
ÉCOLE POLYTECHNIQUE

Thèse de Doctorat
Spécialité Informatique

NESTED DEDUCTION
IN LOGICAL FOUNDATIONS

FOR COMPUTATION

Présentée et soutenue publiquement par

NICOLAS GUENOT

le 10 Avril 2013

devant le jury composé de

Delia KESNER Rapporteur
Richard MCKINLEY

Dale MILLER

Luca ROVERSI Rapporteur
Lutz STRASSBURGER Directeur de thèse

Benjamin WERNER

Nested Deduction
in Logical Foundations

for Computation

Nicolas Guenot

April 8, 2013

Acknowledgements

A PhD thesis is always a long story... well at least it was for me, and of course it
involves a lot of people providing help and support. For the thesis itself, I have
to thank Lutz Straßburger — accepting to be my supervisor, and for the freedom
I got in my research. Also, I owe very much to Dale Miller, for being so helpful
on scientific questions as well as more down-to-earth questions. He is responsible
for the nice research environment one can find in the Parsifal team, from the lively
discussions to the many opportunities to meet researchers and work with different
people. It was a great pleasure to work with other members of the team, and I am
particularly thankful to Kaustuv Chaudhuri for our collaboration and for the many
interesting discussions.

I would like to thank Delia Kesner for accepting to review thoroughly this thesis,
and Roy Dyckhoff even if this finally could not go all the way... Also, Luca Roversi
for his kindness taking part as a reviewer. I am honored that Richard McKinley
and Benjamin Werner accepted to be on the jury, along with Dale and Lutz. I must
thank Stéphane Lengrand, Catuscia Palamidessi and Christine Ferret for their help
in the process of organising the defense.

Just getting to the point of actually starting a PhD thesis is a long road, which
was rather bumpy in my case. For helping me make the right choices at crossroads,
I am very grateful to Christine Paulin, who made me end up in Lyon — wise choice
with fortunate consequences — to Daniel Hirschkoff for his brilliant teaching and
the motivation to pursue that comes along. Of course my studies would not have
been so interesting without the good patronage of Tom Hirschowitz, or the famous
» td-men « from Brice Goglin to Emmanuel Jeandel and Jeremie Detrey.

Slowly moving from studies to research, I should thank many persons met on
the way: Kai Brünnler, Alessio Guglielmi, Paola Bruscoli, Michel Parigot, and Tom
Gundersen, Willem Heijltjes, and also Olivier Delande, Alexis Saurin, Vivek Nigam,
and Beniamino Accattoli, Pierre Boudes, and others, for stimulating conversations.
A special thank you very much to David Baelde for his help with scientific matters
as in other situations. Thanks to the many nice people met at LIX, PPS and LIPN,
my research and teaching time in Paris was very enjoyable.

Because student life is not only about learning from books, I owe many thanks
to the » gang des lyonnais et assimilés « starting with Stéphane, Camille, Pierre-Yves,
Vinz, Jules, Jade, et Cédric, Pierre, Benoit, Claire, Lucie, Samuel... and others. In
Paris, even more people, I shall pay a couple of biers to those I forget: thank you
Matthias, Clément, Maxime and Jasmine, Marina, thank you Jonas, Fabien and the
others for the welcoming atmosphere of PPS. Many people and places should be
properly thanked for making my life nicer. Salut à toi rue Bobillot, Folie en Tête,
et rue de Crimée. Vielen Dank, Heidelberg and Leipzig and all of you multitude of
flatmates for your warm hospitality. Thank you Céline, Maman, as usual.

Finally, for me not going too insane over the years, merci Nina.

444

555

Contents

Preliminaries 17

1 Standard and Nested Proof Theory 19
1 Proofs and Standard Logical Formalisms 20

1.1 Logical Formulas and Judgements 20
1.2 Inference Rules, Proofs and Systems 21
1.3 Logical Flow and the Structure of Proofs 24
1.4 Permutations of Rule Instances 28

2 Standard Intuitionistic Systems . 31
2.1 The Natural Deduction System NJ 32
2.2 Detour Elimination . 33
2.3 The Sequent Calculus LJ . 40
2.4 Cut Elimination . 43

3 Deep Inference and Nested Proof Systems 47
3.1 The Calculus of Structures . 49
3.2 Nested Sequents . 55
3.3 Logical Flow and Permutations 59
3.4 Normal Forms in Nested Proof Systems 63

2 Logical Foundations for Computation 67
1 Proof Normalisation as Functional Computation 69

1.1 Natural Deduction and Typed λ-terms 70
1.2 Detour Elimination as β-reduction 73

2 Cut Elimination and Explicit Substitutions 75
2.1 The λ-calculus with Explicit Substitutions 75
2.2 Cut in Natural Deduction and Explicit Substitutions 84
2.3 The λ-calculus with Pure Explicit Substitutions 89
2.4 The Sequent Calculus and Pure Explicit Substitutions 105

3 Linear Logic and Resources . 109
3.1 A Linear Decomposition of Classical Logic 109
3.2 Fragments of Linear Logic . 111
3.3 Computational Significance . 114

4 Proof Search as Logical Computation . 115
4.1 Computational Interpretations of Formulas 115
4.2 Normal Forms and Proof Search 116

666

Intuitionistic Logic in Deep Inference 121

3 Intuitionistic Logic in Nested Sequents 123
1 Intuitionistic Nested Sequent Systems 124

1.1 Basic Definitions . 124
1.2 A Family of Intuitionistic Proof Systems 125
1.3 Correspondence to the Sequent Calculus 130

2 Cut Elimination . 137
2.1 Preliminaries . 138
2.2 Weak Linearisation . 139
2.3 Merging Proofs . 142
2.4 Eliminating Cuts . 145

3 Local Normalisation . 153

4 Intuitionistic Logic in the Calculus of Structures 165
1 A System in Sequent Style . 166

1.1 Basic Definitions . 166
1.2 Correspondence to the Sequent Calculus 169
1.3 Cut Elimination and Normalisation 171

2 A System in Natural Deduction Style . 182
2.1 Basic Definitions . 182
2.2 Correspondence to Natural Deduction 184

3 Detour Elimination . 186

Nested Proofs as Programs 193

5 Nested Typing for Explicit Substitutions 195
1 Typing with Nested Sequents . 196

1.1 Nested Typing Judgements . 196
1.2 Nested Typing for Pure Explicit Substitutions 197
1.3 Properties of Nested Typing with Sequents 200

2 Cut Elimination as Reduction . 202
2.1 Reduction in the λx-calculus . 202
2.2 Reduction in Other Calculi . 205

3 Typing with the Calculus of Structures 208
3.1 Uniform Typing Structures . 208
3.2 Uniform Typing for λ-calculi with Explicit substitutions 209
3.3 Properties of Nested Typing with Structures 213

4 Detour Elimination as Reduction . 215
4.1 Reduction in the λx-calculus . 215
4.2 Reduction in Other Calculi . 216

777

6 Nested Typing and Extended λ-calculi 219
1 Contraction and Resources . 220

1.1 Contraction in Nested Proof Systems 220
1.2 Syntax of the λr-calculus . 222

2 Reduction in the λr-calculus . 225
2.1 Operational Properties of λr . 225
2.2 Nested Typing for λr . 228

3 Switch and Communication . 232
3.1 The Decomposition of Context Splitting 232
3.2 Syntax of the λc-calculus . 233

4 Reduction in the λc-calculus . 237
4.1 Operational Properties of λc . 237
4.2 Nested Typing for λc . 240

Nested Proof Search as Computation 247

7 Nested Focusing in Linear Logic 249
1 Linear Logic in the Calculus of Structures 250

1.1 The Symmetric Linear System SLS 250
1.2 Correspondence to the Sequent Calculus 253
1.3 From Equations to Inference Rules 256

2 Systems with Explicit Polarities . 261
2.1 Polarised Formulas and Calculi 261
2.2 The Polarised System LEP . 263

3 From Polarities to Focusing . 266
3.1 The Focused System LEF . 267
3.2 The Grouped System LEG . 275

4 Completeness and Relation to Sequent Calculi 276
4.1 Internal Proof of the Focusing Property 277
4.2 Correspondence to Standard Focusing 280

8 Proof Search as Reduction in the λ-calculus 285
1 Proof Search as Rewriting . 286
2 A Restricted Intuitionistic System . 288

2.1 Restrictions on Structures and Rules 289
2.2 Termination and the JSLb Proof System 292
2.3 Closing JSLb Proofs . 296

3 Encoding Reduction in Proof Search . 298
3.1 Computational Adequacy . 300
3.2 Search Strategies and Evaluation Order 302

4 Focused Proof Search and Strategies . 303
4.1 The JSLn Focused System . 303
4.2 Focusing as Big-step Computation 305

888

Introduction

Logic was born in a time when mathematicians would build complex theories on
the grounds of abstract objects that one can hardly understand without diving into
the definitions, theorems and technical proofs of the whole field of research, but
it has proved to be a crucial guidance on the way to the separation between what
mathematicians can prove, and what they can actually build. Interestingly enough,
formal logic was developed by philosophers and mathematicians such as Russell
and Whitehead with the explicit purpose of making everything formal, leading a
new generation, under the influence of logicians like Brouwer, to reject entire parts
of mathematics for being based only on formal objects that cannot be constructed.
Those who were trying to rebuild mathematics on the grounds of the finitist and
constructivist methods made crucial steps towards the radically new understanding
of a foundamental concept, that was rarely expressed in mathematics and never
described as such in any formal study: the notion of computation.

Some decades after the construction of the first computing machines that could
execute various tasks described by the means of programs, the intimate connection
between logic and computation was made clear with the new bridge established by
Curry and Howard, and others, between the foundational theory of mathematical
constructivism, the deductive system of intuitionistic logic, and a most remarkable
model of computation, the λ-calculus. The correspondence is rather simple: proofs
are programs, and programs are proofs. This gives to the formulas of intuitionistic
logic the status of types, an abstraction that allows to classify programs and give
proofs of their good properties. The slogan for introducing types and their logical
background into the practice of programming sounds convincing, since its states
that » well-typed programs never go wrong «, and this eventually lead to the creation
of new paradigms and languages, derived from the λ-calculus and structured by
logic, allowing for concise and elegant programs.

The logical approach to computation tends to reject the untyped programs and
to consider proofs and logical systems as completely describing the interesting part
of computation, with a nice consequence for logic: the necessity of inventing new
ways of programming to face new challenges such as external faults, interactivity
or concurrency was an efficient incentive and a source of inspiration for logicians
to refine their understanding of the laws of logic. In a few decades, the traditional
Curry-Howard correspondence was extended and refined, to discover the relation
between computation and classical logic as well as new logics stemming from the
study of models of programming, such as linear logic.

101010

The current state of the logical approach to computation is interesting, because
the rapidly developing study of programming methods goes far beyond what logic
can explain, but there is always a benefit in trying to capture these new mechanisms
in a principled, logical approach. Apart from the proofs-as-programs methodology,
the concept of logic programming has been introduced to improve the expressivity
of languages and take advantage of the consistent framework offered by logic. On
the side of proof theory, recent developments have established new possibilities of
manipulating and reasoning about proofs, and therefore programs. There are many
new concepts to explore, which will surely bring interesting insights on both logic
and computation.

ÆÆÆ

The structural approach to proof theory emphasises the importance of designing
deductive proof systems based on inference rules that respect certain criterions. In
particular, a subtle equilibrium is necessary to ensure that even if it contains rules
like the cut rule introduced by Gentzen in the sequent calculus, to formalise the use
of lemmas, a system is complete with respect to a given logic in its analytic form —
that is, rules such as cut are admissible in the system, only rules for decomposing
formulas are necessary. This result of normalisation, or cut elimination, is essential
to the two main approaches to computation followed and developped by logicians,
functional programming and logic programming. The procedures required to build
a normal proof from any given proof has been thoroughly investigated in the setting
of standard, shallow formalisms such as natural deduction and the sequent calculus,
where formulas are decomposed from the outside.

However, structural proof theory is an active field of research, where new ways
of representing proofs have been proposed, in particular since the inception of the
graphical system of proof-nets [Gir96] for linear logic. The so-called deep inference
methodology [Gug07] is another recent development which aims at overcoming a
particular limitation of the sequent calculus: its » sequential « access to the contents
of formulas, which is problematic for example when dealing with a certain form of
non-commutativity [Tiu06b]. In this setting, inference rules can be applied directly
inside formulas, so that the whole deduction process takes the form of a logically
sound rewriting of formulas. The formalism of the calculus of structures is the most
representative example of this methodology, and it has been used to define proof
systems for various logics, such as classical logic [Brü03], linear logic [Str03a] and
variants of these. However, in this setting, the shape of proofs and the large number
of possible configurations in the composition of the inference rule instances makes
it difficult to apply the traditional methods of structural proof theory.

In such a nested setting, where inference rules apply deep inside formulas that
are themselves modified by some other rule instances, the study of foundamental
normal forms of proofs, such as analytic proofs — that would be cut-free proofs
in the sequent calculus — or the uniform [MNPS91] and focused proofs [And92],
has not yet lead to a systematic approach for defining normalisation procedures
or proving the completeness of normal fragments. In particular, several techniques
have been used for proving cut elimination for systems in the calculus of structures,

111111

by substitutive methods [Brü06a], or by reducing proofs to a certain shape with
the so-called splitting lemma [GS11b], or through graphical representations of the
flow of atoms in proofs [GGS11]. The kind of normal forms used in a proof search
perspective have not been much studied, although proof search in the calculus of
structures has been investigated, from an implementation viewpoint [Kah06] and
in its applications [Bru02]. In any case, the tools developped to study these aspects
of proofs in the deep inference setting are radically different from the standard
ones used in shallow formalisms, and this most probably the principal reason why
computational interpretations for nested systems have been neglected: outside of
the standard frameworks of normalisation and its connexion to the λ-calculus, and
of focusing and its use in the definition of logic programming languages, it is more
difficult to study the computational contents of logics, since this would require to
develop a matching theory of computation.

This seems to lead to the conclusion that it is a highly difficult task to describe
the computational contents of logics through their presentation in the calculus of
structures. But if standard computational devices can be invoked as soon as we use
the standard tools for normal forms in natural deduction and the sequent calculus,
a solution to the problem is to develop the equivalent of the standard normalisation
and focusing techniques in the deep inference setting:

• the thesis of this work is that it is possible to transfer the technology
used for cut elimination and focusing in shallow formalisms to the
setting of nested proof systems, and that this leads to computational
interpretations identical to or refining the interpretations given for
the standard systems in natural deduction and sequent calculi •

This claim will be supported here by two developments, to transfer the standard
techniques for normalisation, through permutations of rule instances, and focusing,
to proof systems in the calculus of structures, and in nested sequents [Brü10]. The
normalisation procedure defined is then used as the basis for type systems, relating
it to the standard interpretation of proofs in natural deduction and in the sequent
calculus. On the side of logic programming, the focused system obtained is closely
related to the standard focusing system for linear logic in the sequent calculus.

The original grounds for the Curry-Howard correspondence, relating the proofs
of intuitionistic natural deduction to the pure λ-calculus, or variants using explicit
substitutions, are well-suited for this transfer of technology: it is a minimal example
of this kind of computational interpretation, and relate proofs to a well-understood
framework. However, intuitionistic logic has not often been investigated, and the
systems proposed in the calculus of structures are not designed in a way that makes
such an interpretation easy. One of them emphasises the design of local inference
rules [Tiu06a], but it does not offer an internal procedure for cut elimination. The
only system designed to provide some computational interpretation [BM08] lacks
a terminating normalisation procedure, so that we need to define new systems, for
adapting the standard techniques based on permutations. All the systems we will
describe here can be thought of as generalisations of well-known natural deduction
or sequent calculus systems, with the purpose of facilitating permutation. The main

121212

contributions on the side of logic there are the procedures for cut elimination and
normalisation in intuitionistic systems. Moreover, cut elimination is generalised to
a symmetric normalisation procedure, that should lead to a refinement of the usual
methodology of explicit substitutions. Finally, the proof systems defined induce an
adaptation of the standard typing methodology which allow to show how standard
λ-calculi with explicit substitutions can be used as a computational interpretation
of proofs in this setting. Moreover, specific features of the nested proof systems are
exploited to introduce new operators in the syntax of λ-calculi, allowing a complex
control over the operational behaviour of terms, although the resulting calculi have
poor properties in the untyped setting, so that a further study would be required to
fully understand the non-standard computational contents of proofs in the calculus
of structures.

On the side of logic programming, the rich syntax for proofs in the calculus
of structures is used to refine the interpretation that can be made of the proof
search process in terms of computation. The main contribution here is the trans-
position of the focusing technique [And92], initially developped for linear logic in
the sequent calculus, to the calculus of structures, based on the standard system
[Str03a], where it appears in a decomposed form that exposes the crucial role of
polarities. It is here surprising that, beyond the close correspondence that can be
established with the usual focused sequent calculus, the proof of completeness of
the focused calculus of structures can be done through some rather straightforward
proof transformation, based on permutations of rule instances — to eliminate the
one inference rule that breaks focusing, much like cut can be eliminated to produce
analytic proofs. In this system, the » focusing phases « from the shallow setting are
decomposed into slices that describe the interaction of a unique negative formula
with a complete positive synthetic connective. Such a decomposition should lead
to a refined interpretation of focused proof search in terms of computation.

Moreover, a new correspondence is described between proof search in a simple
proof system for intuitionistic logic in the calculus of structures and reduction in
a λ-calculus with explicit substitutions, through the interpretation of intuitionistic
formulas as λ-terms. Notice that this goes beyond the scope of adapting standard
techniques to the nested setting, since this correspondence cannot be established
in shallow formalisms, but this might lead to a better understanding of the relation
between the two major approaches to logical aspects of computation, even in the
standard setting.

131313

Synopsis. This thesis is divided into four parts. The first one is introductory for
all the other parts, and the third one depends one the second part — the last one
is relatively independent. Each chapter is made as self-contained as possible. The
main contributions on the side of logic are the cut elimination and normalisation
proofs of Chapter 3 and Chapter 4, and the description of the focused system along
with its completeness proof in Chapter 7. The other chapters of the last two parts
describe the particular use of deep inference systems on the side of computation.

Part 1 — Preliminaries

The goal of this part is to recall known definitions and results in structural proof
theory and on λ-calculi with explicit substitutions, and establish the notations and
basic proof techniques used in other parts. It also describes non-standard material,
or material that is rarely developped in the literature.

Chapter 1. Standard and Nested Proof Theory

The standard systems for intuitionistic logic, in both settings of natural deduction
and the sequent calculus, are recalled. The general concept of » deep inference «
as a logical methodology is exposed and presented under its two principal forms,
nested sequents and the calculus of structures, both illustrated with examples from
classical logic. Some basic tools for rule instances permutations and the analysis of
the structure of proofs are described.

Chapter 2. Logical Foundations for Computation

The standard correspondence between proofs in the intuitionistic systems and λ-
terms, with or without explicit substitution, is recalled. The notions of typing and
type system are described and the correspondence is established between variants
of the natural deduction system for intuitionistic logic and various λ-calculi with
explicit substitutions, as well as between sequent calculi variants and an alternative
presentation of λ-calculi based on a sequentialised let/in application syntax. The
sequent calculus for linear logic and its properties are recalled, and its use in logic
programming, through the use of the focusing technique, is presented.

Part 2 — Intuitionistic Logic in Deep Inference

This part is concerned with the developement of a proof theory for intuitionistic
logic in a deep inference setting, it contains the definition of various systems, and
the main results of cut elimination, which are used is the rest of the thesis.

