and the original number of

1. For the implementation of BD soft clustering, we used the pub-
lic domain jMEF library [53] from http://www.lix.polytechnique.fr/
∼nielsen/MEF/
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(a)
Measure Gaussian Mixture Binomial Mixture
dGaussian 0.73660±0.00142 0.64998±0.00035
dBinomial 0.64307±0.00066 0.72982±0.00379
δGaussian 0.75076±0.00193 0.65089±0.00018
δBinomial 0.67899±0.00773 0.74450±0.00218

(b)
Measure Gaussian Mixture Binomial Mixture
dGaussian 0.43922±0.03577 0.38246±0.05020
dBinomial 0.36805±0.05513 0.42987±0.04747
δGaussian 0.59385±0.11910 0.50518±0.07280
δBinomial 0.52136±0.09187 0.57063±0.05173

(c)
Measure Gaussian Mixture Binomial Mixture
dGaussian 0.39869±0.00049 0.38246±0.05020
dBinomial 0.19765±0.00025 0.14205±0.05619
δGaussian 0.52360±0.00018 0.41516±0.05320
δBinomial 0.36883±0.00035 0.52164±0.04173

TABLE 2
(a), (b) and (c) present the clustering results for the 1D,
2D and 5D data sets. Columns 2− 3 correspond to the

NMI between the original and predicted clusters (original
number of clusters is 3, predicted number of clusters is 5)

obtained by applying the Bregman soft clustering
algorithm corresponding to the dGaussian and dBinomial

and tBD soft clustering algorithm corresponding to
δGaussian and δBinomial respectively.

c̃ dGaussian δGaussian

10 0.65627±0.00020 0.656364±0.00034
8 0.68417±0.00122 0.68554±0.00109
6 0.69958±0.00112 0.70202±0.00154
5 0.73660±0.00142 0.75076±0.00193
3 0.86115±0.00141 0.98658± 0.00120

TABLE 3
NMI between the original clusters and the clusters

obtained from tBD and BD soft clustering algorithms
respectively. c̃) is the predicted number of clusters. The

original number of clusters is 3

clusters is c = 3. From Table 3, we can see tBD soft
clustering behaves consistently better than BD soft clus-
tering for which even the predicted number of clusters
is incorrect. This is fundamental in image segmentation
applications where it is necessary to partition an image
into multiple regions or sets, and also can typically be
used to locate objects and boundaries.

6 SHAPE RETRIEVAL USING t-CENTERS

The task of shape retrieval is to find the best match
from a database of shapes given a query shape. In this
section, we propose an efficient and accurate method
for shape retrieval that includes an easy to use shape
representation, and an analytical shape dissimilarity di-
vergence measure. Also, we present an efficient scheme
to solve the computationally expensive problem encoun-
tered when retrieving from a large database. The scheme

is composed of clustering and efficient pruning, which
will be elaborated on in Section 6.3.

6.1 Shape representation
A time and space efficient shape representation is fun-

damental to shape retrieval. Given a segmented shape
(or a binary image), we use a Gaussian Mixture Model
(GMM) [2], [3], [4] to represent it. The procedure for
obtaining the GMM from a shape is composed of three
steps. First, we extract the points on the shape boundary
or surface (to make it robust, for each point on the
boundary, we also picked its closest 2 neighbors off the
boundary), since MPEG-7 shapes are binary, the points
that have nonzero gradient lie on the boundary (this
step uses one line of MATLAB code). After getting the
boundary points for every shape, we use the affine
alignment proposed by Ho et al. [57] to align these points
to remove the effect of rigid transformations (note that
other alignment methods [22] will also be good). Given
two sets of points {xi}mi=1 and {yj}nj=1 where {xi} are
from a query and {yi} from the database, we can find
affine alignment (A, b), A ∈ GL(2)2, b ∈ R2, such that
g(A, b) =

∑
i minj{(Axi + b − yj)