Chapter 3. Intuitionistic Logic in Nested Sequents

A family of proof systems for intuitionistic logic in nested sequents is presented,
and compared to the standard sequent calculus systems. The admissibility of the
cut rule is proved, through a purely syntactic procedure for eliminated cut instances
from a proof. A generalised symmetric system is introduced, and the corresponding
normalisation procedure, a generalisation of cut elimination, is described.

141414

Chapter 4. Intuitionistic Logic in the Calculus of Structures

The previous nested sequent intuitionistic system is transposed into the calculus of
structures and simplified. A different system, based on a natural deduction style,
is described. A detour elimination procedure is defined to compute normal forms,
yielding a simpler system of proof rewritings than the systems in sequent style.

Part 3 — Nested Proofs as Programs

This part describes the main computational interpretation of the proof systems for
intuitionistic logic of the previous part, by generalising the notion of type system
to fit the generalised shape of proofs in a deep inference system, and suggesting a
computational meaning to the characteristic features of the calculus of structures.

Chapter 5. Nested Typing for Explicit Substitutions

The standard definition of type system is extended into a setting where a typing
judgement contains other typing judgements. The correspondence between such
typing derivations and proofs of intuitionistic logical systems in the deep inference
setting yields a connection between these nested proofs and λ-terms with explicit
substitutions, with or without the let/in syntax. Standard results are proved for
this notion of typing, including normalisation of typed term.

Chapter 6. Nested Typing and Extended λ-calculi

The implicit co-contraction induced by contraction in the calculus of structures, and
the decomposition of the context splitting of standard formalisms performed by the
switch rule are used as guidance in the definition of two λ-calculi extended with
new operators. In the first one, a rule based on contraction provides a way of typing
an operator for building a superposition of distinct subterms, introducing a general
notion of resources possibly sharing a context. In the second one, communication
operators inspired from the π-calculus are extracted from the use of the switch in
a type system, yielding a λ-calculus where the distribution of explicit substitutions,
considered as resources, is explicitly controlled by links between certain subterms,
which are considered as parallel threads in a program.

Part 4 — Nested Proof Search as Computation

This part investigates the use of deep inference systems to perform proof search and
the connection between nested proof search procedures and other computational
devices. Since proof search is directly impacted by the design of proof systems, it is
also concerned with the shape of inference rules and the normal forms of proofs.

Chapter 7. Nested Focusing in Linear Logic

A proof system for linear logic in the calculus of structures is defined, and modified
to provide a reasonable framework for proof search. Introducing explicit polarity
shifts in the syntax of formulas leads to the definition of a focused system, which
enjoys a particularly simple, direct proof of completeness. This system implements
an incremental version of the standard concept of focusing, which is compared to
the standard focused sequent calculus.

151515

Chapter 8. Proof Search as Reduction in the λ-calculus

The intuitionistic calculus of structures in sequent style presented in Chapter 4 is
restricted to obtain a subsystem where inference rules are in exact correspondence
with the reduction rules of a λ-calculus with explicit substitutions, through some
encoding of λ-terms into formulas of this system. A focused variant of this system is
defined, which is shown to correspond to a big-step, call-by-name implementation
of the λ-calculus.

161616

PART 1

Preliminaries

Chapter 1

Standard and Nested
Proof Theory

This chapter is concerned with the basics of the » structural approach « to proof
theory, and it provides background for the rest of the document, starting with the
standard proof theory developped in the formalisms of natural deduction and the
sequent calculus. In particular, our study of proof systems and their computational
interpretations will have a strong emphasis on normal forms that can be obtained
by a purely syntactic process of permutations of rule instances. The tools required
to study permutations are defined, and the standard proof systems for intuitionistic
logic are recalled, as they will form the basis for most of the developments of other
chapters — those concerned with typed λ-calculi.

The non-standard contents of this chapter are the descriptions of two formalisms
based on the » deep inference « methodology, called the calculus of structures and
nested sequents, which are the setting in which we attempt to lay the foundations
for a logical approach to refined computational models. The syntactic nature of the
proof objects using nested deduction, where are not applied only at toplevel as in
shallow formalisms, is such that more permutations of rule instances are allowed,
yielding more » bureaucracy « but also more possibilities for the design of rules.

calculus of structures

natural deduction

sequent calculus

open deduction

proof-nets

sy
n

ta
ct

ic
 b

u
re

a
u

cr
a
cy

nested sequents

shallow deduction

nested deduction

The basic definitions are given, as well as tools required to handle permutations,
which can be more complex in this setting than in shallow formalisms, in both the
calculus of structures and nested sequents, and with examples from classical logic.

20 1 — Standard and Nested Proof Theory20 1 — Standard and Nested Proof Theory20 1 — Standard and Nested Proof Theory

1 Proofs and Standard Logical Formalisms

In the early times of formal logic, the notion of proof was not providing any object
to be manipulated easily, due to the lack of a simple syntax, which would be rich
enough to describe the fundamental structure of deductive reasoning. Indeed, the
only important structure in deductive logic was for long the modus ponens scheme,
which is, informally, the following rule:

if φ implies ψ and φ holds, then ψ holds

whereφ andψ are any valid logical propositions. For example, the so-called Hilbert
systems [BH34] usually have only this rule as an inference rule, and can represent
different logics using different sets of axioms. All theorems are then derived from
axioms by composition, using this rule. In such a setting, it is difficult to develop a
theory of proofs as mathematical objects, and this reflects the main interest in the
field at the time, which was to know whether a proposition is provable, rather than
knowing if there are different proofs of the same proposition and how they relate.

The situation changed radically when Gentzen established the foundations of
structural proof theory, by introducing the formalisms of natural deduction and the
sequent calculus, in his seminal papers [Gen34, Gen35]. In these formalisms as in
other modern logical formalisms, proof objects are part of a well-structured theory,
organised in layers, from the level of logical propositions to the level of inference,
providing a syntax for the result of a proof construction process. We provide here
a description of these layers, as well as meta-level observations on this theory.

1.1 Logical Formulas and Judgements

In the propositional setting, we have to assume given an infinite, countable setA of
atoms, denoted by small latin letters such as a, b and c. When needed, we will also
assume given a bijective function · : A 7→ A called negation, such that a 6= a for
any a. Atoms are meant to represent basic logical propositions that can be formed
in the language of discourse. In a first-order setting, with quantifiers, this set must
be generalised to a set of infinitely many predicates of all possible arities, which can
be applied to terms, as usually defined in the literature [TS96].

The language of a logic is formed, based on atoms or predicates, by connectives
used to compose propositions into complex ones. Connectives can have different
arities — although they are usually considered to have either zero, one, two, or an
arbitrary and variable number of arguments — and nullary connectives are called
units, because they are used to represent the units of other connectives.

Definition 1.1. A formula is an expression built from atoms, connectives and units,
viewed through its syntax tree, where inner nodes are connectives and leaves are atoms
or units — and a node formed by some n-ary connective has n child nodes.

Given a particular logic, its logical language of formulas is usually given by a
recursive grammar. Similarly, we can define formulas inductively, accepting atoms
and units as valid formulas, and considering connectives as functions from formula
tuples to formulas. We denote formulas by capital latin letters such as A, B, C .

1 — Proofs and Standard Logical Formalisms 211 — Proofs and Standard Logical Formalisms 211 — Proofs and Standard Logical Formalisms 21

Example 1.2. In classical logic, we have the two connectives ∧ and ∨ which represent
conjunction and disjunction respectively, so that we can write the formula A∨ (B∧C),
which should be read as » either A holds or both B and C hold, or all of them hold «
given some formulas A, B and C.

In some situations, it might prove useful to consider that the connectives used
in a logic have good properties, such as associativity and commutativity. This can
be done for example by using a congruence relation on formulas and then dealing
with the equivalences classes. Indeed, the intended meaning of connectives usually
matches these properties, and we can then write, in classical logic, A∨B∨C rather
than (A∨ B) ∨ C or A∨ (B ∨ C), or any commutative variant of these. This relates
to the use of n-ary connectives, since the formula

∨

Ai using n-ary disjunction is a
way of avoiding the question of associativity.

It is also common to extend the negation function to formulas, using a bijection
between formulas, such as ¬ in classical logic. It can then interact with negation
as defined for atoms, if ¬ a = a for any a. Moreover, it defines important dualities
between two connectives, as between the conjunction and disjunction connectives
in classical logic1, where ¬ (A∨ B) = ¬A∧¬B and ¬ (A∧ B) = ¬A∨¬B.

During the process of validating a given formula with respect to a certain logic,
showing it is a theorem of this logic, we can keep track of which parts of this formula
have been treated and which ones are left to be handled. Parts of the initial formula
are then often organised in two groups: subformulas being considered as valid and
used as assumptions, and other subformulas left to validate, the goal of the proof
construction process. This is formalised through the following notion.

Definition 1.3. A sequent is a pair Γ `∆ where Γ and∆ are possibly empty multisets
of formulas, and Γ is called the antecedent of the sequent, and ∆ its succedent.

We are using multisets here to simplify definitions and notations, but one should
notice that plain sets can also be used, and some logics require sequents to use lists,
such as non-commutative [AR99] or cyclic logics [Yet90]. A sequent is sometimes
called a judgement, as it is a statement on the acceptability of a formulas.

1.2 Inference Rules, Proofs and Systems

Now that the level of logical propositions is defined, we can proceed to the level of
inference — the act of deducing, from a set of premises, that a given conclusion is
valid. The rich structure of modern logical formalisms comes from the syntax they
provide for the various deduction mechanisms available in a logic. Indeed, we can
define a syntax for one inference step following a valid scheme, as shown below.

Definition 1.4. An inference rule is a scheme formed of a conclusion Γ `∆ and a set
of n≥ 0 premises Ψ1 ` Σ1, · · · ,Ψn ` Σn, denoted as follows:

Ψ1 ` Σ1 · · · Ψn ` Σn
r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ `∆
1Although it seems at first sight to be a natural notion, as in classical logic, negation in general can

raise complex questions on the behaviour of logics and proof systems [Mel10].

22 1 — Standard and Nested Proof Theory22 1 — Standard and Nested Proof Theory22 1 — Standard and Nested Proof Theory

An inference rule is given as a scheme, where variables are meant to be replaced
with actual formulas and multisets of formulas. A rule having no premise is called
an axiomatic rule. An instance of an inference rule is then any instantiation of the
scheme associated to the rule. The meaning of a rule as described in the definition
above is that from a set of sequents of the shape described in the rule, and accepted
as premises, we can conclude that another sequent of the shape described by the
conclusion of the rule is valid in the considered logic.

Example 1.5. In the sequent calculus for classical logic, we have the following rule:

Γ `∆, A Γ `∆, B
∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ `∆, A∧ B

which means that in order to prove a sequent where some formula of the shape A∧ B
appears, one has to be able to prove this sequent where only A appears, and also this
sequent where only B appears.

The point of using such inference rule instances is that they can be composed, in
a syntactic way, to represent the causal chain that justifies the validity of a sequent
with the validity of other sequents, or axioms. The fundamental object of structural
proof theory is then such a composition, which represents a flow of inference steps,
a complex deduction. Because of the branching structure induced by the possibility
of having several premises in a rule, it is represented as a tree. Such a derivation
will be denoted by the letter D, possibly with indices.

Definition 1.6. A derivation is a rooted tree where nodes are inference rule instances,
such that for any node v with a parent w, there is one premise in w which is equal to
the conclusion of v.

Example 1.7. In the sequent calculus for classical logic, we can build a derivation of
conclusion A, B ∨ D ` A∧ (B ∨ C) and with one open premise A, B ∨ D ` B, C:

ax −−−−−−−−−−−−−−−−−
A, B ∨ D ` A

A, B ∨ D ` B, C
∨R −−−−−−−−−−−−−−−−−−−−−−−−A, B ∨ D ` B ∨ C

∧R −−A, B ∨ D ` A∧ (B ∨ C)

Using this notion, we can manipulate objects representing partially completed
deductive processes, the validity of conclusions depending on a future verification
of the validity of premises. This follows the scheme of inference rules, so that we
can actually decide, when needed, to consider new rules formed by composition of
other rules, thus hiding a derivation inside the box of one inference step. Such a
rule is called synthetic, as the one below, which can be formed in classical logic:

Γ ` A
=============
Γ ` A∨ B

=

Γ ` A
weak −−−−−−−−−−−

Γ ` A, B
∨R −−−−−−−−−−−−−Γ ` A∨ B

1 — Proofs and Standard Logical Formalisms 231 — Proofs and Standard Logical Formalisms 231 — Proofs and Standard Logical Formalisms 23

This can lead to the definition of highly complex inference rules, more difficult
to deal with, but which have benefits when it comes to the definition of normal
forms to represent classes of proofs considered as equivalent by one proof which is
designated as the canonical representant [Cha08]. We will always use the notation
with a double inference line, as above, to indicate that a rule is a synthetic inference
rule — or any compound inference step.

Although derivations are the central object of the theory, most of the work done
in the field has been concentrated on a particular class of derivations, those having
no premises, thus representing the result of a completed proof construction process.

Definition 1.8. A proof is a derivation where all leaves are axiomatic instances.

The final layer to define here is the representation of the logical setting, defining
which deductive steps are considered valid and which ones are not. Just as Hilbert
systems are defined by a set of axioms, a system in structural proof theory is defined
by the set of inference rules. The connection to the more general notion of logic —
as a set of theorems, being a subset of all propositions that can be built on a given
language — goes through the proof construction process, since one has to build a
proof for a given proposition using only this set of inference rules to show that it is
indeed a valid theorem.

Definition 1.9. A proof system S is a set of inference rules, and it is a system for a
given logic L when for any formula A in the language of L , there is a proof of ` A in
S if and only if A is a theorem of L .

A derivation is described as a derivation in the system S if it is built only using
inference rules from the S proof system. Notice that there are two directions in the
correspondence between a proof system and some logic. In the first one, where the
existence of a proof for the formula A in the system S implies that A is a theorem
of the logic L , we write that S is sound with respect to L . In the other direction,
where there exists a proof of A in S for any given theorem A of L , we write that
S is complete with respect to L . Since any proof system defines a logic, as the set
of all formulas for which there one can build a proof, these notions of soundness
and completeness can also be used between proof systems.

Natural deduction and sequent style. The definition given here for inference
rules, and the use of trees to represented derivations, is common grounds for most
of traditional logical formalisms. Restrictions can then be imposed to obtain good
properties, and for example the sequent calculus formalism emphasises the use of
analytic inference rules, those where all formulas in the premises are subformulas
of formulas in the conclusion — and usually, only the cut rule does not conform to
this standard, and is therefore eliminated2. The characteristic style of the sequent
calculus is to use left rules and right rules, as for example:

Γ, A, B `∆
∧L −−−−−−−−−−−−−−−−−−Γ, A∧ B `∆

and
Γ ` A,Σ ∆ ` B,Ω

∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ,∆ ` A∧ B,Σ,Ω

2Do not attempt this at home!, it is only formal logic, really.

24 1 — Standard and Nested Proof Theory24 1 — Standard and Nested Proof Theory24 1 — Standard and Nested Proof Theory

In natural deduction, deduction is instead focused on the succedent of sequents,
and the characteristic style of this formalism3 is to use so-called introduction rules
and elimination rules, as for example in intuitionistic logic:

Γ ` A ∆ ` B
∧i −−−−−−−−−−−−−−−−−−−Γ,∆ ` A∧ B

and
Γ ` A∧ B

∧e −−−−−−−−−−−−−Γ ` A

Beyond these differences, the same generic observations and techniques can be
used to study the structure of derivations in both the sequent calculus and natural
deduction.

1.3 Logical Flow and the Structure of Proofs

The step from proof theory, in the tradition of Hilbert and Gödel, to structural proof
theory in the style of Gentzen and Prawitz is to consider in details the structure of
derivations, and in particular what rules are used, on which occurrences of formulas,
to find out possible transformations of this structure. This has become a center of
interests in many works dedicated to fine-grained proof systems.

A useful tool in this regard is the notion of logical flow graph [Bus91], an idea
that can also be found in studies of substructural logics such as linear logic [Gir87],
used to track down particular occurrences of a formula and study how it spreads
in a derivation through the application of inference rules. Following the definition
given by Buss, we consider occurrences4 of formulas or subformulas.

Definition 1.10. A particle A of a derivation D is an occurrence of a formula or of a
subformula A that appears in a sequent within D.

In order to use these occurrences, we will have to compare them, but there is
a difficulty if two occurrences of the same formula appear in the same sequent,
since there is no fixed order in a multiset. Therefore, we consider that a given rule
instance attributes an index i ∈ N to each formula and subformula in its premises
and conclusion, which respects the scheme given by the inference rule. This index
is a part of the information that one can extract from a given particle.

Example 1.11. Consider the following instances in the classical sequent calculus:

(a1 ∨ b2)4, (a1 ∨ b2)4 ` c3
cont −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(a1 ∨ b2)4 ` c3

a1 ` c3 b2 ` c3∨L −−−−−−−−−−−−−−−−−−−−−−−(a1 ∨ b2)4 ` c3

Indexes in the contraction instance are used twice in the premise to reflect the scheme
of the cont rule, which specifies that a formula is duplicated, while in the ∨L instance
one formula disappears and its subformulas are promoted into formulas. Notice that
indexes do not refer to separate occurrences but to the scheme of inference rules.

Definition 1.12. The basis of a particle A is denoted by ‖A‖ and defined as the pair
of the formula A and the index of A in the instance where it appears.

3When described with the sequent notation, natural deduction can also be considered as particular
form of sequent calculus, alhough the dynamic of proofs is usually described without cut.

4What we call particles corresponds to what Buss calls s-formulas in his paper [Bus91].

1 — Proofs and Standard Logical Formalisms 251 — Proofs and Standard Logical Formalisms 251 — Proofs and Standard Logical Formalisms 25

Now, we want to describe the flow of formulas within a rule instance, and as in
the original flow graph definition there are two possible directions for the flow of a
formula, depending on the position of the formula in the antecedent or succedent.

Definition 1.13. Given a rule instance r, a particle A is said to be the father of another
particle B, which is denoted by A� B, if and only if ‖A‖= ‖B ‖ and either:

• B appears in the succedent of the conclusion of r and A in one of its premises,
• or A appears in the antecedent of the conclusion of r and B in one of its premise.

Example 1.14. Here is a rule instance in the sequent calculus for classical logic, with
the father relation illustrated by arrows oriented from a father to its child:

The aggregation of all the arrows representing the father relation within all the
rule instances used in a derivation forms the graph we are interested in to represent
the influence of applying rules on occurrences of formula.

Definition 1.15. The flow-graph of a derivation D, denoted by F (D), is the directed
graph 〈V ,E〉 such that:

• V (nodes) is the set of all particles in D,
• E (edges) is such that there is an edge from A to B if and only if A� B in D.

The graph of a derivation D is similar to a forest, in the graph-theoretical sense,
but the flow of some particle — the flow of A is the connected subgraph of F (D) in
which A appears — is not always a tree. Note that these graphs are not exactly the
same as the logical flow-graphs defined by Buss, as they do not track occurrences
associated by rules such as the cut and identity rules, for example. Given a proof
system, we could extend our graphs into continuous flow-graphs that would connect
the flows of such associated formulas.

Example 1.16. Here is the flow-graph for a small proof in the sequent calculus for
classical logic, where contraction is built inside the conjunction rule and weakening is
used independently:

Notice that not all edges of the graph are represented, since there is also a connection
between the particles corresponding to right part of the decomposed conjunction in the
lower ∧ instance — that is, only connections between atomic particles are shown.