2} achieves minimum,
and then we use the aligned {x̄i|x̄i = Axi + b}mi=1 to
represent the original point set {xi}mi=1. This step is also
very simple due to the explicit solution of (A, b), and
it only takes several lines of MATLAB code to imple-
ment. Finally, we compute the GMM from the aligned
boundary points. A parametric GMM is a weighted
combination of Gaussian kernels, which can be written
as

p(x) =
m∑
i=1

aiN (x;µi,Σi), 0 ≤ ai ≤ 1,
n∑
i

ai = 1, (39)

where m is the number of components; N (x;µi,Σi) is
the Gaussian density function with mean µi, variance
Σi, and weight ai in the mixture model. The mixture
model is obtained by applying the EM algorithm and
iteratively optimizing the centers and widths of the
Gaussian kernels. The number m of components in the
GMM model should be as small as possible, but makes
the determinant of the covariance for each component
not large (we found that m = 10 is a good compromise
for MPEG-7 database). The above process is portrayed
using the flow chart shown below.

Shape → Boundary extraction and alignment → GMM

Some concrete examples of the application of the flow
chart are shown in Fig. 3.

6.2 Shape dissimilarity comparison using total
square loss (tSL)

Total square loss (tSL) is a special class of tBD. As
shown in Table 1, the generator function f on the scalar

2. GL(2) : The set of 2× 2 invertible matrices.
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Fig. 3. Left to right: original shapes; aligned boundaries;
GMM with 10 components, the dot inside each ellipse is
the mean of the corresponding Gaussian density function,
and the transverse as well as the conjugate diameter
for each ellipse correspond to the eigen values of the
covariance matrix.

space for tSL is f(x) = x2, and the tSL between two
elements x and y is tSL(x, y) = (x−y)2√

1+4y2
. Furthermore,

tSL can be generalized to the space of vectors as well as
functions. In our experiment, we use tSL to measure the
difference between GMMs.

After getting the GMM representation of each shape,
we use tSL to compare two GMMs, and take the dif-
ference as the dissimilarity between the corresponding
shapes. Note that one could also use tKL to compare the
difference between distributions. However, to compare
the difference between GMMs, tSL gives closed form
solution, but tKL does not and this motivates us to use
tSL. Suppose two shapes have the following GMMs p1
and p2,

p1(x) =

m∑
i=1

a
(1)
i N (x;µ

(1)
i ,Σ

(1)
i ), (40)

p2(x) =
m∑
i=1

a
(2)
i N (x;µ

(2)
i ,Σ

(2)
i ). (41)

Since∫
N (x;µ1,Σ1)N (x;µ2,Σ2)dx = N (0;µ1 − µ2,Σ1 +Σ2),

we can arrive at

tSL(p1, p2) =

∫
(p1 − p2)

2dx√
1 +

∫
4p22dx

=
d1 + d2 − d1,2√

1 + 4d2
, (42)

where

d1 =

m∑
i,j=1

a
(1)
i a

(1)
j N (0;µ

(1)
i − µ

(1)
j ,Σ

(1)
i +Σ

(1)
j ),

(43)

d2 =
m∑

i,j=1

a
(2)
i a

(2)
j N (0;µ

(2)
i − µ

(2)
j ,Σ

(2)
i +Σ

(2)
j ),

(44)

d1,2 = 2
m∑

i,j=1

a
(1)
i a

(2)
j N (0;µ

(1)
i − µ

(2)
j ,Σ

(1)
i +Σ

(2)
j ) ,

(45)

N (0;µ,Σ) =
1

(
√
2π)e

√
det(Σ)

exp

(
−1

2
µ′Σ−1µ

)
, (46)

and e is the dimension of µ. Given a set of GMMs {pl}nl=1,
pl =

∑m
i=1 a

(l)
i N (x;µ

(l)
i ,Σ

(l)
i ), its t-center can be obtained

from equation (14), which is

p̄ =

∑n
l=1 wlpl∑n
l=1 wl

,

wl = (1 + 4dl)
−1/2

,

dl =
m∑

i,j=1

a
(l)
i a

(l)
j N (0;µ

(l)
i − µ

(l)
j ,Σ

(l)
i +Σ

(l)
j ).