26 1 — Standard and Nested Proof Theory26 1 — Standard and Nested Proof Theory26 1 — Standard and Nested Proof Theory

Using the flow-graph of a derivation, we can observe the relationship between
occurrences of formulas, but also between the inference rule instances where these
occurrences appear. However, not all occurrences are relevant when considering a
particular rule instance, as most formulas in an arbitrary sequent are left untouched
by the application of a rule. We can use the father relation in a given instance to
detect which particles are relevant to the properties of this instance.

Definition 1.17. In a rule instance r, a particle A is said to be passive if and only if
it is the father or child of exactly one particle B, and A and B have the same status —
either formula or subformula —, and A is said to be active in any other case.

The rationale for this definition is that occurrences of formulas not modified by
the application of a rule — not broken or moved out of formulas, nor duplicated or
erased — are said passive and are ignored when considering a given instance. The
others are the particles of interests, and we can use them to study the relationship
between the rule instances of a derivation.

Example 1.18. In the following instance of the ∧R rule, the antecedent is completely
duplicated, so that all particles g1, a2 and (b3∨c4)5 which are occurrences of formulas,
not subformulas, are active:

g1 ` a2 g1 ` b3 ∨ c4∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−g1 ` a2 ∧ (b3 ∨ c4)5

One of the most important application of this distinction is to count the number
of contractions, or duplicating instances, that affect a formula during the inference
process, since particles are active in an instance duplicating them. Usually, we only
need to count duplications above a given instance in a derivation, as done below.

Definition 1.19. In a derivation D, the multiplicity of a rule instance r is the number
of sinks or sources in the union of the flows of all the active particles of r that appear
above r in D.

This definition can be applied to a single particle A as well, by considering the
sinks and sources of the flow of A are located above the point where it appears.

Example 1.20. Here is a derivation in the sequent calculus for classical logic, where
the multiplicity of the lowest rule instance is 3, because its active particle is affected by
one contractive rule instance:

ax −−−−−−−−−−−
` ¬A, A

weak −−−−−−−−−−−−−−−
` ¬A, A, C

ax −−−−−−−−−−−
` A,¬A ` B, D
∧ −−−−−−−−−−−−−−−−−−−−−−−−−−
` A, B,¬A∧ D

∧ −−
` ¬A, A, A, B, C ∧ (¬A∧ D)

cont −−
` ¬A, A, B, C ∧ (¬A∧ D)

∨ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` ¬A, A∨ B, C ∧ (¬A∧ D)

Indeed, in the flow-graph of this derivation, there are three sources connected to the
particles A and B active in the lowest rule instance.

1 — Proofs and Standard Logical Formalisms 271 — Proofs and Standard Logical Formalisms 271 — Proofs and Standard Logical Formalisms 27

The flow-graph of a given derivation represents only a part of its structure, but
it provides enough information to observe many properties of inference rules and
of their instances. In particular, the multiplicity of particles shows how duplication
and erasure of formulas are handled in a proof system.

Mutiplicatives and Additives. In formalisms such as natural deduction or the
sequent calculus, there are usually many different ways of designing a proof system
that is both sound and complete with respect to a given logic. For example, we can
have different granularities in the design of inference rules using, or not, synthetic
rules, if replacing some rules by a synthetic compound preserves the completeness
of the system. This lead to the definition of a wealth of systems in natural deduction
and even more in the sequent calculus, many of them having different properties,
benefits and disadvantages [NvP01].

There is one particularly important distinction to make between two common
treatments of traditional logics, such as intuitionistic and classical logics, but also
other ones: the difference between multiplicative and additive presentations [Gir87],
where the multiplicity of rule instances is affected either by specific structural rules,
in the multiplicative case, or by any logical rule in the additive case.

This can be illustrated in classical logic by the shape given to conjunction and
disjunction rules. A system with one-sided sequents5 can have the following rules:

` Γ, A `∆, B
∧ −−−−−−−−−−−−−−−−−−−−−
` Γ,∆, A∧ B

` Γ, A ` Γ, B
∧ −−−−−−−−−−−−−−−−−−−−
` Γ, A∧ B

` Γ, A, B
∨ −−−−−−−−−−−−−−
` Γ, A∨ B

` Γ, A
∨1 −−−−−−−−−−−−−−` Γ, A∨ B

` Γ, B
∨2 −−−−−−−−−−−−−−` Γ, A∨ B

(multiplicative) (additive)

When designing a system for classical logic, we can choose between the possible
shapes of inference rules, with an impact on the design of other inference rules,
but not on soundness or completeness. Indeed, these presentations are connected
through the structural rules of weakening and contraction — rules dealing with the
structure of a sequent, not with logical formulas themselves. In the multiplicative
presentation, conjunction can be complemented by contraction, and disjunction by
weakening, so that we derive additive rules as follows:

` Γ, A ` Γ, B
∧ −−−−−−−−−−−−−−−−−−−−
` Γ,Γ, A∧ B

cont∗ ==================
` Γ, A∧ B

−→
` Γ, A ` Γ, B
∧ −−−−−−−−−−−−−−−−−−−−
` Γ, A∧ B

` Γ, A
weak −−−−−−−−−−−−

` Γ, A, B
∨ −−−−−−−−−−−−−−
` Γ, A∨ B

−→
` Γ, A

∨1 −−−−−−−−−−−−−−` Γ, A∨ B

5A sequent is said to be one-sided when its antecedent is empty — logics enjoying enough symmetry,
such as classical and linear logics, can be implemented by proof systems using only such sequents.

28 1 — Standard and Nested Proof Theory28 1 — Standard and Nested Proof Theory28 1 — Standard and Nested Proof Theory

where cont∗ denotes several instances of the contraction rule, and the ∨2 rule can
be obtained the same way as ∨1, using a weakening on the other formula. We have
a symmetric situation with the additive presentation, where the conjunction rule
composed with weakenings allows to derive the multiplicative rule, and similarly
for the disjunction rule composed with a contraction:

` Γ, A
weak∗ ============

` Γ,∆, A

` Γ, B
weak∗ =============

` Γ,∆, B
∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` Γ,∆, A∧ B

−→
` Γ, A `∆, B
∧ −−−−−−−−−−−−−−−−−−−−−
` Γ,∆, A∧ B

` Γ, A, B
∨2 −−−−−−−−−−−−−−−−−` Γ, A, A∨ B
∨1 −−−−−−−−−−−−−−−−−−−−−−−−` Γ, A∨ B, A∨ B

cont −−−−−−−−−−−−−−−−−−−−−−−−
` Γ, A∨ B

−→
` Γ, B, A

∨ −−−−−−−−−−−−−−
` Γ, A∨ B

Interestingly enough, one can define a complete system for classical logic using
either the multiplicative presentation, and the structural rules of contraction and
weakening, or the additive presentation without structural rules, if the axiom rule is
also made additive by embedding a weakening rule, but the system formed with the
standard axiom and both multiplicative and additive conjunction and disjunction
rules is not complete [Hug10]. This is a good illustration of the subtle equilibrium
between inference rules required to design a complete proof system.

1.4 Permutations of Rule Instances

One of the most important evolutions of formal logic, triggered by the introduction
of structural proof theory, is the growing study of the shape of proofs and of possible
transformations of proof objects. The prominent transformations of cut elimination
and detour elimination, in the sequent calculus and natural deduction respectively,
are at the heart of this field since their first description by Gentzen [Gen34]— and
by Prawitz [Pra65] in the case of classical natural deduction. The cut elimination
procedure was introduced for the sequent calculus as a tool, in order to study with
a fine granularity the detour elimination procedure defined for natural deduction.

Beyond the interest of proving the redundancy of the cut in the sequent calculus
— allowing to prove the consistency of the logic —, the cut elimination procedure,
as a proof transformation, was found to be a topic of interest in its own right, with
the extension of the computational interpretation of proofs [How80] to the sequent
calculus [Her94], and natural deduction system with cuts [Pol04]. This is a purely
syntactic proof transformation, mainly based on the technique of permutations of
inference rule instances.

The idea behind permutations is that given a sequent, different inference rules
might be applied, or one rule can be applied in several ways. Therefore, when two
such instances are used successively on this sequent, the order is irrelevant, and we
can decide to change it. This question has raised a lot of attention in proof theory,
since the first studies of permutations by Kleene [Kle52] and Curry [Cur52].

1 — Proofs and Standard Logical Formalisms 291 — Proofs and Standard Logical Formalisms 291 — Proofs and Standard Logical Formalisms 29

Permutation of rule instances is a general idea, which can take different forms
in different contexts, and in particular it is significantly simpler in formalisms based
on sequents, such as the sequent calculus, than in a formalism where formulas are
directly rewritten, such as the calculus of structures. We can express this idea in its
general form by using the notion of replacement of a derivation by another, where
instances are used in reverse order. To be able to write this, we use the notation:

Ξ1 ` Ω1 · · · Ξn ` Ωn
r1; r2; · · · ; rk ==================================Γ `∆

to describe any derivation with conclusion Γ `∆, having all the Ξi ` Ωi sequents as
premises, and formed by the designated sequence of k instances: the bottommost
one is r1 and the topmost one rk. Notice that such a sequence of instances defines
completely a derivation. In order to define a notion of permutation, we also need
to be able to compare rule instances, in a simple way: we write r1 ≈ r2 and say that
r1 and r2 are similar rule instances, if they are instances of the same inference rule.

Definition 1.21. Given a derivation D formed by a sequence r1; r2 of rule instances,
as shown on the left, a permutation of D is a derivation D ′ as shown on the right:

Ξ0 ` Ω0 · · · Ξk ` Ωk
r2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Φ ` Σ · · · Ξn ` Ωn

r1 −−Γ `∆
−→

Ξ′0 ` Ω
′
0 · · · Ξ

′
m ` Ω

′
mD ′ ====================================

Γ `∆

where for any 0 ≤ i ≤ m we have Ξ′i ` Ω
′
i = Ξ j ` Ω j for some 0 ≤ j ≤ n, and for any

two instances r3, r4 ∈ D ′, if r3 ≈ r1 and r4 ≈ r2 then r4 appears below r3 in D ′.

In other words, a permutation of some derivation D is in general6 a derivation
D ′ with the same conclusion and using a subset of the premises of D — although
theses premises might appear several times in D ′ — where the rule instances being
permuted appear in reverse order in D ′.

Remark 1.22. The permutation of rule instances is trivially extended to permutations
of derivations, by considering them as instances of compound inference rules.

It should be noticed that different cases correspond to the definition given for
a permutation. In particular, some permutations are reversible while some others
are not — given a derivation D and some permutation D ′ of D, we might not be
able to obtain D as a valid permutation of D ′. This happens for example if a rule
instance in D was erased in the permutation, so that we would need to recreate it
ex nihilo if we were to permute D ′ back into D. There are also very simple cases of
permutation, where no instances are erased nor introduced.

Definition 1.23. A permutation of a derivation r1; r2 is said to be trivial when it is of
the shape r4; r3 with r3 ≈ r1 and r4 ≈ r2.

6This is not the most general notion of permutation that one can consider: indeed, we could imagine
introducing new instances of the inference rules involved in the permutation anywhere in the resulting
derivation, but this would require a much more refined notion of similarity of rule instances to enforce
the permutation of the particular instances we want to exchange.

30 1 — Standard and Nested Proof Theory30 1 — Standard and Nested Proof Theory30 1 — Standard and Nested Proof Theory

Example 1.24. Below are shown two examples of permutations of rule instances in
the sequent calculus for classical logic. In the first case, we have a trivial permutation,
where an instance can permute around one branch of another instance:

` Γ, A, B, C
∨ −−−−−−−−−−−−−−−−−−
` Γ, A∨ B, C `∆, D
∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ, A∨ B,∆, C ∧ D

←→
` Γ, A, B, C `∆, D
∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ, A, B,∆, C ∧ D
∨ −−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ, A∨ B, C ∧ D

and in the second case, we have a more complex permutation involving the duplication
of an instance moving above a contraction. Notice that in this case, the transformation
from right to left is difficult to use since it requires a particular configuration where
both ∨ instances and the weakening appear above the contraction.

` Γ, A, A, B
cont −−−−−−−−−−−−−−−

` Γ, A, B
∨ −−−−−−−−−−−−−−
` Γ, A∨ B

←→

` Γ, A, A, B
weak −−−−−−−−−−−−−−−−−−−

` Γ, A, B, A, B
∨ −−−−−−−−−−−−−−−−−−−−−
` Γ, A, B, A∨ B

∨ −−−−−−−−−−−−−−−−−−−−−−−−
` Γ, A∨ B, A∨ B

cont −−−−−−−−−−−−−−−−−−−−−−−−
` Γ, A∨ B

The possibility of permuting two given rule instances depends on the effect they
have on the particles they involve. For example, it is obvious that if an instance r2
crucially relies on the shape of some particule created by another instance r1, then
this r2 cannot be permuted down under r1. In general, this possibility depends on
the particles that are active in both rule instances: if no particle is active in both
instances, then there is no way for one to block the other.

Proposition 1.25. In any derivation D, if two rule instances r1 and r2 appearing one
above the other share no active particle, then they can be trivially permuted.

This follows from the definition of active and passive particles. Indeed, if they
have no active particle in common, then any particle active in the instance on top
appears exactly once, unchanged, at the bottom of the lower instance. Therefore,
the rewriting performed on it by the top instance can also be performed below the
lower instance, and is needed only once.

Example 1.26. When rule instances share an active particle, this particle is blocking
their permutation because its active nature implies that it is not available in the same
form in the conclusion of the lower instance or in the premise of the upper instance, as
illustrated with the derivation:

` Γ, A
weak −−−−−−−−−−−−

` Γ, A, B
∨ −−−−−−−−−−−−−−
` Γ, A∨ B

Definition 1.27. The height of a derivation is the length of its longest branch.

It should be noticed that permutations might change the height of a derivation,
if one instance is replaced with several. However, by definition, trivial permutations
behave well once again, as they cannot increase — nor decrease — the height of a
proof, where the two instances are simply exchanged.

2 — Standard Intuitionistic Systems 312 — Standard Intuitionistic Systems 312 — Standard Intuitionistic Systems 31

2 Standard Intuitionistic Systems

As intuitionism already had an important place in formal logic at the time Gentzen
introduced the idea of proof tree and related formalisms, because of many attempts
at improving the proposals of constructive definitions for the whole of mathematics,
both natural deduction and the sequent calculus were defined originally [Gen34] in
classical logic and intuitionistic logic. The systems defined there in the intuitionistic
setting are now widely considered as the standard systems for intuitionistic logic.

We will present here both of these systems using the sequent syntax previously
defined. For the sake of simplicity, we will restrict the logical language considered
to the essentials of intuitionism: the implication→ connective, and we also use its
unit, the truth symbol. As mentioned before, we start with a countable set of atoms
and build formulas from atoms, units and connectives.

Definition 2.1. The formulas of intuitionistic logic are generated by the grammar:

A, B ::= a | > | A→ B

Both systems, in natural deduction and the sequent calculus, are based on this
syntax for formulas and use the same kind of intuitionistic sequent, where only one
formula appear on the right-hand side.

Definition 2.2. An intuitionistic sequent is a sequent of the shape Γ ` A.

Indeed, a striking point in Gentzen systems is the simplicity in the definition of
the proof systems for intuitionistic logic. In the sequent calculus, one can obtain
the intuitionistic system LJ from the system LK, by simply restricting its inference
rules to the case where all sequents are intuitionistic. This comes from the fact that
intuitionistic logic is characterised by the invalidity of structural rules on the left of
an even number of implications — or equivalently, on the right of a ` symbol. This
means that if there is only one formula in the right-hand side of the conclusion in
a proof, there is no sequent in this proof with no or several formulas on the right.

Then, there are two ways of using sequents. In natural deduction systems, the
inference rules normally follow a vertical symmetry, as they are defined by pairs of
introduction and elimination for each connectives, that is one with the connective in
the conclusion and not in the premise, and one with the connective in the premise
and not in the conclusion. In the sequent calculus, rules are defined by pairs of left
and right rules for each connective, that is one with the connective in the left-hand
side of the conclusion, being decomposed in the premises, and the other one with
the connective in the right-hand side, decomposed in the premises.

There are several possible semantics for intuitionistic logic, including the early
Brouwer-Heyting-Kolmogorov realizability interpretation [Tro03], which associates
terms built from pairs and functions to intuitionistic formulas, through an encoding
based on the work of Kleene on realizability [Kle45]. One can also use an approach
in the style of model theory, with a structure of frames equipped by a forcing relation
as defined by Kripke semantics [Kri63]. However, we will only focus on the syntactic
description of the logic, and its proof theory in the style of Gentzen, which is mainly
centered around the normal forms of proofs, allowing to show in particular that the
sequent calculus can be made analytic.

32 1 — Standard and Nested Proof Theory32 1 — Standard and Nested Proof Theory32 1 — Standard and Nested Proof Theory

ax −−−−−−−−−−−
Γ, A` A

Γ, A` B
→i −−−−−−−−−−−−−−−Γ ` A→ B

> −−−−−−−−
Γ ` >

Γ ` A Γ ` A→ B
→e −−−−−−−−−−−−−−−−−−−−−−−−−−Γ ` B

Figure 1: Inference rules for system NJ

2.1 The Natural Deduction System NJ

The natural deduction system for intuitionistic logic is called NJ, for which the set
of inference rules is given in Figure 1. Reasoning in such a proof system is based on
the intended meaning of formulas, and in the presentation shown here we use the
sequent syntax to separate the assumptions from the formula we are proving. The
> rule says that truth can always be proved, and the ax rule says that a formula A
is provable if it is given as an assumption. Then, the introduction rule→i expresses
the relation between implications and assumptions: a formula A→ B is provable
if we can prove B with A given as an assumption. Finally, a formula B is provable
if we can prove an implication A→ B, under the condition that we can also prove
this formula A, as embodied by the→e rule.

Example 2.3. Below are shown two proofs in the NJ system, where one can notice
how the goal formula is extended through elimination instances to match the available
hypotheses. The first example is straightforward:

ax −−−−−−−−−−−−−−−−−−−
B, B→ A` B

ax −−−−−−−−−−−−−−−−−−−−−−−−−−
B, B→ A` B→ A

→e −−−B, B→ A` A
→i −−−−−−−−−−−−−−−−−−−−−−−−−B ` (B→ A)→ A

→i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−` B→ ((B→ A)→ A)

and the second one requires more manipulations on hypotheses and goals, although
it provides an unnecessary hypothesis A, never used in an axiom — to keep the proof
readable, we omit some of the hypotheses in several rule instances, since they are not
used and are kept only because weakening is performed only within axioms:

ax −−−−−−−−−−−−−−−
· · · , C ` C

ax −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
· · · , C → B ` C → B

→e −−−· · · , C → B, C ` B
→i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−· · · , C → B, C ` A→ B

ax −−
(A→ B)→ A, · · · ` (A→ B)→ A

→e −−−(A→ B)→ A, C → B, C ` A
→i −−(A→ B)→ A, C → B ` C → A

2 — Standard Intuitionistic Systems 332 — Standard Intuitionistic Systems 332 — Standard Intuitionistic Systems 33

Remark 2.4. In standard natural deduction, there is no possibility of permutation of
rule instances, because the inference process is directed by the goal formula, the one on
the right of the sequent — either in the conclusion, or in the premises as in elimination
rules, formulas are always built or decomposed in the succedent.

There is an important observation to be made about the NJ system. Since it was
intented to provide a natural system for reasoning, it allows to use one of the main
tools for mathematicians: lemmas, to be used and reused in the proof of theorems,
which can be connected to a proof through the implication elimination rule. One
can see the right branch of a →e instance as the main proof of a formula B, using
an hypothesis A, and its left branch as the proof of the lemma A. The mechanism of
defining lemmas, which are then used as assumptions, is the basis of the dynamics
in natural deduction proofs, since it can be avoided using a proof transformation.