(47)

We evaluate the dissimilarity between the GMM of the
query shape and the GMMs of the shapes in the database
using tSL, and the smallest dissimilarities correspond to
the best matches.

6.3 Shape retrieval in MPEG-7 database
The proposed divergence is evaluated on the shape

retrieval problem using the MPEG-7 database [42], which



10

consists of 70 different objects with 20 shapes per object,
for a total of 1400 shapes. This is a fairly difficult
database to perform shape retrieval because of its large
intraclass variability, and, for many classes, small inter-
class dissimilarity, and furthermore, there are missing
parts and occlusions in many shapes.

We cluster the database into hierarchical clusters, cal-
culate their t-centers and compare the query shape with
the t-centers hierarchically. For the clustering part, we
applied both hard clustering and soft clustering.

For hard clustering,we apply a variation of k-tree
method by setting k = 10 at the first level of clustering,
7 at the second level, 5 at the third level and 2 at all
following levels, so the average number of shapes in
each cluster is 140, 20, 4, 2, and 1.

In the k-tree, every key is represented by a mixture of
Gaussians, every inner node (including the root) has 1
to k keys, each of which is the t-center of all keys in its
children nodes, and the key for a leaf node is a mixture of
Gaussians for an individual shape. The k-tree illustration
is shown in Fig. 4.

t-centers

GMM

t-centers

GMM

t-centers

GMM

Shape

GMM

Shape

GMM

Shape

GMM

Shape

GMM

Fig. 4. k-tree diagram. GMM: Gaussian mixture model.
Each key is a mixture of Gaussians as explained in the
experimental part. Each key in the inner nodes is the t-
center of all keys in its children nodes. The key of a leaf
is a mixture of Gaussians corresponding to an individual
shape.

During retrieval, we only need to compare the query
with the representatives, and once the best match rep-
resentative is obtained, we compare the query with the
t-centers of the relative sub-clusters, recursively doing
so, until the required number of best matches are found.

For soft clustering, we append a semi-hard assignment
to the soft clustering algorithm, i.e., after the soft cluster-
ing converges, we will assign the shape xi to cluster Cj ,
if p(Cj |xi) ≥ a. We use a = 1/2, so that one shape can be
assigned to at most 2 clusters at the tree leaf level, but
a cluster center may be dependent on xi even though xi

is not assigned to this cluster finally.
The clustering process is a coarse to fine procedure,

which greatly enhances efficiency while guaranteeing
accuracy. Also, we compare the clustering accuracy of
tSL, χ2 3 and SL soft and hard clustering by a reasonable
measure, which is the optimal number of categories per

3. χ2 : d(p, q) =
∫
x

(p(x)−q(x))2

(p(x)+q(x))2
dx

cluster (denoted by |C|∗, |C| represents the cardinality
of C, i.e., the number of categories in C) divided by the
average number of categories in each cluster (denoted by
Avg(|C|)). For example, at the first level clustering, there
are 10 clusters {Ci}10i=1, with an average of 140 shapes
per cluster, and thus, the optimal number of categories
per cluster |C|∗ = 140/20 = 7; Avg(|C|) =

∑10
i=1 |Ci|
10 . The

smaller the number of categories per cluster, the higher
is the clustering accuracy, and the more accurate will
be the categories separation. Note the optimal clustering
accuracy is 1. Fig. 5 compares the clustering accuracy of
tSL, χ2 and SL soft and hard clustering, which shows
that tSL soft clustering has a striking clustering accu-
racy, implying substantial capability to detect outliers,
occlusion, missing parts, and strong ability to distinguish
shapes from different categories.
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Fig. 5. Comparison of clustering accuracy of tSL, χ2 and
SL, versus average number of shapes per cluster.

We include here several groups of retrieval results in
Fig. 6, which show that our method can deal very well
with scale, rotation, pose, occlusion, missing parts, great
intraclass dissimilarity and large interclass similarity.

The evaluation of accuracy for retrieval in the whole
MPEG-7 database is based on the well recognized cri-
terion, recognition rate [5], [9], [58], [42]. Each shape is
used as a query and the top 40 matches are retrieved
from all 1400 shapes. The maximum possible number of
correct retrievals for each query is 20, and hence there are
a total of 28,000 possible matches with the recognition
rate reflecting the number of correct matches divided by
this total.

Table 4 lists the recognition rate we obtained and
comparisons with some of the existing techniques. Note
that our method gives high recognition rate, even though
it is not as good as [15], [59], however, our method does
not need any preprocessing of the shapes or any post-
processing of the similarities. Simplicity and efficiency of
our method are the key salient features distinguishing it
from other methods.
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(a)

(b)

(c)

Fig. 6. Retrieval results using our proposed method: the
first shape in each figure is the query, and the other
shapes are shown from left to right, up to down according
to the ascending order of the divergence to the query.

6.4 Brown database

Additionally, we apply our proposed method to the
Brown database [14], which contains 9 shape categories,
where each shape category has 11 different segmented
binary shapes and 99 shapes in total. We use GMM
to represent each shape, the number of components
for each GMM is decided using the same way as in
the MPEG-7 experiment, and compare the difference
of shapes using the tSL between their corresponding
GMMs. We tested our method using the criteria as in
[8], [58], [14], [15], [16]: every shape is taken as the query,
and compared with all the shapes in the database. We

Technique Recognition rate (%)
GMM+soft clustering+ tSL 93.41
GMM+soft clustering+SL 76.48
GMM+hard clustering+tSL [1] 89.1
GMM+hard clustering+SL [1] 65.92
Shape-tree [58] 87.7
IDSC + DP + EMD [7] 86.56
Hierarchical Procrustes [9] 86.35
IDSC + DP [6] 85.4
Shape L’Âne Rouge [5] 85.25
Generative Models [16] 80.03
Curve Edit [60] 78.14
SC + TPS [61] 76.51
Visual Parts [42] 76.45
CSS [62] 75.44
Perceptual Strategy + IDSC + LCDP [15] 95.60
IDSC + Mutual Graph [63] 93.4
IDSC + LCDP + unsupervised GP [19] 93.32
IDSC + LCDP [19] 92.36
IDSC + LP [8] 91.61
Contour Flexibility [17] 89.31
Perceptual Strategy + IDSC [15] 88.39
SC + IDSC + Co-Transduction [59] 97.72
AIR[18] 93.67
ASC + LCDP [20] 95.96
AIR + DN + TPG Diffusion [21] 99.99

TABLE 4
Recognition rates for shape retrieval in the MPEG-7
database. Soft clustering using total Bregman tSL

divergence performs well, gaining 16% increase over
ordinary Bregman SL divergence.

then find the best 10 matches, and check the number
of correct matches, i.e., the number of shapes which
belong to the same category as the query shape. This
process is repeated by taking each one of the 99 shapes
in the whole data set as the query shape. Then we
check the total correct matches for the ith found shapes,
i = 1, 2, · · · , 10 (the maximum number of correct matches
is 99), which are shown in Table 5. We can see that our
method performs quite well.

6.5 Swedish Leaf Data Set

The Swedish leaf data set [43] contains isolated leaves
from 15 different Swedish tree species, with 75 leaves
per species, and 1125 shapes in total. We use the clas-
sification criteria as in [7], [15], [19], [58], which used
the 1-nearest-neighbor approach to measure the classifi-
cation performance. For each leaf species, 25 samples are
selected as a template and the other 50 are selected as
targets. We use GMM to represent each shape, and use
tBD soft clustering algorithm to cluster the shapes into
different clusters. Shape classification results on this data
set are shown in Table 6, from which we can see that our
accessible shape representation plus tBD soft clustering
algorithm yields very good results.