2.2 Detour Elimination

The main result concerning the natural deduction system NJ, on the level of syntax,
is the definition of a certain normal form for proof trees, and the proof that the set
of these normal forms is complete, in the sense that any given theorem provable
in NJ admits a proof of this restricted shape. This notion of a normal form relies
on the observation that one can use more implications than necessary in a proof,
through the related introduction and elimination rules. We will now concentrate
on complete proofs only, rather than on open derivations, that we denote P — and
we write P ∈ NJ if this proof is a valid NJ proof.

Definition 2.5. A detour (on an implication) in a proof P ∈ NJ is the succession of
an introduction→i instance and an elimination→e instance, which are sharing their
active implication occurrence, as shown below:

Γ ` A

Γ, A` B
→i −−−−−−−−−−−−−−−Γ ` A→ B

→e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ ` B

The name detour used to describe this construction reflects the idea that it can
seem useless to introduce an implication if we are eliminating it immediately. But
it has an impact on the shape of the proof, and also on its size, because it creates an
assumption A for which only one proof is given, even if this assumption is used to
prove several times A. The result of detour elimination is expressed in the following
theorem, stating that proofs in normal form are sufficient to represent the logic.

Theorem 2.6. For any proof P ∈ NJ of a formula F, there exists a proof P ′ ∈ NJ
of F in normal form — where no detour on an implication appears.

There are different ways of proving this result, and in particular we present now
two closely related methods, based on syntactic transformations of proofs. The first
one is based on a non-local transformation, where the proof of a lemma — a proof
of the left premise of an implication elimination in any detour, in our syntax — is
directly plugged in place of all the axioms corresponding to the use of this lemma,
possibly duplicating this subproofs.

34 1 — Standard and Nested Proof Theory34 1 — Standard and Nested Proof Theory34 1 — Standard and Nested Proof Theory

Substitutive proof. A substitutive procedure can be described by the following
scheme, showing how the proof P1 of the lemma A is plugged in every axiom on A
in the main proof P2, so that the detour can be removed and the assumption A can
be erased from the antecedent everywhere in P2:

ax −−−−−−−−−−−−−
∆1, A` A

. . . ax −−−−−−−−−−−−−
∆n, A` A

��
��

��
�???????

P1

∆1 ` A

. . .
��

��
��

�???????
P1

∆1 ` A

��
��

��
�???????

P1

Γ ` A

��
��

��
��

��
��

????????????

P2

Γ, A` B
→i −−−−−−−−−−−−−−−Γ ` A→ B

→e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ ` B

−→

��
��

��
��

��
��

????????????

P2

Γ ` B

(1)

Note that the axioms on A being replaced are not necessarily all the axioms on
any occurrence of A in P2, but only the axioms where the active particle A in the
antecedent is in the flow of the active A in the introduction instance. Also, the proof
built by this transformation contains copies of P1 and P2 where the antecedents
of all sequents have been modified — in P2, the assumption on A is not needed
anymore, and in a copy of P1 with conclusion ∆i ` A, all required assumptions are
there since Γ⊆∆i as the rules of NJ only add formulas to antecedents, going up.

The idea of the substitutive method is simply to reduce all detours as described
until none is left. The only subtlety here is that the reduction of a detour can create
new detours, so that we need to find a better measure than the number of detours
in a proof to perform an induction. We will thus use multiset ordering [Der82], an
ordering that allows to replace a detour with several other detours as long as these
new detours have a smaller measure than the original — based on the size of the
formula A, denoted by |A | and defined as the number of symbols used in A.

Definition 2.7. The rank of a detour as shown in (1) is the size |A | of the formula A
involved, and the rank of a derivation D is the multiset of the ranks of all its detours.

Proof of Theorem 2.6. By induction on the rank of the given proof P ∈ NJ, with a
base case when P is already in normal form, so that the result is trivial. In general,
we consider any detour in P , following the scheme given above, where P1 and P2
are in normal form. Then, we replace the whole subderivation rooted in this detour
by the reduced derivation as shown on the right above. All copies of P1 and P2 are
of course normal, but the plugging of a copy of P1 in the place of an axiom might
have created a new detour, if A is of the shape C → D, as shown below:

��
��

�?????P3

∆i , C → D ` C
ax −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∆i , C → D ` C → D

→e −−∆i , C → D ` D

−→
��

��
�?????P3

∆i ` C

��
��

��
�???????

P4

∆i , C ` D
→i −−−−−−−−−−−−−−−−−−∆i ` C → D

→e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∆i ` D

2 — Standard Intuitionistic Systems 352 — Standard Intuitionistic Systems 352 — Standard Intuitionistic Systems 35

where P4 is the subderivation above the introduction in P1. But this new detour
has a strictly smaller rank than the eliminated one, because |C | < |A | = |C → D |,
and thus all such detours introduced by the elimination of the original detour are
of smaller rank. By definition of multiset ordering, the resulting proof has a smaller
rank than P and we can use the induction hypothesis to conclude.

This proof defines a rather simple normalisation procedure, where the topmost
detours are eliminated first, spawning smaller detours that are eliminated following
the same process. However, it does not provide any explicit procedure to find which
axioms should be replaced or modify all the antecedents of sequents: this rewriting
of a proof is non-local, in the sense that it requires to inspect arbitrarily large parts
of the given proof, and that is not very satisfactory7.

Permutative proof. Another way of proving that normal forms are enough to
have a complete proof system is to use permutations of rule instances. Indeed, as
mentioned, a single rule instance in NJ cannot be permuted, but the subderivation
defining a detour can be permuted with other rule instances. In order to manipulate
a detour in such a way, we define the following compound inference rule:

Γ ` A Γ, A` B
cut ======================

Γ ` B
= Γ ` A

Γ, A` B
→i −−−−−−−−−−−−−−−Γ ` A→ B

→e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ ` B

(2)

which is called cut, as introduced by Gentzen in the sequent calculus [Gen34]. The
idea behind this methodology is to simplify the situation of the substitutive proof
by moving detours upwards in a given proof. The crucial observation there is that if
the main branch of the detour is reduced to a single axiom instance, then replacing
this axiom by the proof of the lemma is trivial:

��
��

��
�???????

P1

Γ ` A
ax −−−−−−−−−−−
Γ, A` A

cut ===============================
Γ ` A

−→
��

��
��

�???????
P1

Γ ` A

because there is already a normal proof available for the conclusion of the whole
proof, namely the proof of the lemma — assuming we have reduced this proof first.

Remark 2.8. There is another case where the substitution is trivial, as shown below,
but this situation cannot always be reached because an introduction instance affecting
A in the proof of the lemma cannot be permuted under a cut.

ax −−−−−−−−−−−
Γ, A` A

��
��

��
�???????

P2

Γ, A, A` B
cut ==============================

Γ, A` B

=
��

��
��

�???????
P2

Γ, A` B

7Mathematically, this proof is enough, but from the viewpoint of computer science, it certainly lacks
a clear algorithmic description, that could for example lead directly to an implementation.

36 1 — Standard and Nested Proof Theory36 1 — Standard and Nested Proof Theory36 1 — Standard and Nested Proof Theory

Instead of immediately rewriting a detour by a non-local substitution, we can
transform it into a cut instance, where the succedent of the conclusion and of the
main premise are passive. By proposition 1.25, a cut trivially permutes above most
instances but not above an axiom on the lemma A — but might get duplicated.

The permutative proof uses exactly the same technique as the substitutive one,
but refines the description by expressing the replacement of the axioms by the proof
of the corresponding lemma through the permutation of a cut instance upwards in
the proof. As such, it is nothing more than the use of a lemma to prove explicitly
that this replacement can be done, but we integrate it into the complete proof for
the sake of clarity8.

Proof of Theorem 2.6. By induction on the rank of the given proof P ∈ NJ, just as
in the substitutive proof. In the base case, P is already normal and the result is
trivial. In general, we consider any detour in P following the scheme (1) given for
the substitutive proof, where P1 and P2 are in normal form. Then, we replace this
detour by the corresponding cut instance r and proceed by another induction, on
the height of the proof P ′ rooted in r, to show that we can transform this P ′ into
a proof without cut. Each step of the induction consists in a case analysis on r1, the
rule instance above the main premise of r:

1. If r1 is an instance of >, then we can erase the cut as shown below and use
the induction hypothesis, since the cut was erased.

��
��

��
�???????

P1

Γ ` A
> −−−−−−−−−−−−
Γ, A` >

cut ===============================
Γ ` >

−→ > −−−−−−−−
Γ ` >

2. If r1 is an instance of ax, we can replace the cut by the proof of the lemma,
as shown below, and use the induction hypothesis, since the cut was erased.

��
��

��
�???????

P1

Γ ` A
ax −−−−−−−−−−−
Γ, A` A

cut ===============================
Γ ` A

−→
��

��
��

�???????
P1

Γ ` A

3. If r1 is an instance of the →i rule, we can permute the cut above it and use
the induction hypothesis, as the height of P3 is less than the height of P2.

��
��

��
�???????

P1

Γ ` A

��
��

��
�???????

P3

Γ, A, C ` D
→i −−−−−−−−−−−−−−−−−−−Γ, A` C → D

cut ==
Γ ` C → D

−→
��

��
��

�???????
P1

Γ, C ` A
��

��
��

�???????
P3

Γ, C , A` D
cut =================================

Γ, C ` D
→i −−−−−−−−−−−−−−−−Γ ` C → D

8We are proving that lemmas are not required, after all.

2 — Standard Intuitionistic Systems 372 — Standard Intuitionistic Systems 372 — Standard Intuitionistic Systems 37

4. If r1 is an instance of the →e rule, we can permute the cut above it but this
requires to duplicate the cut, so that from the derivation:

��
��

��
�???????

P1

Γ ` A

��
��

��
�???????

P3

Γ, A` C
��

��
��

�???????
P4

Γ, A` C → B
→e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ, A` B

cut ===
Γ ` B

we obtain the new derivation below:

��
��

��
�???????

P1

Γ ` A
��

��
��

�???????
P3

Γ, A` C
cut =============================

Γ ` C

��
��

��
�???????

P1

Γ ` A
��

��
��

�???????
P4

Γ, A` C → B
cut ==================================

Γ ` C → B
→e −−−Γ ` B

such that we can use the induction hypothesis twice, on both branches of the
elimination instance, since P3 and P4 have a smaller height than P2.

In the end of the inductive process, there is no cut instance left in the proof obtained
fromP ′, but it might contain detours that were created in case 2, if the bottommost
instance in the proof of the lemma was an introduction instance, and it is plugged
on top of an elimination instance — just as in the substitutive proof. However, any
such detour has a smaller rank than the detour originally turned into a cut instance,
because it is a detour on a subformula of A. By definition of multiset ordering, the
complete resulting proof has therefore a rank smaller than the rank of the proof P ,
and we can use the main induction hypothesis to conclude.

Remark 2.9. The permutative proof relies on the permutation of cut instances, which
are actually derivations considered as compound instances, as permuting a branching
instance along one of its branches permutes necessarily the other branch too. But this
kind of permutation is allowed, since a whole derivation can permute above another.

Normalisation order. The goal of this normalisation procedure is to eliminate
all detours in a proof, and this is a complex process: we have seen that eliminating
a detour can introduce some new detours. From a purely logical point of view, any
order in the reduction of detours can be used9, but from a computational viewpoint
this choice can have a huge impact on the efficiency of the process. It is therefore a
natural question to ask if at any instant during normalisation, any rewriting step is
valid in the sense that it will eventally lead to a normal proof, or if some choice of
reduction is » better « than another. However, this question is usually approached
through computational models rather than in the logical setting, although some of
them, such as the λ-calculus, can be directly related to the normalisation process
in natural deduction.

9The normalisation of natural deduction proofs for intuitionistic logic can be shown confluent, and
thus any sequence of rewriting steps leads to the same normal proof.

38 1 — Standard and Nested Proof Theory38 1 — Standard and Nested Proof Theory38 1 — Standard and Nested Proof Theory

In the permutative proof given here, the order in which detours are eliminated
is important: the one chosen to be next reduced is always one which has no other
detour » above « in the proofs of its premises. This restriction is necessary to use the
simple measure we have used here, because it could not handle a reduction where
one of the premise of the cut, containing another detour, would be duplicated. This
would make the multiset used as rank grow, and break the induction.

The relaxation of these restrictions is possible if one can find a measure, most
likely more complicated than the rank we have defined here, which decreases when
a reduction step is performed. A useful tool there is the notion of multiplicity, since
it can be used to predict the number of copies of a subproof generated by a detour
elimination. For example, in the proof resulting from the rewriting corresponding
to a contraction on the cut formula:

��
��

��
�???????

P1

Γ ` A
��

��
��

�???????
P3

Γ, A` C
cut =============================

Γ ` C

��
��

��
�???????

P1

Γ ` A
��

��
��

�???????
P4

Γ, A` C → B
cut ==================================

Γ ` C → B
→e −−−Γ ` B

the proof P1 has been duplicated, along with all the detours it contains. However,
if the rank of a detour is not simply the size of the formula involved, but takes into
account the multiplicity of the cut that was moved upwards, then it could decrease
because the multiplicity of the two copies of the cut is smaller than the multiplicity
of the original cut. The problem with this approach is that the multiplicity of all the
implication elimination instances below some detour must be taken into account,
so that the definition of the rank of a derivation is no longer compositional — when
a proof with a certain rank is plugged above the left premise of a detour, its rank
in the resulting proof is not the same as the original. Moreover, once a proof has
replaced an axiom instance, it can be duplicated in the reduction of all the detours
involving this axiom. The development of the measure allowing any normalisation
order is therefore quite complicated10, and it would probably require to analyse in
a complex way the flow of particles in a given proof.

Structural rules. From a logical perspective, it is unusual to consider variants
of the NJ system where structural rules are separated from the other rules, as this
means having inference rules modifying the set of assumptions in a sequent. As a
consequence, these rules are not goal-directed, creating an ambiguity in the proof
construction process: given a sequent, one must decide to apply either a structural
rule or another one. This leads to the possibility of permuting instances, so that we
could consider several proofs as equivalent — but they would have different sizes,
for example. The purpose of such systems is usually to establish a correspondence
between proofs and a computational device, such as a variant of the λ-calculus.

10This is not surprising, since the definition of this measure, through the Curry-Howard isomorphism,
would provide a direct proof of strong normalisation of the simply typed λ-calculus — which is, rather
surprisingly, an open problem, listed for example as Problem #19 in the list of the RTA conference: the
usual proof is based on the reducibility candidates technique from Girard.

2 — Standard Intuitionistic Systems 392 — Standard Intuitionistic Systems 392 — Standard Intuitionistic Systems 39

In the permutative normalisation procedure, the use of structural rules requires
the introduction of new rewriting steps, and modifies the rewriting corresponding
to a cut moving above an implication elimination instance — in this case, the cut
and its lemma is not duplicated, but moved only in one branch of the elimination
instance, where the cut formula is required.

There are two rewriting steps corresponding a cut permuted above a weakening
instance. In the most simple case, the formula involved in the weakening is not the
cut formula, and the cut is trivially permuted upwards. If the weakening involves
the cut formula, then the cut must be erased in the following rewriting:

��
��

��
�???????

P1

Γ ` A

��
��

��
�???????

P3

∆ ` B
weak −−−−−−−−−−−−

∆, A` B
cut ====================================

Γ,∆ ` B

−→ ��
��

��
�???????

P3

∆ ` B
weak∗ ============

Γ,∆ ` B

The permutation of a cut above a contraction instance also corresponds to two
possible rewritings. In the first case, as for the weakening, the cut formula is not
involved and the cut can simply be permuted upwards. In the principal case, when
the cut formula is involved in the contraction, the cut and its lemma are duplicated,
so that the following proof:

��
��

��
�???????

P1

Γ ` A

��
��

��
�???????

P3

∆, A, A` B
cont −−−−−−−−−−−−−−−

∆, A` B
cut =====================================

Γ,∆ ` B

is turned into the new following proof, which requires new contractions:

��
��

��
�???????

P1

Γ ` A

��
��

��
�???????

P1

Γ ` A
��

��
��

�???????
P3

∆, A, A` B
cut ===============================

Γ,∆, A` B
cut ===

Γ,Γ,∆ ` B
cont∗ ================

Γ,∆ ` B

The complete proof of detour elimination in the variant of NJ where these
rules are used is slightly more complex than the proof given in the basic case, in
particular because the rewriting shown above for contraction requires to modifiy
the measure of the induction. In this situation, the multiplicity of a cut instance
must be a part of its rank, since the bottommost cut instance in the resulting proof
involves a formula of the same size as before, and it is located under a proof of the
same height as the original. The only difference is that its multiplicity is less than
the original.

40 1 — Standard and Nested Proof Theory40 1 — Standard and Nested Proof Theory40 1 — Standard and Nested Proof Theory

ax −−−−−−−
A` A

∆ ` A Γ, A` B
cut −−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` B

Γ ` B
weak −−−−−−−−−−−

Γ, A` B

>R −−−−−−−−Γ ` >
Γ ` B

>L −−−−−−−−−−−−Γ,> ` B

Γ, A, A` B
cont −−−−−−−−−−−−−−−

Γ, A` B

Γ, A` B
→R −−−−−−−−−−−−−−−Γ ` A→ B

∆ ` A Γ, B ` C
→L −−−−−−−−−−−−−−−−−−−−−−−−Γ,∆, A→ B ` C

Figure 2: Inference rules for system LJ∪ {cut}

2.3 The Sequent Calculus LJ

The sequent calculus for intuitionistic logic is called LJ. The set of inference rules
for a particular presentation of its extension LJ∪ {cut} is given in Figure 2. This
is in principle a system similar to the natural deduction system NJ, but where the
elimination rule →e is replaced by the left rule →L for implication — while the
right rule→R for implication is exactly the same as the→i introduction rule. There
is also a left rule for the truth unit >, although it is not required if we consider that
weakening applies to >. Finally, the structural rules of weakening and contraction
are used separately because we have chosen a multiplicative presentation.

The shape of proofs in LJ is quite different from the shape of proofs in NJ, since
the antecedent of the sequents is not only used to store assumptions, but contains
formulas that can be manipulated through the structural rules and decomposed by
the left rules. This means in particular that at each step of the proof construction
process, there is a tension between the use of a right rule, dealing with the goal of
a given sequent and the use of a left rule to compose or decompose assumptions.

Example 2.10. Below are shown proofs in the LJ sequent calculus, illustrating the
use of rules in this system. The first one is not so different from natural deduction:

ax −−−−−−−−
B ` B

ax −−−−−−−
A` A

→L −−−−−−−−−−−−−−−−−−−−−−−B, B→ A` A
→R −−−−−−−−−−−−−−−−−−−−−−−−−B ` (B→ A)→ A

→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−` B→ ((B→ A)→ A)

but the second has a characteristic shape:

ax −−−−−−−
A` A

ax −−−−−−−−
B ` B

ax −−−−−−−
A` A

ax −−−−−−−−
C ` C

→L −−−−−−−−−−−−−−−−−−−−−−−A, A→ C ` C
→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−A, B→ (A→ C), B ` C

→L −−−A, A, B→ (A→ C), A→ B ` C
cont −−

A, B→ (A→ C), A→ B ` C

2 — Standard Intuitionistic Systems 412 — Standard Intuitionistic Systems 412 — Standard Intuitionistic Systems 41

The sequent calculus LJ is usually presented with the cut rule, as it allows for
shorter proofs and can represent detours as found in the proofs in NJ. This rule is
exactly the same as the synthetic cut used in natural deduction, but has a status of
basic rule in LJ since it cannot be built from more primitive rules in a direct way.