6.6 3D Princeton Shape Benchmark

Our method performed very well in the domain of
2D shape retrieval and it can be extended very easily to
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Technique 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
GMM+tSL 99 99 99 99 99 99 99 99 99 99
GMM+SL 99 99 97 95 87 91 92 89 83 69
Perceptual Strategy + IDSC + LCDP [15] 99 99 99 99 99 99 99 99 99 99
IDSC + LP [8] 99 99 99 99 99 99 99 99 97 99
Shape-tree [58] 99 99 99 99 99 99 99 97 93 -86
IDSC [7] 99 99 99 98 98 97 97 98 94 79
Shock-Graph Edit [14] 99 99 99 98 98 97 96 95 93 82
Generative Models [16] 99 97 99 98 96 96 94 83 75 48

TABLE 5
Recognition rates for shape retrieval from the Brown database. Using total Bregman (tSL) divergence, we obtain the

best performance.

Technique recognition rate(%)
GMM+soft clustering + tSL 98.33
GMM+hard clustering + tSL 97.92
GMM+soft clustering+SL 94.21
GMM+hard clustering+SL 90.89
Perceptual Strategy + IDSC + LCDP [15] 98.27
IDSC + LCDP [19] 98.20
Shape-tree [58] 96.28
IDSC [7] 94.13

TABLE 6
Recognition rates for shape retrieval from the Swedish

leaf database.

higher dimensional space. Here, we evaluate our method
on the Princeton Shape Benchmark (PSB) [44] containing
1814 3D models, which is divided into the training set
(907 models in 90 classes) and the testing set (907 models
in 92 classes). We evaluate our method on the testing
set, and compare our results with others in three ways,
Nearest Neighbor (NN), Discounted Cumulative Gain
(DCG) and Normalized DCG (NDCG) using the software
provided in PSB [44]. Our method outperforms the other
methods when using NN criteria, and can find the first
closest matches that belong to the query class more
accurately.

tBD BD CRSP DSR DBF DBI SIL D2
NN 72.3 53.4 67.9 66.5 68.6 60.9 55.7 31.1
DCG 66.7 46.9 66.8 66.5 65.9 61.4 59.7 43.4
NDCG 16.1 4.5 16.4 15.9 14.9 7 4.1 -24.4

TABLE 7
Retrieval comparison with other methods (CRSP [64],

DSR [65], DBF [65], DBI [66], SIL [66], D2 [67]) on PSB.
Observe that performance drops significantly if we

consider ordinary Bregman divergences (BD) instead of
total Bregman divergences (tBD).

7 CONCLUSIONS AND FUTURE WORK

In this paper, we defined and investigated proper-
ties of total Bregman divergences (tBD). We introduced
the tBD-based `p-norm centers, and report closed-form

expressions for the `1-norm t-center that is provably
robust to outliers. We extend the work of Banerjee et.
al [45] by proposing both tBD hard and soft clustering
algorithms that exhibit experimental robustness com-
pared to conventional Bregman divergences. We also
developed a simple and efficient shape retrieval ap-
proach, using shape alignment to remove rigid motion
effects (translation, rotation, scale), then using a GMM
to represent shape boundaries (contour or boundary
surface) followed by an application of the tBD clustering
algorithm to cluster the shapes into sub-clusters and
store the shapes using a k-tree. The clustering has low
computational cost, because the cluster center is in closed
form and is only dependent on the GMM means and
variances. The k-tree makes retrieval very efficient which
takes logarithmic comparisons. Furthermore, each com-
parison is very fast because the tBD between two GMMs
also has an explicit form. In summary, our method is
efficient, invariant to rigid transformations, robust to
outliers, and yields better or similar results compared
with the state-of-the-art techniques.

For future work, we plan to apply our method to real-
world image data set classification and video retrieval,
with the existence of clutter and motion, which will be
more challenging and interesting.
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