Note that the rule cut is in a way opposite to the axiom rule ax, since the latter
says that » if we have the assumption A, then we can prove A « while the former
says » if we can prove A, then we have the assumption A « — that is, together these
rules assert the identity between A considered as an assumption and A considered
as a goal. As we will see, only one of these directions is actually needed, and cut
instances can thus be eliminated from a proof.

Remark 2.11. Since the cut rule of LJ∪ {cut} is the same as the cut used in natural
deduction, we use the same vocabulary to describe it, and in particular the formula A
in a cut instance r as shown below is called the lemma involved in r and the premise
where A is introduced as an assumption is called the main premise — and is the root
of the main branch P2 of the cut.

��
��

��
??????P1

∆ ` A
��

��
��

�???????
P2

Γ, A` B
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` B

Permutations and normal forms. In natural deduction, the process of detour
elimination applied on a proof provides a unique normal form for this proof, since
permutations of rule instances are impossible. In the sequent calculus LJ, where
both left and right rules are used, these permutations are possible and therefore
there we would need to impose some further restrictions in order to obtain a unique
normal form, even in this cut-free setting.

There are different situations, depending on the considered inference rule. The
structural rules are easily permuted, and can be moved to » canonical « positions in
a given proof. With the weakening rule, there are two possibilities: either instances
can be moved upwards to be all located below axiom instances in a proof, or they
can be moved down — not all the way, but they can be located immediately above
the instance creating or extracting11 the formula. Notice that the latter defines a
more precise normal form, since there is exactly one position for each weakening
instance, if the considered proof has only one formula in its conclusion. In the case
of the contraction rule, the permutation upwards is not always possible, since this
requires the two copies to be » used the same way «. The permutation downwards of
contraction instances is possible, and this leads these instances to the same location
as weakening instances.

The situation of logical left rules is more complicated. Some rules can be easily
permuted, such as the >L rule, which can be moved either upwards or downwards
just as a weakening. The →L rule cannot always be permuted, since it performs
a splitting of the antecedent of the sequent. These two parts of the antecedent

11That is, the rule instance decomposing the formula where a formula appears as a subformula.

42 1 — Standard and Nested Proof Theory42 1 — Standard and Nested Proof Theory42 1 — Standard and Nested Proof Theory

must therefore be » prepared « and a given→L instance cannot permute below the
topmost instance relevant to this preparation. The permutation upwards of an→L

instance is easier, since all the modifications on one part of the antecedent can be
performed below the→L instance. When permuting such an instance upwards, the
limits are the instances affecting the two formulas obtained by the decomposition
of the implication. Notice that because this is a branching rule, there are two ways
of permuting it upwards: the canonical location for this rule is thus directly below
both instances affecting the formulas involved in the→L instance.

Absorbing structural rules. If we can use permutations to move structural rule
instances to particular positions in a given proof, then we can simplify the system
by allowing these rules to apply only at these locations, and then integrate them
in synthetic rules. This leads to the definition of variant of LJ∪ {cut} where the
structural rules are built inside other rules, and that we call LJa∪ {cut} because it
follows the principles of additive presentations. The set of inference rules for this
system is obtained from LJ∪ {cut} by removing the weakening and contraction
rules, and replacing ax, cut and→L by the following variants:

ax −−−−−−−−−−−
Γ, A` A

Γ ` A Γ, A` B
cut −−−−−−−−−−−−−−−−−−−−−−

Γ ` B

Γ ` A Γ, B ` C
→L −−−−−−−−−−−−−−−−−−−−−−−Γ 3 A→ B ` C

where the notation Γ 3 A→ B indicates that the formula A→ B appears in Γ. Note
that in the →L rule, the formula A → B is present in both premises — to follow
the scheme of » decomposition «, it could be removed from the right premise, but it
can actually not be removed from the left premise without losing completeness of
the system, except if we replace it by a particular set of rules [Dyc92]. This system
is not completely additive, because the formula C cannot be duplicated in the →L

rule, but this is as close as one can get in intuitionistic logic.
There are other ways of designing variants of the LJ∪ {cut} system by playing

on structural rules and the mutiplicative and additive presentation of other rules. In
particular, one interesting possibility is to absorb both weakening and contraction
in into the branching rules, as can be done in classical logic to obtain a » minimal «
calculus [Hug10]. We will be interested in the variant of this blended presentation
where the weakening rule is kept and the contraction removed, while the axiom
rule is kept as in LJ and the cut and→L rules are replaced by the following variants:

Γ,∆ ` A ∆,Ψ, A` B
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆,Ψ ` B

Γ,∆ ` A ∆,Ψ, B ` C
→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(Γ,∆,Ψ) 3 A→ B ` C

where the notation Γ 3 A → B indicates that the formula A → B appears in one
of the three multisets Γ, ∆ and Ψ. This particular variant of the intuitionistic
sequent calculus is called LJb∪ {cut} here. This system is of course also complete
for intuitionistic logic, but it allows to avoid the duplication of formulas that are
not needed in the antecedent of both premises. These small structural differences
will of course have an important impact on possible rule permutations, and on the
cut elimination procedure.

2 — Standard Intuitionistic Systems 432 — Standard Intuitionistic Systems 432 — Standard Intuitionistic Systems 43

2.4 Cut Elimination

The heart of the syntactic study of the sequent calculus is the proof transformation
used to show that lemmas are not required, just as in natural deduction. Since the
use of lemmas is available in LJ only through the cut rule, this transformation is
called cut elimination, and it consists, just as detour elimination, in the replacement
of an axiom using a lemma by the proof of this lemma. Since the characterisation
of normal forms is easier in the sequent calculus than in natural deduction — the
equivalent of a detour is always expressed in the form of a cut instance —, the cut
elimination theorem is also simpler to express.

Theorem 2.12. For any proof P of F in LJ∪ {cut}, there is a proof P ′ of F in LJ.

In other words, cut elimination is simply the result stating the completeness
of the cut-free system LJ, with respect to the LJ∪ {cut} system. In order to prove
this, we will define a procedure transforming a proof with cuts into a cut-free proof,
but this procedure cannot be as simply described as the substituve procedure used
in natural deduction. Indeed, the assumption introduced in the antecedent in the
main premise of a cut is not necessarily used as is by an axiom instance, but it can
be decomposed into smaller formulas which are then used in axiom instances. We
will thus follow the scheme of the permutative procedure given for NJ, and show
how cut instances can be moved upwards until they disappear.

As mentioned in the case of natural deduction, the order in which the cuts are
eliminated is important, and the situation is even more complicated in LJ∪ {cut}
because contractions can appear freely at any location and there are at any moment
possibly several cuts in a proof — a global measure taking all the cuts into account
would thus possibly be modified in many ways when a single cut is modified. This
leads us to use the same scheme as in natural deduction, eliminating a topmost cut
separately from the rest of the proof, and so on until no cut remains. The measure
used at the level of the given proof is thus rather simple, but the induction required
to eliminate one cut instance is based on a more complicated measure.

Definition 2.13. The rank of a proof in LJ∪ {cut} is the number of cuts it contains.

Before we can give the proof describing the cut elimination procedure, we need
to prove a lemma stating that the rule→R is invertible, so that it can be permuted
to the bottom of a proof or to the instance introducing the decomposed formula.

Lemma 2.14. If Γ ` A→ B is provable in LJ then Γ, A` B is provable in LJ too.

Proof. By induction on the height of a given proof P of Γ ` A→ B in LJ, with a
base case when the bottommost rule instance r in P is either a→R instance — in
which case we can use the proof above r and we are done — or an axiom, in which
case we replace it with the following proof:

ax −−−−−−−−−−−−−−−−−−−−−−
A→ B ` A→ B

−→
ax −−−−−−−

A` A
ax −−−−−−−−

B ` B
→L −−−−−−−−−−−−−−−−−−−−−−−A→ B, A` B

In the general case, we can always rewrite the conclusion of the proof above the
bottommost instance r and use the induction hypothesis on the proof above.

44 1 — Standard and Nested Proof Theory44 1 — Standard and Nested Proof Theory44 1 — Standard and Nested Proof Theory

Proof of Theorem 2.12. By induction on the rank of the given proofP ∈ LJ∪ {cut},
with a base case when P is already cut-free, and is a valid proof in LJ. In general,
we consider a cut instance r in P connecting some lemma A, such that the proofs
above both premises of r are cut-free, and use an induction on the triple (|A |, m, h)
under lexicographic order, where m is the multiplicity of r in P and h is the height
of the main branch P2 of r — to show that the proof rooted in r can be transformed
into a cut-free proof. At each step, we use a case analysis on the rule instance r1 at
the root of P2, above the main premise of r:

��
��

��
�???????

P1

∆ ` A

��
��

��
�???????

P2

Φ ` C
r1 −−−−−−−−−−−Γ, A` B

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ,∆ ` B

or ��
��

��
�???????

P1

∆ ` A
r1 −−−−−−−−−−−Γ, A` B

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ,∆ ` B

1. If r1 is a left rule affecting only particles in Γ or a right rule affecting B, then
it can permute below the cut either by Proposition 1.25, or by replacing the
whole proof with r1 if it was a >R instance — in the first case, we can use the
induction hypothesis since the height of the main branch has decreased, and
in the second case we are done.

2. If r1 is an axiom instance on A, then the whole proof can be replaced with the
proof P1 of the lemma A and we are done, since the result is cut-free:

��
��

��
�???????

P1

∆ ` A
r1 −−−−−−−A` A

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−
∆ ` A

−→
��

��
��

�???????
P1

∆ ` A

3. If r1 is a left→L instance decomposing the particle A in the main premise of
r, then we can use the invertibility of→R stated in Lemma 2.14 and rewrite
the proof of the lemma A = C → D as shown below on the left, so that the
cut instance can be splitted into two new cut instances used sequentialy, first
on C and then on D, as follows:

��
��

��
??????P5

∆, C ` D
→R −−−−−−−−−−−−−−−−−∆ ` C → D

��
��

��
??????P3

Σ ` C
��

��
��

�???????
P4

Ω, D ` B
r1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−Ω,Σ, C → D ` B

cut −−−
Ω,Σ,∆ ` B

��
��

��
??????P3

Σ ` C

��
��

��
??????P5

∆, C ` D
��

��
��

�???????
P4

Ω, D ` B
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Ω,∆, C ` B
cut −−−

Ω,Σ,∆ ` B

−→

and we use the induction hypothesis, first on the upper cut and then on the
lower cut, since their active particles have bases smaller in size than |A | —
indeed, we have A = C → D and therefore |C | < |A | = |C → D |, and the
same holds for |D |.

2 — Standard Intuitionistic Systems 452 — Standard Intuitionistic Systems 452 — Standard Intuitionistic Systems 45

4. If r1 is a weakening instance erasing the particle A in the main premise of r,
then the cut and the proof of the lemma are erased, and weakening instances
are introduced to erase the assumptions in ∆ — and we are done with the
induction, since the result is cut-free:

��
��

��
??????P1

∆ ` A

��
��

��
�???????

P2

Γ ` B
r1 −−−−−−−−−−−Γ, A` B

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ,∆ ` B

−→ ��
��

��
�???????

P2

Γ ` B
weak∗ ============

Γ,∆ ` B

5. If r1 is a contraction instance duplicating the particle A in the main premise of
r, then the cut and the proof of the lemma A are duplicated, used sequentially,
and contractions are introduced to duplicate the necessary assumptions:

��
��

��
??????P1

∆ ` A

��
��

��
�???????

P2

Γ, A, A` B
r1 −−−−−−−−−−−−−−−Γ, A` B

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ,∆ ` B

−→ ��
��

��
??????P1

∆ ` A

��
��

��
??????P1

∆ ` A
��

��
��

�???????
P2

Γ, A, A` B
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆, A` B
cut −−

Γ,∆,∆ ` B
cont∗ =================

Γ,∆ ` B

and we can use the induction hypothesis first on the upper cut and then on
the lower cut, since their multiplicity is less than the multiplicity h of r, the
orginal cut instance, while the size of the active particle A in unchanged.

In the end of the inductive process, the proof rooted in r has been replaced with a
cut-free proof of the same sequent Γ,∆ ` B, and the rank of the resulting proof is
thus less than the rank of the original proof P . By induction hypothesis, we obtain
a cut-free proof P ′ of same conclusion as the given proof P .

Although it takes place in a setting where » detours « are all represented by cut
instances, the proof of cut admissibility above defines a cut elimination procedure
quite similar to the procedure used in NJ. One should however observe that the
situation after the elimination of one cut is simpler than after the elimination of a
detour in NJ, since cut elimination cannot introduce new cuts.

Elimination order. As in detour elimination in natural deduction, the order in
which cuts are eliminated in the proof described above can have a great impact on
the computation required to obtain a normal form. Topmost cuts were eliminated
first here, which is a quite constrained setting, but the ability to eliminate cuts in
a completely different order comes at the same price as in natural deduction: the
measure required to control the induction will be much more complicated. Using
somehow the notion of multiplicity is required if the contraction rule is used, but it
must be used with care if we attempt to eliminate a cut which has other cuts in its
premises. For example, in the case of a cut moving above a contraction, and being

46 1 — Standard and Nested Proof Theory46 1 — Standard and Nested Proof Theory46 1 — Standard and Nested Proof Theory

duplicated, the multiplicity of this one cut decreasese, but it can increase for other
cuts below, since a subproof is duplicated, and new contractions are introduced. In
order to define such a valid measure, one should thuse take into account not only
the contractions obviously duplicating the cut formula, but also the ones that might
appear during the elimination process of all the other cuts — in other words, the
terminating nature of cut elimination is a global property of the proof structure.

It should also be noticed that if cuts are eliminated in a different order, possibly
step by step in an interleaved way, we have to be able to move a cut above another
cut, and this should not affect the induction measure, since this is actually more an
exchange than a reduction — it can be done one way or the other, depending on
which cut should appear at the top. The two following derivations should therefore
have the same measure:

��
��

��
??????P1

Γ ` A

��
��

��
??????P2

∆, A` B
��

��
��

�???????
P3

Ψ, A, B ` C
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∆,Ψ, A` C
cut −−−

Γ,∆,Ψ ` C

��
��

��
??????P2

∆ ` B

��
��

��
??????P1

Γ, B ` A
��

��
��

�???????
P3

Ψ, A, B ` C
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Ψ, B ` C
cut −−−

Γ,∆,Ψ ` C

Structural variations. The different systems that can be obtained by modifying
the rules of LJ∪ {cut} admit a similar proof of cut elimination. However, all their
structural differences have an impact on the erasure and duplication of cuts, as can
be seen in the measure needed to prove cut elimination. The LJa∪ {cut} system
is much simpler than LJ∪ {cut} in this regard, since the duplication performed in
the branching rules never creates two copies of a formula in the same branch. This
means that the multiplicity of cuts is not needed in the definition of the rank of
derivations, because the height of the proof above a cut decreases after rewriting:

��
��

��
??????P1

Γ ` A

��
��

��
??????P3

Γ, A` C
��

��
��

�???????
P2

Γ, A, D ` B
r1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ, A` B

cut −−
Γ 3 C → D ` B

into the derivation:

��
��

��
??????P1

Γ ` A
��

��
��

??????P3

Γ, A` C
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` C

��
��

��
??????P1

Γ, D ` A
��

��
��

�???????
P2

Γ, A, D ` B
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, D ` B
r1 −−−Γ 3 C → D ` B

in the case of a cut moving above an implication left instance. Both copies of the
cut — along with the proof P1 of the involved lemma — are then located under a
proof, either P2 or P3, which is smaller than their original right premise.

3 — Deep Inference and Nested Proof Systems 473 — Deep Inference and Nested Proof Systems 473 — Deep Inference and Nested Proof Systems 47

3 Deep Inference and Nested Proof Systems

The notion of deep inference [Gug07] is a relatively recent12 methodology providing
a uniform approach to structural proof theory, based on the postulate that the rules
of deduction, such as the inference rules used in traditional proof systems, can be
applied anywhere inside a formula. As a consequence of this new way of performing
deduction, it is necessary to find a proper treatment of the logical meta-level — the
apparatus of multisets, sequents and branches used in standard systems.

This idea of applying inference rules deep inside formulas was not consistently
developped up to the form of a logical formalism radically generalising formalisms
using sequents before the introduction of the calculus of structures [Gug07], but it
can be found in one form or another in many earlier studies. Already in the work
of Schütte [Sch60], inference rules are defined that can apply » inside positive and
negative parts of a formula «, where these parts are considered as a generalisation of
the notions of antecedent and succedent in the sequents13. The closest precursor of
deep inference might be display logic [Bel82], designed to handle a wide variety of
logics, where subformulas can be accessed through the use of a kind of intermediate
level between sequents and formulas. However, this requires to » zip and unzip «
formulas during the deduction process, and does not support all kind of inference
rules and interactions between subformulas. Another example of related system is
the one given by Pym for the logic BI [Pym02].

The goal of the deep inference methodology is to accept all the consequences of
applying inference rules inside formulas and study the benefits of the new setting
obtained this way. The first consequence of this idea is that the result of applying
an inference rule on a formula A inside some formula B must itself a formula, that
is plugged in the place of A in B. From a sequent-based perspective, this means
that the metal-level syntax allowing to write for example C , D ` E must be valid at
the level of formulas. This yields the founding principle of the deep inference view
of proof objects as usually described in proof systems, which can be summarised as
follows:

Turnstiles, commas and spaces are just another
syntax for connectives, and deduction is the logically

consistent rewriting of a formula into another formula.

Deduction as rewriting. This approach offers a highly syntactic way of viewing
and manipulating formulas and proofs, since sequents — which were defined above
using multiset in intuitionistic natural deduction and sequent calculus — are seen
as mere syntactic constucts following a given grammar, just as formulas. Although
it can seem unusual from the perspective of traditional formalisms, it corresponds
to the intuition that for example, in the classical sequent calculus, commas on the
left represent conjunctions, commas on the right represent disjunctions, while the
turnstile ` represents an implication.

12The development of the idea of deep inference, in the form of the calculus of structures and other
formalisms due to Guglielmi, can actually be traced back to [Gug99], but the initial article describing
this approach suffered from a rather long editorial process.

13As mentioned in [Brü03] ; the generalisation of antecedents and succedents is also relevant to the
merging of logical and meta-level syntaxes used in the calculus of structures.

48 1 — Standard and Nested Proof Theory48 1 — Standard and Nested Proof Theory48 1 — Standard and Nested Proof Theory

When everything is seen as a syntactic construct, deduction can be reduced to
the rewriting process turning a construct into another. But not any rewriting rule
is acceptable, since it must represent a valid deduction step. Therefore, given for
example two syntactic constructs Γ ` A and Γ ` B, the rule instance:

Γ ` A
r −−−−−−−−
Γ ` B

is valid in a deep inference system only if the construct Γ ` A implies14 the construct
Γ ` B in the logic represented. The situation might seem different in the case of a
branching rule, but it can also fit the rewriting scheme if » spaces between branches «
are considered as connectives. This is done by considering the connective implictly
used between two branches, for example in the classical sequent calculus, as in the
following rule instance:

Γ ` A Γ ` B
∧R −−−−−−−−−−−−−−−−−−−Γ ` A∧ B

corresponds to
(Γ ` A)∧ (Γ ` B)

∧R −−−−−−−−−−−−−−−−−−−−−−−−−Γ ` A∧ B

From this perspective, a deduction step simply replaces some logical expression,
a formula, with another formula. And as any rewriting process, there is no reason
to restrict this transformation to the outer level of an expression, as illustrated by
the rule instance shown below, valid in a system if C can be deduced from A:

Γ ` A∧ B
r −−−−−−−−−−−−−−
Γ ` C ∧ B

is written
ξ{A}

r −−−−−−−
ξ{C}

where ξ{−} = Γ ` −∧ B

In the following, we will call nested proof system any system that allows to apply an
inference rule on any formula nested inside another formula.

Expressivity. The deep inference methodology was originally introduced with
the purpose of defining a logical formalism that would support the representation
of the logic BV [Gug07], which uses a self-dual, non-commutative connective and
is similar to the pomset logic [Ret97] defined previously by Retoré. The problem of
this logic was the difficulty to obtain a sequent calculus representing it, as already
pomset logic uses a proof theory based on some variant of proof-nets [Gir96], but
no suitable presentation in the sequent calculus was ever found. It later turned out
that BV cannot be represented in the sequent calculus, because the level of depth
allowed in the application of inference rules in a system for BV cannot be restricted
without restricting the logic [Tiu06b]. In this sense, nested formalisms such as the
calculus of structures are strictly more expressive than traditional formalisms based
on the shallow application of inference rules, as natural deduction and the sequent
calculus.

Remark 3.1. Although the BV logic is an example of the need for deep inference, the
precise difference in expressive power between, for example, the calculus of structures
and the sequent calculus, is still unclear — and BV itself is not yet well understood,
as in particular it is not known whether it coincides with pomset logic or not.

14A notion of implication is always present, in any logical system, as the embodiment of the notion of
deduction — without it, a logic is a set of unrelated theorems, and should not even be called a logic.

3 — Deep Inference and Nested Proof Systems 493 — Deep Inference and Nested Proof Systems 493 — Deep Inference and Nested Proof Systems 49

This expressivity can also be seen in the area of modal logics, since many such
logics, as for example S5, have no well-behaved sequent calculus where the cut rule
is admissible. Different extensions of the sequent calculus such as the hypersequent
calculus [Avr96], various labelled calculi [Vig00] and display logics have been used,
but the deep inference approach allows to define systematically well-behaved proof
systems while staying inside of the language of modal logic [Brü10].

Finally, there is an orthogonal question in the structural representation of logics,
which has become a center of interest in the post-linear-logic studies of traditional
logics: the level of decomposition of the deduction process that allows, or not, for
certain analyses. In this regard, the deep inference methodology leads naturally
to the definition of fine-grained inference rules — the stereotypical example is the
switch found in virtually any system in the calculus of structures, which decomposes
the splitting of assumption contexts in traditional branching rules. Moreover, this
decomposition power allows to define local proof systems, where an inference rule
can erase or duplicate15 only atomic formulas, by the decoupling of contraction and
the shuffling abilities required in a deep inference system, through the medial rule
and its variants [Str07]. Such systems have be designed for classical logic [Brü06c]
in the calculus of structures as well as linear logic [Str03a].

3.1 The Calculus of Structures

The most prominent logical formalism using deep inference is probably the calculus
of structures, which is also the one originally introduced as the embodiment of the
idea of applying inference rule deep inside and anywhere in formulas, in the work
of Guglielmi [Gug07]. It is a direct, and pure application of the principles described
above, and allows for a uniform treatment of many different logics. Throughout the
description of this formalism, we will illustrate the notions with the most standard
representation of classical logic in this setting.

Syntactic structure. The basic layer of this formalism is exactly the same as
in more traditional systems: formulas are generated by a given grammar, and can
be seen as syntactic trees where inner nodes are connectives and leaves are units
and atoms — picked from a countable set A . For example, classical formulas are
generated by conjunction, disjunction and their units.

Definition 3.2. The formulas of classical logic are generated by the grammar:

A, B ::= a | > | ⊥ | A∧ B | A∨ B

We will use the same naming conventions as before, and we also stay at the level
of propositional logic, where no quantifiers are used. Formulas are read as usual,
and the behaviour of units with respect to their corresponding connective is not
defined by this syntactic definition — in the sequent calculus, that would be defined
through inference rules and the meta-level interpretation given for commas. But a
formula is not the basic object manipulated at the deduction level in the calculus
of structures: as suggested by its name, this formalism manipulates structures.

15Atomic weakening is easy to obtain in the sequent calculus, but atomic contraction does not seem
to be possible in a shallow setting, since it relies entirely on an essentially » deep « shuffling of formulas.

50 1 — Standard and Nested Proof Theory50 1 — Standard and Nested Proof Theory50 1 — Standard and Nested Proof Theory

Associativity Commutativity

A∧ (B ∧ C) ≡ (A∧ B)∧ C
A∨ (B ∨ C) ≡ (A∨ B)∨ C

A∧ B ≡ B ∧ A
A∨ B ≡ B ∨ A

Negation Units

¬ (A∧ B) ≡ ¬A∨¬B
¬ (A∨ B) ≡ ¬A∧¬B

¬> ≡ ⊥
¬ a ≡ a
¬¬A ≡ A

>∧ A ≡ A
⊥∨ A ≡ A
⊥∧⊥ ≡ ⊥
>∨> ≡ >

Figure 3: Congruence used on classical formulas

A structure is basically a formula where a certain number of logical equivalences
have been built-in to facilitate the inference process and keep notations and proofs
as readable as possible — from the perspective of a human reader. When defining
a system, the precise equivalences chosen to be part of the congruence on which
the structures are built depend on the purpose of this system. In particular, a proof
system with more equivalences is easier to use for humans, while a system using
as few equations as possible is easier to implement on a machine. The equations
shown in Figure 3 are used in the most standard system for classical logic.

Definition 3.3. The structures of classical logic are the equivalence classes of classical
formulas generated by the contextual closure of the equivalence relation defined by the
equations given in Figure 3.

A formula in the calculus of structures is thus always considered through the
glasses of the chosen congruence, and the use of the contextual closure of the given
equivalence relation implies that this » automatic rewriting « of a formula is used
deep inside it and not only at the outer level. For the sake of simplicity, structures
are denoted by capital letters such A, B, C , as formulas.

Remark 3.4. Because of the congruence, a given structure is representing potentially
infinitely many different formulas, so that one must decide how to write this structure
among infinitely many representations. This is not a problem, because we can consider
normal forms, where negation is pushed to the atoms, units are removed as much as
possible, a default associativity is chosen for connectives, and a total order is defined
over atoms and extend to formulas, to deal with commutativity.

The level of deduction in the calculus of structures follows the definitions given
previously for the general case but it is based on structures rather than formulas,
and makes the notion of sequent disappear, by imposing that a sequent is always
of the shape ` A, with an empty antecedent and a succedent consisting of only one
formula. Therefore, we will never mention sequents in the calculus of structures,
and always consider that inference rules are applied on structures.

3 — Deep Inference and Nested Proof Systems 513 — Deep Inference and Nested Proof Systems 513 — Deep Inference and Nested Proof Systems 51

The replacement of sequents by structures is a restriction from the viewpoint of
the broad definitions given previously, and in natural deduction or in the sequent
calculus, it would correspond to the use of inference rules replacing one formula
by another. But in this restricted setting, the ability to apply inference rules deep
inside formulas allows to encode in these formulas many combinations of sequents,
making of the calculus of structures a generalisation of traditional formalisms. The
ability to use deep inference relies on the use of schemes, to define inference rules,
where a structure can be asserted to be a substructure of any possible structure.

Definition 3.5. A context is a structure with a hole, to be filled by another structure.

We denote contexts by letters such as ξ, ζ or θ , and a hole is denoted with −,
so that some particular context can be written for example ξ{−}, and when this
hole is filled with a structure A we can denote by ξ{A} the resulting structure. This
allows to write inference rules of the shape:

ξ{A}
−−−−−−−
ξ{B}

possibly written with an implicit context
A
−−−
B

where the implicit notation of the context is used for inference rules but never for
their instances, since instances correspond to the use of a particular context ξ.

Another restriction applies to inference rules in the calculus of structures: they
can only have exactly one premise. This corresponds to the idea that if an inference
rule is applied on a structure nested inside another one, then the result needs to be
substituted in place of the original substructure. As a consequence, derivations in
the calculus of structures are always sequences of rule instances, denoted as shown
below on the left, and proofs are derivations from a particular structure • to any
structure, as shown on the right — we use • to denote this » truth « structure here
but it depends on the logic represented.

A
D

B

•
P

B
also denoted

−
P

B

The classical KS system. As an example, we present the most standard system
for classical logic in the calculus of structures, the KS system16 [Brü03], for which
inference rules are given in Figure 4. It is based on classical formulas as we defined
above, and structures are defined by the equations given in Figure 3. In this system,
the truth unit> is the structure • used as the premise for proofs, and inference rules
are shown with an implicit context, so that they can be applied deeply.

The use of a congruence to deal with negation and units makes this proof system
small, with only four inference rules, and easy to read. The rules i↓, w↓ and c↓
can be viewed through the intuitive logical interpretation of sequents as standard
sequent rules, in a one-sided version of LK. In this interpretation, > can represent
the empty premise and ⊥ the empty subset in a multiset, while ∨ is a comma.

16The system presented here is named KSg in the work of Brünnler, while KS is the local variant, but
we will drop the annotations for locality here for simplicity, since we will not present the local system.

52 1 — Standard and Nested Proof Theory52 1 — Standard and Nested Proof Theory52 1 — Standard and Nested Proof Theory

>
i↓ −−−−−−−−−−

A∨¬A

(A∨ B)∧ C
s −−−−−−−−−−−−−−−−

A∨ (B ∧ C)

⊥
w↓ −−−

A

A∨ A
c↓ −−−−−−−

A

Figure 4: Inference rules for system KS

Although these rules are similar to the standard ones, they can be applied inside
structures and therefore derivations such as the following:

B ∧>
i↓ −−−−−−−−−−−−−−−−−−−

B ∧ (A∨¬A)
≡ =====================================

B ∧ ((A∧ (>∨⊥))∨¬A)
w↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B ∧ ((A∧ (>∨ C))∨¬A)

are valid in the KS system, where ≡ is a » fake « inference rule that we use to make
the rewriting performed through the congruence explicit in the representation of a
derivation. This can be compared to the way this derivation would be written in a
one-sided, multiplicative version of LK:

` B

ax −−−−−−−−−−−
` A,¬A

` >
weak −−−−−−−−−

` >, C
∨ −−−−−−−−−−−
` >∨ C

∧ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A∧ (>∨ C),¬A

∨ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` (A∧ (>∨ C))∨¬A

∧ −−−
` B ∧ ((A∧ (>∨ C))∨¬A)

The fourth inference rule s, called the switch rule, is the most particular rule in
KS and is a specificity of the calculus of structures. It is the only rule in this system
to deal with logical connectives, and it does so by defining the interaction between
conjunction and disjunction. More precisely, it expresses the weak distributivity of
∧ over ∨, and this is used to implement in small steps the splitting of the context
at the heart of the ∧ inference rule, as for example in the derivation:

` C , A ` D, B
∧ −−−−−−−−−−−−−−−−−−−−−
` C , D, A∧ B

expressed as

(C ∨ A)∧ (D ∨ B)
s −−−−−−−−−−−−−−−−−−−−−−−−−−

C ∨ (A∧ (D ∨ B))
s −−−−−−−−−−−−−−−−−−−−−−−−−−

C ∨ D ∨ (A∧ B)

where we see that the ∧ connective is not removed in the calculus of structures but
kept, representing the space between branches in the sequent calculus. This rule
contains all the required treatment of ∨, which is simply identified with the comma
in the sequent calculus, and is thus involved in the splitting.

Remark 3.6. TheKS system can be divided in three fragments with different purposes:
the identity fragment {i↓} deals with the identity of structures, the structural fragment
{w↓,c↓} deals with the erasure and duplication of structures, and finally the logical
fragment {s} deals with the logical connectives.

3 — Deep Inference and Nested Proof Systems 533 — Deep Inference and Nested Proof Systems 533 — Deep Inference and Nested Proof Systems 53

>
i↓ −−−−−−−−−−

A∨¬A

(A∨ B)∧ C
s −−−−−−−−−−−−−−−−

A∨ (B ∧ C)

A∧¬A
i↑ −−−−−−−−−−

⊥

⊥
w↓ −−−

A

A∨ A
c↓ −−−−−−−

A

A
w↑ −−−
>

A
c↑ −−−−−−−

A∧ A

Figure 5: Inference rules for system SKS

The KS system does not enjoy the subformula property in its usual sense, but it
is analytic in that no new atoms are introduced during proof search. There exists
a correspondence, informally present in the description of the rules of KS above,
between this calculus and the cut-free sequent calculus LK. The equivalent of the
cut rule in this setting would be the dual of the identity rule i↓:

A∧¬A
i↑ −−−−−−−−−−

⊥
similar to

` Γ, A `∆,¬A
∧ −−−−−−−−−−−−−−−−−−−−−−−
` Γ,∆, A∧¬A

» cut « −−−−−−−−−−−−−−−−−−−−−
` Γ,∆

where the dual of an inference rule is the rule obtained by exchanging and dualising
premise and conclusion. This notion of dualisation of a structure is an involution,
but depends on the logic represented: in classical logic it corresponds to negation,
but in other logics it might be another operation — for example in logics where
negation is not an involution.

The SKS symmetric system. The identity rule i↓ is not the only one of which
we consider the dual. The most general, and uniform view of duality in the calculus
of structures is to close a system under duality, so that for any rule r↓ in a system
the rule r↑ also belongs to this system, and the other way around — this justifies
the annotations on rule names by defining two fragments in the system: a rule r↓
is called a down rule and belongs to the down fragment, while a rule r↑ is called
an up rule and belongs to the up fragment. Following this idea, we extend KS into
the symmetric system SKS, with the set of inference rules is shown in Figure 5, in
a simple notation using implicit contexts.

In the SKS system, all rules have a dual, but the switch rule s does not follow
the naming scheme, using annotations with up and down arrows. This is because
it is self-dual and therefore belongs to both17 the down and up fragments:

¬ (A∨ (B ∧ C))
−−−−−−−−−−−−−−−−−−−−−−
¬ ((A∨ B)∧ C)

≡
¬A∧ (¬B ∨¬C))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
((¬A∧¬B)∨¬C)

≡
(¬C ∨¬B)∧¬A

s −−−−−−−−−−−−−−−−−−−−−−−−−
¬C ∨ (¬B ∧¬A)

as can be seen here, using dualities of connectives and the fact that the negation is
involutive in classical logic. Note that it relies on the commutativity of ∧ and ∨.

17The switch is always necessary and thus cannot belong to only one of the fragments; this self-duality
illustrate the perfect duality of ∧ and ∨, and of their behaviour, in classical logic.

54 1 — Standard and Nested Proof Theory54 1 — Standard and Nested Proof Theory54 1 — Standard and Nested Proof Theory

Since duality can be applied to inference rules and their instances, this can be
generalised to complete proofs and derivations. Given some derivation D in SKS,
its dual ¬D can be obtained by reversing the order of inference rule instances, and
applying negation to all structures involved. The dual of a derivation from A to B
is thus a derivation from ¬B to ¬A.

Example 3.7. Below are shown three derivations in the symmetric SKS system. The
two proofs on the left illustrate how a rule of the down fragment can be simulated by
its dual and the cut.

B
≡ −−−−−−−−

B ∧>
w↓ −−−−−−−−−−−−−−−−−

A∨ (B ∧>)

B
i↓ −−−−−−−−−−−−−−−−−−−

B ∧ (A∨¬A)
w↑ −−−−−−−−−−−−−−−−−−−

B ∧ (A∨>)
s −−−−−−−−−−−−−−−−−

A∨ (B ∧>)

A
i↓ −−−−−−−−−−−−−−−−−−
(A∨¬A)∧ A

s −−−−−−−−−−−−−−−−−−
A∨ (¬A∧ A)

i↑ −−−−−−−−−−−−−−−−−−
A∨⊥

The KS and SKS systems are the most basic presentation of classical logic in the
calculus of structures, but many variants can be designed, and use specific features
of the deep inference setting to improve on these. As mentioned, the rule below
called medial [Str07] can be added to the system, and allows the contraction rule
to be used in its atomic form only, while retaining completeness.

(A∧ C)∨ (B ∧ D)
m −−−−−−−−−−−−−−−−−−−−−−−−−−
(A∨ B)∧ (C ∨ D)

The general contraction rule can be obtained from atomic contraction and this rule
by duplicating all atoms in a given structure A, and then reshuffling these atoms to
build the structure A∨ A.

Beyond the design of such advanced inference rules, the ideas developped in the
calculus of structures have lead to the definition of an even more general setting.
This formalism, called open deduction [GGP10], pushes further the collapse of the
logical level with the deduction level as performed in the calculus of structures, by
allowing connectives, and therefore inference rules, to apply on derivations. In this
setting, the notion of branch is reintroduced by the fact that in a derivation D1∧D2,
any inference rule applied only inside D1 can be considered in a different branch
as a rule applied inside D2.

Example 3.8. Below is shown a derivation in the system for classical logic in open
deduction, where several rule instances are applied in parallel. The premise of this
derivation is B and its conclusion is the structure ((A∧A)∨>)∧B that can be read off
the conclusion of the several subderivations appearing under the ∧ and ∨ connectives.

B
≡ −−

>
i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A
c↑ −−−−−−−

A∧ A
∨

¬A
w↑ −−−−
>
∧ B

3 — Deep Inference and Nested Proof Systems 553 — Deep Inference and Nested Proof Systems 553 — Deep Inference and Nested Proof Systems 55

3.2 Nested Sequents

An alternative to the radical treatment of proof objets in the calculus of structures is
offered by the formalism of nested sequents, where deep inference is implemented
in a setting that retains a difference between the basic logical level of formulas
and the meta-level of sequents. Nested sequents have been introduced in the study
of deep inference calculi for modal logics [Brü10], but this notion was studied in
various forms and under various names in earlier18 work, in particular in the work
of Kashima on tense logics [Kas94]. Since it will be used here as an alternative to
the calculus of structures, we follow the work of Brünnler, with some divergence in
the design of inference rules. As before, we illustrate the notions described by the
representation of classical logic in this setting.

Syntactic structure. The basic layer of this formalism is also plain formulas, as
described previously, and we use the same notational conventions. These formulas
are used as part of a metal-level that is an enriched form of sequent: the most basic
requirement is that a sequent can contain object containing sequent themselves, but
the precise definition given for such a nested form of sequents depends on the logic
represented. The idea is to represent at the meta-level all the connectives available
in the logic, so that the toplevel connective of a formula can be decomposed into
its metal-level equivalent, making its subformulas accessible. In classical logic, this
requires the use of two kinds of sequents.

Definition 3.9. A classical nested sequent is either a classical formula or a multiset
of branch-sequents, and a branch-sequent is a multiset of nested sequents.

We will denote nested sequents and branch-sequents by small letters such as δ,
γ and φ where they are manipulated as objects, and they are represented with the
syntaxes [` δ, · · · ,φ] and [δ; · · · ;φ] respectively19 — omitting the brackets when
they are not necessary to the understanding. For the sake of clarity, we will denote
a nested sequent containing only one formula A as this formula itself, and use the
same notations Γ, ∆ and so on for lists of branch-sequents δ1, · · · ,δn and of nested
sequents γ1; · · · ;γn, the nature of this list being clear from the context.

Example 3.10. The notation ` Γ,δ, [A; [`∆, B∧C]] describes a nested sequent that
contains a list of branch-sequents Γ, a branch-sequent δ and another branch-sequent
containing two nested sequents: A and a sequent containg ∆ and the formula B ∧ C.

In this definition, nested sequents correspond to traditional sequents, where the
comma is interpreted as disjunction, and branch-sequents represent » branchings «
separating several sequents, where the semicolon is interpreted as conjunction. The
benefit of this approach is that the decomposition of connectives into the meta-level
allows to keep track of the parts of the sequents that were already treated. This has
the consequence that a nested sequent system can enjoy the subformula property in
its usual form: the formulas in the premises of a rule instance are all subformulas
of formulas in the conclusion of this instance.

18For a discussion of related work on nested sequents, see [Brü10].
19Notice that the definition would allow for infinitely nested sequents, but we will not use such infinite

objects, and give no syntax to define them, since it is of no use in the representation of standard logics.

56 1 — Standard and Nested Proof Theory56 1 — Standard and Nested Proof Theory56 1 — Standard and Nested Proof Theory

i↓ −−−−−−−−−−−
` A,¬A

` Γ, A, B
∨↓ −−−−−−−−−−−−−−
` Γ, A∨ B

` Γ
⊥↓ −−−−−−−−−
` Γ,⊥

` Γ
w↓ −−−−−−−−
` Γ,δ

` Γ, [[`Ψ,δ];∆]
s −−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ,Ψ, [δ;∆]

` Γ, [A; B]
∧↓ −−−−−−−−−−−−−−−
` Γ, A∧ B

` Γ, [∆]
>↓ −−−−−−−−−−−−−−−−−
` Γ, [>;∆]

` Γ,δ,δ
c↓ −−−−−−−−−−−−
` Γ,δ

Figure 6: Inference rules for system KN

In order to define inference rules that can be applied on sequents nested inside
other sequents, we need to define a notion of context similar to the one used in the
calculus of structures. In the following we use the term » sequent « in a generic way
for objects that are either nested sequents or branch-sequents.

Definition 3.11. A context is a sequent containing a special sequent called hole, that
can be replaced by any other sequent — a nested sequent or branch-sequent depending
on the configuration.

The formalism of nested sequents allows inference rules to have more than one
premise, as used in the work on modal logics in this setting [Brü10]. However, we
choose here to use rules with only one premise, because it replaces the branching
mechanism with the distribution performed by the switch rule that we consider to
be more elegant and more general. Notice that branching is compatible with the
nested application of inference rules, so that one can have the following rule:

ξ{A} ξ{B}
∧ −−−−−−−−−−−−−−−−−−−−−

ξ{A∧ B}

in classical logic, but this might lead to complications in other logics, depending on
the possible contents of the context ξ and on the position of the hole in ξ{−}.

The KN classical system. As an intermediate between LK and the KS system,
we define the nested sequent system KN, for which the inference rules are given
in Figure 6. It is based on classical nested sequents as defined previously, and has
rules for units since there is no congruence as in the calculus of structures, and also
has rules to decompose the connectives ∨ and ∧ into the meta-level.

Although some rules are exactly the same as in the sequent calculus LK, others
reflect the nested structure of proof in this system. The >↓ rule corresponds for
example to the » closing « of a branch, while ∧↓ corresponds to the » opening « of a
new branch, to which no hypotheses have been given yet. Then, the switch rule is
similar to the switch20 of the calculus of structures, simply moving hypotheses from
one sequent to another, nested in the first one. Finally, notice that the weakening
and contractions are almost the same as the sequent calculus, but they allow to
erase and duplicate full sequents rather than just formulas.

20Rules in nested sequent systems usually apply only on sequents, either reduced to one formula or
complete ones, but here it moves several sequents — this design was chosen to obtain a self-dual rule.

3 — Deep Inference and Nested Proof Systems 573 — Deep Inference and Nested Proof Systems 573 — Deep Inference and Nested Proof Systems 57

i↓ −−−−−−−−−−−
` A,¬A

` Γ, [[`Ψ,δ];∆]
s −−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ,Ψ, [δ;∆]

`∆, [A;¬A]
i↑ −−−−−−−−−−−−−−−−−−

`∆

` Γ, A, B
∨↓ −−−−−−−−−−−−−−
` Γ, A∨ B

` Γ
⊥↓ −−−−−−−−−
` Γ,⊥

` Γ
w↓ −−−−−−−−
` Γ,δ

` Γ, [A; B]
∧↓ −−−−−−−−−−−−−−−
` Γ, A∧ B

` Γ, [∆]
>↓ −−−−−−−−−−−−−−−−−
` Γ, [>;∆]

` Γ,δ,δ
c↓ −−−−−−−−−−−−
` Γ,δ

`∆, A∨ B
∧↑ −−−−−−−−−−−−−−−
`∆, A, B

`∆,⊥
>↑ −−−−−−−−−−

`∆
`∆, [Γ;δ]

c↑ −−−−−−−−−−−−−−−−−−−−
`∆, [Γ;δ;δ]

`∆, [Γ; A∧ B]
∨↑ −−−−−−−−−−−−−−−−−−−−−−
`∆, [Γ; A; B]

`∆, [` Γ;>]
⊥↑ −−−−−−−−−−−−−−−−−−−−

`∆,Γ

`∆, [` Γ;δ]
w↑ −−−−−−−−−−−−−−−−−−−

`∆,Γ

Figure 7: Inference rules for system SKN

The rules of this KN system are essentially the same as the rules for KS, but
the distinction between the logical level and the meta-level of nested sequents and
branch-sequents allows to have only rules respecting the subformula property in its
usual acceptation. The cut rule, which can be defined as the dual of the identity
rule can be added to the system and of course, it does not respect this property:

`∆, [A;¬A]
i↑ −−−−−−−−−−−−−−−−−−

`∆

Example 3.12. Below are shown two derivations in the KN system, where one can
observe the additional steps required to deal with the meta-level in nested sequents, in
comparison with the calculus of structures, and one derivation illustrating the use of
the cut and its connection to identity.

` [B]
>↓ −−−−−−−−−−−−
` [B;>]

∧↓ −−−−−−−−−−−−
` B ∧>

w↓ −−−−−−−−−−−−−−−
` A, B ∧>

∨↓ −−−−−−−−−−−−−−−−−−−−
` A∨ (B ∧>)

` Γ, [`∆;>], [`∆,⊥]
⊥↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ, [`∆,⊥;>], [`∆,⊥]

>↓ −−−
` Γ, [`∆,⊥;>], [`∆,⊥;>]

c↓ −−−
` Γ, [`∆,⊥;>]

w↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ, [`∆,⊥;` A,>]

` Γ, [A]
i↓ −−−−−−−−−−−−−−−−−−−−−−−−
` Γ, [` A,¬A; A]

s −−−−−−−−−−−−−−−−−−−−−−−−
` Γ, A, [¬A; A]

i↑ −−−−−−−−−−−−−−−−−−−−−
` Γ, A

Symmetry in nested sequents. The notions of duality and symmetry, as they
were described in the setting of the calculus of structures, can also be considered in
nested sequents. The dualisation of a sequent is derived from duality of connectives
and correspondences between meta-level objects and logical constructions, so that
the dual of a nested sequent is a branch-sequent, and so on. Then, the dualisation
of any rule can be defined as in KS, by reversing the rule and dualising its sequents,
as was done for example with identity and cut. This leads to the symmetric SKN
system, defined by the set of inference rules given in Figure 5.

58 1 — Standard and Nested Proof Theory58 1 — Standard and Nested Proof Theory58 1 — Standard and Nested Proof Theory

This system follows the same scheme as the symmetric generalisation SKS of
the KS system, and it also has one rule, the switch rule, which belongs to both up
and down fragments — because this rule is self-dual. Notice that the up rules seem
slightly more complex than the down rules, because we have chosen to present all
rules as applied on nested sequents, and not branch-sequents.

Remark 3.13. The system SKN, as well as KN, can be divided into several fragments
with different purposes, as done in the calculus of structures. The identity fragment
{i↓, i↑} deals with the identity of formulas and the structural fragment {w↓,c↓,w↑,c↑}
with the erasure and duplication of sequents. Then the s rule is particular and could
form alone the meta-logical fragment, dealing with logical connections at the level of
sequents, while the logical fragment {∧↓,∨↓,>↓,⊥↓,∧↑,∨↑,>↑,⊥↑} deals with the
decomposition and recomposition of connectives.

The introduction of dual rules in a nested sequents system has the same use as
in the calculus of structures, but some dual rules are more interesting than others.
For example, the cut rule is crucial as it corresponds to the cut rule in the sequent
calculus, and the dual structural rules can be useful in the study of the dynamics
of proofs, and computational interpretations. However, the duals of logical rules
simply express the perfect duality between ∧ and ∨, and their units, in the classical
setting. This is why ∧↑ is only reversing the effect of ∨↓, and the other way around,
so that they seem not to be of any use to proof construction for example21.

Example 3.14. Below are shown derivations in the symmetric SKN system, where
the particularities of the up fragment are illustrated. In the first one, shown on the
left, one can observe that the ⊥↑ rule is not only dual to ⊥↓ but also » opposite « to
the rule >↓ in the sense that they perform an operation in different directions. On the
right, the derivation shows how up rules can be used to build formulas that will match
a given hypothesis, much in the style of natural deduction.

` [` Γ, A]
>↓ −−−−−−−−−−−−−−−−−−−
` [` Γ, A;>]

s −−−−−−−−−−−−−−−−−−−
` Γ, [A;>]

⊥↑ −−−−−−−−−−−−−−−−
` Γ, A

` Γ, [A]
i↓ −−−
` Γ, [A;` B ∨¬A,¬B ∧ A]]

s −−−
` Γ,¬B ∧ A, [A;` B ∨¬A]]

∧↑ −−−
` Γ,¬B ∧ A, [A;` B,¬A]]

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ,¬B ∧ A, B, [A;¬A]

i↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ,¬B ∧ A, B

Finally, the derivation below shows how the rules of the up fragment can introduce
some redundancy in the meta-level, inducing the use of additional switches.

` Γ, [` A,∆]
s −−−−−−−−−−−−−−−−−−−
` Γ, A, [`∆]

>↓ −−−−−−−−−−−−−−−−−−−−−−−
` Γ, A, [`∆;>]

w↑ −−−−−−−−−−−−−−−−−−−−−−−
` Γ, A,∆

21Notice however that the KN system being complete, the dual logical rules are admissible in this
system, and from this we can conclude that all logical rules are invertible.

3 — Deep Inference and Nested Proof Systems 593 — Deep Inference and Nested Proof Systems 593 — Deep Inference and Nested Proof Systems 59

3.3 Logical Flow and Permutations

In the theory of nested proof systems, the structure of proofs and the interaction of
inference rule instances are even more important than in natural deduction or in
the sequent calculus. Indeed, the ability to modifiy the contents of nested sequents
and structures by applying inference rules generates new interactions between rule
instances, and in particular creates many situations of possible permutations, often
trivial but sometimes more complicated than in shallow formalisms. It is therefore
important to adapt the tools developped in the traditional setting, as we will often
rely on relations between instances, and permutations, in the study of nested proof
transformations.

Nested logical flow. The foundamental tool of our approach to the structure of
proofs, the flow-graphs, was designed in shallow formalisms to observe the effect
of inference rule instances on occurrences of formulas within a proof. However, in
nested proof systems, not only formulas are manipulated but also nested sequents
and structures. The situation is different in the two formalisms we presented:

• In nested sequents, the tools developped to study formulas in shallow systems
are still valid, but we might need to extend them to handle the objects, nested
sequents themselves, since they can be moved and manipulated as well.

• In the calculus of structures, inference rules often decompose and recompose
structures, so that we need to keep track of how a structure can be modified
by adapting the notions of particle and father.

In the setting of nested sequents, all definitions given previously for the notions
of particle, father and flow-graph are valid, and we can simply extend the definition
of particles to extend the whole toolset.

Definition 3.15. In a nested sequent system, a particle A or δ of a derivation D is an
occurrence of a formula or subformula A, or of a sequent δ, that appears in a sequent
within D.

The extension of the flow-graphs to handle sequent particles assumes that any
rule instance, in nested sequents, contains the information of which sequents in
the conclusion and premises correspond, through the use of indexes. This is usally
clear from the scheme given for an inference rule, and can be explicitly described
when needed — it is part of the definition of a system.

Example 3.16. Here are two inference rules of the classical symmetric system SKN,
annotated with indexes on sequents, where the connections induced by the definition
of flow-graphs on sequents are illustrated with arrows.

Note that we use a simplified notation where one index is given for a bunch of sequents
Γ with the purpose of denoting the several indexes used on sequents with Γ, which have
the expected indexes in the premise and conclusion.

60 1 — Standard and Nested Proof Theory60 1 — Standard and Nested Proof Theory60 1 — Standard and Nested Proof Theory

In the calculus of structures, the situation is more complicated. Indeed, in the
shallow formalisms, it often happens that formulas are composed or decomposed,
as in introduction and elimination rules in natural deduction, but a formula is
never modified in the sense that we would identify a formula containing different
subformulas, through indexes. If we consider for example the following instances
in LJ and KS respectively:

Γ1 ` A3 Γ1 ` (A4→ B2)5→e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ1 ` B2

(A1 ∨ B2)∧ C2
s −−−−−−−−−−−−−−−−−−−−−

A1 ∨ (B2 ∧ C3)

we can see that it would be problematic to apply the same policy of indexing to the
switch rule as to natural deduction rules, since in the perspective of deep inference,
A is » moved inside the conjunction B ∧ C « and thus the conjunction structures in
the premise and conclusion should be labelled with the same index. Moreover, the
use of a congruence complicates the assignment of indexes. First, we can transfer
directly the notion of particle by considering structures instead of formulas.

Definition 3.17. In a system in the calculus of structures, a particle A of a derivation
D is an occurrence of a structure A that appears in any context within D.

Then, the key to the definition of a notion of flow-graph adequate to the setting
of the calculus of structures is to manage the way indexes are assigned in a correct
way. In order to clarify the way inference rules should handle indexes following the
intuition, can state the policy for indexing in the calculus of structures as follows:

(i) Only representations of structures using a minimal amount of symbols in their
writing are considered for indexing.

(ii) A particle in a structure is assigned an index if it appears in any of the considered
representation of this structure.

(iii) If two particles with the same main connective have particles of same indexes on
one side this main connective, then they have the same index as well.

where the main connective of a structure is simply the one22 that appears at toplevel
in the syntax tree of the formulas represented by this structure. In the KS system,
the meaning of the first rule is that we will not consider the units that can be added
or removed by the congruence, and always use representations in the normal form
where negation has been pushed to the atoms. The second rule says in KS that in
a structure such as A1 ∧ B2 ∧ C3, we assign indexes to both particles (A1 ∧ B2)4 and
(B2 ∧ C3)5 and thus allow to handle cases where any of them is used. Finally, the
third rule identifies the recomposition of structures, so that the assigment obtained
for the switch in KS is the following:

((A1 ∨ B2)5 ∧ C2)4
s −−−−−−−−−−−−−−−−−−−−−−−−−−−
(A1 ∨ (B2 ∧ C3)4)5

22The toplevel connective can normally not be changed by an equation from the congruence, but if it
does then two particles should have corresponding sets of possible toplevel connectives to match.

3 — Deep Inference and Nested Proof Systems 613 — Deep Inference and Nested Proof Systems 613 — Deep Inference and Nested Proof Systems 61

and corresponds to the intuition that the disjunction A1 ∨− is moved towards the
B2 inside the conjunction. With such rules to define how indexes are assigned in an
inference rule instance to particles, the definitions given for the notions of father
and flow-graph can be transferred into the calculus of structures in a satisfying way.

Example 3.18. Here is a derivation in the SKS symmetric system for classical logic,
where structures are annotated with indexes to indicate how the flow-graph for this
derivation can be built. Not all indexes are indicated, but enough for the flow-graph
to be read off the derivation.

b3
i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−
(b3 ∧ (a1 ∨ a5)9)7

s −−−−−−−−−−−−−−−−−−−−−−−−−−
(a1 ∨ (b3 ∧ a5)7)9

c↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(a1 ∨ (b3 ∧ b3 ∧ a5)7)9

i↓ −−−
(a1 ∨ (((a2 ∨ a4)8 ∧ b3)6 ∧ b3 ∧ a5)7)9

s −−−
(a1 ∨ (((a2 ∧ b3)6 ∨ a4)8 ∧ b3 ∧ a5)7)9

s −−−
(a1 ∨ ((a2 ∧ b3)6 ∨ (a4 ∧ b3 ∧ a5)7)8)9

Active and passive sequents and structures. The principal application of the
flow-graph tool that we used in standard intuitionistic systems was the definition of
active and passive formulas in rule instances. In a nested proof system, this is also
an essential element, that we need to adapt. One of the benefits of nested sequents
is as usual that the definitions given in standard formalisms can be applied directly,
so that particles are considered active or passive in a rule instance in this setting
under the same conditions — and considering that the status of a sequent is either
» nested sequent « or » branch-sequent «. As a consequence, the notion of multiplicity
is directly imported from the standard setting.

In the calculus of structures, once again, the situation is more complicated,
because there is no notion of status, as in a formula that would be made accessible
by decomposing another formula. The characteristic point in any structure active
in a rule instance, outside being erased or duplicated, is that its contents have been
modified: not only reorganised, but extended or diminished by the introduction or
escape of a substructure. This is expressed in the following definition.

Definition 3.19. In a rule instance r in the calculus of structures, a particle A is said
to be passive if and only if it is the father or child of exactly one particle B, and there
is no particle in r that appears inside of A and outside of B, or outside of A and inside
of B — and A is said to be active in any other case.

Example 3.20. The two instances of inference rules of the SKS system shown below
illustrate the definition of active particles, by using the notation [i] for the index of an
active particle. On the left, all duplicated particles are active, while on the right the
moved particles are passive.

(((a[1] ∧ b[2])[4] ∨ (a1 ∧ b2)4)[6] ∨ C3)5
c↓ −−−

((a[1] ∧ b[2])[4] ∨ C3)5

((A1 ∨ B2)[5] ∧ C3)[4]
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(A1 ∨ (B2 ∧ C3)[4])[5]

62 1 — Standard and Nested Proof Theory62 1 — Standard and Nested Proof Theory62 1 — Standard and Nested Proof Theory

As in standard formalisms, active particles represent structures that have been
genuinely affected by the application of an inference rule on a structure. From this
we can import the definition of the multiplicity of a rule instance in the calculus of
structures, from the standard setting.

Permutations of rule instances. The status of particles in a given rule instance,
describing which particles are involved in an inference step and which are not, is an
important observation because it provides information on the possible interaction
between rule instances, and in particular their permutation. In particular, the local
nature of the rewriting performed by one rule instance on a structure allows to
make the same crucial observation on permutations than in shallow formalisms.

Proposition 3.21. In any derivation D, if two rule instances r1 and r2 appearing one
above the other share no active particle, then they can be trivially permuted.

This observation holds for the same reasons as in shallow formalisms such as the
sequent calculus: since a passive particle appears exactly once in the premise and
once in the conclusion, and is not essentially modified, any rewriting performed on
this particule above the premise could also be done below the conlusion.

The cases of trivial permutation in nested formalisms are quite important, in
the sense that they appear in any permutative transormation, since instances are
usually considered in some unspecified context, and a rule instance is therefore an
object that can always trivially permute with the other instances of its context. The
following permutation:

ξ{C}{D}
r2 −−−−−−−−−−−−−
ξ{C}{B}

r1 −−−−−−−−−−−−−
ξ{A}{B}

←→
ξ{C}{D}

r1 −−−−−−−−−−−−−
ξ{A}{D}

r2 −−−−−−−−−−−−
ξ{A}{B}

where ξ{−}{−} is some context with two separate holes, can usually be implicitly
treated in the description of permutative transformation because it preserves all
simple properties that one can reasonably define on nested rules and derivations
— except the height of the derivation above the instances r1 and r2, of course. This
case of permutation corresponds to permutations in the sequent calculus that are
either implicit — if the two instances are located in different branches — or are
also trivial, for example when two formulas in a sequent are decomposed without
branching, so that they can be decomposed in any order.

Then, another case of trivial permutation is specific to the nested setting, as it
happens when an instance superficially modifies a sequent or structure and another
modifies some part of it, nested deep inside. The permutation:

ξ{(B ∨ C)∧ D}
s −−−−−−−−−−−−−−−−−−−−−−
ξ{B ∨ (C ∧ D)}

r −−−−−−−−−−−−−−−−−−−−−−
ξ{A∨ (C ∧ D)}

←→
ξ{(B ∨ C)∧ D}

r −−−−−−−−−−−−−−−−−−−−−−
ξ{(A∨ C)∧ D}

s −−−−−−−−−−−−−−−−−−−−−−
ξ{A∨ (C ∧ D)}

in KS is a striking example, where the r instance flows through the switch instance
just as A is moved through the conjunction. In general, permutations in nested
systems, when they are not trivial, can induce complex situations and require highly
technical treatments [GS11a].

3 — Deep Inference and Nested Proof Systems 633 — Deep Inference and Nested Proof Systems 633 — Deep Inference and Nested Proof Systems 63

3.4 Normal Forms in Nested Proof Systems

The structure of proof objects, in the setting of nested sytems, is in general much
more complex than the structure of shallow proofs as described by formalisms such
as natural deduction or the sequent calculus. As we have seen, the use of structural
rules, even in natural deduction, or of left rules as in the sequent calculus, induces
the possibility of permuting rule instances in a given proof and raises the question
of possible normal forms with regards to these permutations. In nested formalisms,
the collapse of branching and the ability to apply inference rules inside formulas or
in nested sequents creates many new cases of permutations.

In the sequent calculus, it is possible to permute some rule instances to try to
have them only at particular positions in a proof. This can be mimicked in nested
sequents systems, but it often makes less sense than in formalisms using a two-level
presentation of logic and deduction. Moreover, the permutation of rule instances
might lead to the complete erasure of some instances from a given proof. In order
to understand what kind of normal forms can be useful, one can consider the two
following categories:

• A normal form can be defined through restrictions on the possible locations of
instances of an inference rule in a proof, by stating that any proof should be
divided into portions, each using only a subset of inference rules, or defining
in which context an inference rule can be applied.

• A normal form can be defined through a restriction on the set of inference
rules used in a proof system, by stating for example that a rule of this system
is admissible for the other rules, and that proofs not using it are considered
as the normal ones.

In each case, the important point is that the restrictions imposed on proof does
not break the completeness of the system. The goal of a normal form is indeed to
define some subset of the set of all possible proofs in a system, which is as small as
possible, or respects some good properties, but is representative in the sense that it
is logically complete with respect to the unrestricted system. The most prominent
examples of these two categories of normal forms are probably, in the framework of
the sequent calculus, focused proofs [And92] and cut-free proofs. In the setting of
deep inference, these categories are illustrated by several normal forms, defined in
various systems. Since the two formalisms of the calculus of structures and nested
sequents are similar on this issue, and the question has been studied mainly in the
former, we will only describe normal forms in the calculus of structures.

Decomposition. The ability to apply an inference rule deep inside a structure
allows for more permutations in the calculus of structures as in shallow formalisms,
so that normal forms based on the separation of different fragments of a system,
within proofs, can be defined rather easily in comparison to the shallow setting. In
the classical system KS for example, where contraction can be reduced to its atomic
form by introducing the medial rule m, it is possible to freely permute down atomic
contraction instances [Brü06c].

64 1 — Standard and Nested Proof Theory64 1 — Standard and Nested Proof Theory64 1 — Standard and Nested Proof Theory

In this system, given a proof P of some structure A, it is possible to transform
it, by permutations only, into a proof P ′ where instances of the atomic contraction
ac↓ are all located at the bottom:

−
KS

A −→

−
KS\ac↓

B
{ac↓}

A

Several decomposition theorems can be proved in the calculus of structures, and
some have been stated in systems for classical logic [Brü03] and systems for linear
logic [Str03a], but this is in general a natural question in many systems. In a given
system S with a set of inference rules {r1, · · · , rn}, one can for example define three
subsets of rules R1 = {r1, · · · , ri}, R2 = {ri+1, · · · , r j} and R3 = {r j+1, · · · , rn}, and
possibly show the completeness of the set of proofs in S which have the following
shape:

−
R3

C
R2

B
R1

A

For example, in the variant of the classical system SKS where the medial m is
introduced and atomic rules ai↓, aw↓ and ac↓ are used instead of their non-atomic
versions — and the same in the up fragment —, almost all rules can be separated
from the others [Brü03]. The subsets of rules used in this decomposition theorem
are {ac↓}, {aw↓}, {ai↑}, {s,m}, {ai↓}, {aw↑} and {ac↑}, used from bottom to top. A
similar result has been obtained in linear logic without additives [GS11a].

Cut elimination. On the side of normal forms defined by the restriction on the
set of rules used in proofs, cut elimination is the most important transformation,
which has been studied in detail in the calculus of structures. In classical logic, the
proof [Brü03] by Brünnler for KS∪ {i↑} is surprisingly simple. It is based on an idea
similar to the substitutive method used for detour elimination in the intuitionistic
natural deduction system NJ. It relies on several particularities of the KS system.
First, the cut rule can be made atomic, since compound formulas can be built from
atoms by switch instances in the configuration that would result from a general cut.
Then, it uses the fact that cuts can be restricted to apply only at the outer level of
structures, since switches can be used to move the cut structures inside the context
where the cut would have been used. The first step is the extraction of two objects
from one given proof:

−
P1

B ∨ a ←−

−
P

B ∨ (a ∧ a)
ai↑ −−−−−−−−−−−−−−−−

B
−→

−
P2

B ∨ a

3 — Deep Inference and Nested Proof Systems 653 — Deep Inference and Nested Proof Systems 653 — Deep Inference and Nested Proof Systems 65

where the objects P1 and P2 are obtained by removing a and a from the proof P ,
respectively. However, the object P1 is actually not a proof: it is broken in some
identity instances, the ones involving the atom a. The second step is to fix P1 by
substituting copies of P2 in place of these broken identity instances, and replace
a by B throughout P1. Finally, using a contraction, the resulting proof of B ∨ B is
turned into a proof of B where the considered cut has been removed. This method
can be used immediatly in the symmetric SKS system, because the cut rule ai↑ can
simulate i↑ which allows to encode all other rules of the up fragment, using identity
and switch:

ξ{A}
r↑ −−−−−−−
ξ{B}

−→

ξ{A}
i↓ −−−−−−−−−−−−−−−−−−−−−−−−
ξ{A∧ (B ∨¬B)}

s −−−−−−−−−−−−−−−−−−−−−−−−
ξ{B ∨ (A∧¬B)}

r↓ −−−−−−−−−−−−−−−−−−−−−−−−
ξ{B ∨ (A∧¬A)}

i↑ −−−−−−−−−−−−−−−−−−−−−−−−
ξ{B}

In the system LS for linear logic, the situation is more complicated and another
technique was developped to prove the cut elimination result internally. It is based
on the splitting lemma [GS09], which states that interleaved parts of a proof can
be extracted, in such a way that a transformation similar to the one used in KS,
involving the plugging of proofs into another one, is made possible. Notice that no
proof of cut elimination based on permutations has been proposed in these systems,
because the complex interactions between rule instances in a nested setting makes
it highly difficult to design a procedure for which a measure can be found.

Symmetric normalisation. One particular feature of the calculus of structures
is the natural approach it has to open derivations, which are actually the important
objects in this theory, rather than complete proofs — a proof is not a symmetric
object, while symmetry is the most important principle underlying the techniques
developped in this setting. However, the traditional view of cut elimination is the
possibility of removing all cuts from a proof, but this is only possible for complete
proofs. In the nested formalisms, it is possible to define a generalisation of the
cut elimination result which is centered on derivations, and where the use of the
whole up fragment, rather than just the cut rule, is crucial. For example, in the
SKS system, the following transformation can be performed [Brü06b]:

A
SKS

B
−→

A
KS↑

C
KS↓

B

where KS↓ and KS↑ are respectively the down and up fragment of the SKS system,
and this is indeed a generalisation of cut elimination in the sense that, if the original
derivation is a proof, then its premise is > and because of the shape of up rules,
C must be logically equivalent to >, so that we have in the end a cut-free proof of
B, in the KS system. This notion of normal form should be considered as the one
to use in a symmetric formalism such as the calculus of structures, and it is made
possible by the dualisation of all inference rules from the down fragment.

66 1 — Standard and Nested Proof Theory66 1 — Standard and Nested Proof Theory66 1 — Standard and Nested Proof Theory

Chapter 2

Logical Foundations
for Computation

This chapter is concerned with the use of logical systems, and in particular proof
systems as manipulated in structural proof theory, as a cornerstone in the design
of sound principles for computation. Indeed, the theoretical modelisation of any
computational device is a higly complex task where any subtle error can have many
consequences, especially if this model is Turing-complete. In the following chapters,
the two main approaches to logical foundations for computation are considered:

• In the » proofs-as-programs « paradigm, a correspondence is established from
the syntax between the proofs of a given logical system and the programs of a
computational model — usually based on rewriting —, while at the dynamic
level, a correspondence is established between a process of normalisation of
proof objects and the execution mechanism defined for programs.

• In the » proof-search-as-computation « paradigm, a more abstract viewpoint
is adopted, where a formula is seen as declarative program describing a task,
while the process of building a proof of this formula in a given logical system
is identified as the computation that eventually produces the result described
by the formula.

Following the first methodology, the most prominent example of the connection
between proofs and programs is the Curry-Howard correspondence, which relates
proofs in intuitionistic natural deduction and functional programs as described in
the λ-calculus. We recall here the construction of this correspondence, through the
use of different logical systems as type systems for variants of the λ-calculus. Based
on the description of systems for intuitionistic logic given in Chapter 1, we show
how the refinement of the transformation used for proof normalisation induces a
refinement of the operational mechanisms associated with the λ-calculus, from the
meta-level specification of substitution to the fine-grained propagation of explicit
substitutions. The two sides of the correspondence are emphasised by a separation
between the study of the properties of untyped λ-calculi and the results obtained
by restricting the set of considered terms to well-typed ones.

68 2 — Logical Foundations for Computation68 2 — Logical Foundations for Computation68 2 — Logical Foundations for Computation

Beyond the original description of the simply typed λ-terms as a well-behaved
subset of all λ-terms, the correspondence between intuitionistic proofs and various
λ-calculi has been refined in two steps. First, introducing a cut rule to perform the
normalisation of proofs by local rewriting is equivalent to the extension of the pure
λ-calculus with an internal notion of substitution, with a dedicated syntax inside
the language, called explicit substitution. Then, decomposing the inference rules of
natural deduction to have separate structural rules leads to a more precise handling
of the erasures and duplications required by the substitution process. When rules
are designed following the introduction/elimination scheme of natural deduction,
the correspondence involves a standard variant of the λ-calculus. The figure below
illustrates the different steps of explicitation in intuitionistic systems and λ-calculi.

natural deduction with cut

natural deduction with cut
and structural rules

natural deduction

ex
p
li

ci
t

co
n

tr
o
l

o
f

re
d

u
ct

io
n

additive sequent calculus

multiplicative sequent calculus

...

...

implicit substitution

explicit substitution

sequential application

The second step of refinement, shown in the bottom part of the figure, is the use
of the sequent calculus, where inference rules are designed following the left/right
scheme and the correspondence can be established with λ-calculi using a sequential
form of application. This correspondence has been less studied than its equivalent
in natural deduction, and there is no » standard « among all of the different calculi
suggested to represent sequent proofs. We present one correspondence and discuss
the operational properties of what we call calculi with pure explicit substitutions. As
before, the use of structural rules induces refined calculi.

Following the second methodology, the development of programming languages
where formulas encode the programs has been most often based on the resolution
technique, which does not induce the same theoretical clarity than the approaches
based on structural proof theory. After the introduction of uniform proofs as a mean
of designing logic programming languages in a rigorous way, the definition of the
focusing normal form in linear logic has been instrumental in the development of
the approach based on the sequent calculus. We recall in this chapter the basics
of the sequent calculus description of linear logic, and its impact on the studies of
the computational aspects of logic, and then describe the use of proof search as a
highly abstract programming language. Finally, we also recall the definition of the
focusing technique for linear logic, that will be the starting point of a generalisation
of normal forms following the principles of polarities in another chapter. It should
also be noticed that proof search is more general than functional computation since
it allows not only to compute but also to reason about computation, as for example
in the setting of LF and its variants.

1 — Proof Normalisation as Functional Computation 691 — Proof Normalisation as Functional Computation 691 — Proof Normalisation as Functional Computation 69

1 Proof Normalisation as Functional Computation

The development of the λ-calculus as a computational model, which offers a much
more » mathematical « approach to computer programs than other models closer to
real-world machines, has lead to the development of a variety of new programming
languages, such as those from the family of Lisp [McC60], where the primary tool
for writing programs was to define functions and apply them to functions, rather
than update values in registers and perform tests and loops. However, while some
λ-terms may be well-behaved, there is no syntactic distinction a priori between a
program which computes a result, and a program that will loop forever and never
give back any result. A safe approach to programming would thus require to define
a subset of λ-terms that are proved to be well-behaved, thus returning a result after
a finite time, and use only those terms as programs.

An important step in the development of this functional programming paradigm
was the introduction of type systems, allowing to ensure that a functional program
terminates and describing the programs it can safely interact with. On a theoretical
level, this approach originates in the observation by Howard, in 19691, that λ-terms
are isomorphic to intuitionistic proofs in natural deduction [How80], and that the
reduction of λ-terms corresponds to the normalisation of intuitionistic proofs. This
is the basic principle underlying the typed functional programming paradigm: only
a subset of all possible λ-terms can be used as valid programs, but these terms are
exactly the ones in correspondence with valid proofs. Then, a normalisation result
obtained on the logical side ensures the termination of β-reduction, seen as a proof
transformation. Moreover, each valid term is assigned a type, which is actually a
logical formula — in the case of intuitionistic logic with only implication, this is
called a simple type — and can be used to determine how the term can be used as a
function or as an argument to another function. The original setting of the simply
typed λ-calculus involves the following correspondences:

Logic Computation

intuitionistic formula A simple type A

proof P of A in NJ closed λ-term t of type A

detour on B in P β-redex (λx .u) v in t, with v of type B

detour elimination in P strong β-reduction of t

and this particular correspondence, restricted to simple terms and to intuitionistic
proofs in natural deduction, is called the Curry-Howard correspondence. We present
now in more details this correspondence, and describe the basic type system, that
can be extended to handle larger subsets of λ-terms or extensions of the λ-calculus.

1The original manuscript of Howard dates from 1969, but this was only published in 1980, and this
was based on an earlier observation by Curry concerning the link between combinators and the axioms
of intuitionistic logic [Cur34].

70 2 — Logical Foundations for Computation70 2 — Logical Foundations for Computation70 2 — Logical Foundations for Computation

1.1 Natural Deduction and Typed λ-terms

In order to establish a correspondence between intuitionistic natural deduction and
the λ-calculus, we need to consider types for λ-terms. Such a type is just a logical
formula, and in the most basic case it can only be either an atom or an implication,
in which case it is called a simple type. The intended interpretation of simple types
is the following:

• An atom a is the type of a constant2, or of a variable on which no information
is available, so that it is not known if it is used as function or argument — it
is possible to use only one atom, which is traditionally denoted by σ.

• An implication A→ B is the type of a function which takes an argument of
type A and produces a result of type B, and assigning such a type to a function
means that it is considered » unsafe « to use it on an argument of another type
than A, in the sense that it might not produce the expected result.

The idea there is to provide some information on the behaviour of a functional
program, seen as a λ-term. For example, any term of type A→ B→ A is a function
of two arguments returning a result of the same type as its first argument — and if
A and B have nothing in common, it is likely that this function » forgets « about its
second argument and returns a result based on its first argument only, as the term
λx .λy.x for example. In order to extract this information from a given λ-term, it is
necessary to inspect the syntactic structure of this term: this is the purpose of type
systems, to validate or build a judgement stating that some λ-term can be assigned
a certain type, under a set of assumptions on the type of its variables.

Definition 1.1. A typing judgement is denoted by Γ ` t : A and defined as the triple
formed of a multiset Γ of typing assumptions, a λ-term t and a simple type A.

In this definition, a typing assumption is the pair of a variable x and any type B,
which is denoted by x : B and means that we assume x to be of type B. The syntax
for judgements is derived from the syntax of sequents, and multisets of assumptions
will therefore be denoted by letters such as Γ, ∆ or Φ. A type system is a way of
defining a procedure to inspect the structure of a term and establish its behaviour
as a certain type. This is usually done by providing rules of the shape of inference
rules, each of them asserting that a term using a certain construct at toplevel can be
assigned a type under the hypothesis that its subterms can be typed, as expressed
in the premises of the rule, so that inspection is done inductively.

Note that there are two possible uses for a type system: either we want to find
out what type can be assigned to a given term, and this is type inference — a key
element in programming languages where type annotations are not required, such
as ML —, or we want to verify that a term fits a given type, and this is type checking.
Although the standard presentation is neutral with regard to this question, this can
be emphasized within the rules, as done in bi-directional typing [PT98].

2If we add a set of constants to the λ-calculus, which is not so useful on a theoretical level but does
correspond to a normal practice in implementations; for example, one can add infinitely many constants
1,2, . . . and given them all the type int, to have a native support for integers in the calculus, although
this would not allow to have operations on integers inside the λ-calculus.

1 — Proof Normalisation as Functional Computation 711 — Proof Normalisation as Functional Computation 711 — Proof Normalisation as Functional Computation 71

var −−−−−−−−−−−−−−−−−−−−
Γ, x : A ` x : A

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

(c constant of type A)
con −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` c : A

Γ ` u : A Γ ` t : A→ B
app −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t u : B

Figure 1: Type system S for the λ-calculus with constants

Simple types. The most basic type system for the λ-calculus is based on simple
types, using only atoms and the implication, and it can establish that a given term
can be assigned a certain type, while ensuring that applications within the term are
valid, in the sense that they respect the types of the subterms used as function and
argument respectively. This system, that we will call here S, is defined by the typing
rules shown in Figure 1, and it includes a rule for constants, for the sake of clarity,
but this rule is not required if we only use pure λ-terms. This defines a subset of all
λ-terms called the simply typed λ-calculus, which is the canonical representant of
typed calculi used in the literature [Rey98], although more elaborate systems are
used in practice. The rules can be described as follows:

• The var rule says that under a set of assumptions including the fact that the
variable x has type A, one can assign to x the type A.

• The con rule says that under any set of assumptions, a constant c of type A
can be assigned type A.

• The lam rule says that under any set of assumptions Γ, one can assign to the
term λx .t the type A→ B, provided that t can be assigned the type B under
the set of assumptions Γ∪ {x : A}.

• the app rule says that under a set of assumptions Γ, the application t u can
be assigned the term B, provided that u can be assigned some type A, and the
term t can be typed as a function of type A→ B.

As the shape of its rules suggests, the S system is used the same way as a logical
proof system is used for proof search, except that the inference process is guided
by the term to be typed — it is syntax-directed because there is always only one
rule to apply, depending on the given term only. When it is used for type-checking,
the situation is even simpler as it is just a matter of verifying that terms and types
match through the rules. Following the similarity to proof systems, we call a typing
derivation an object build from the rules of the system S, and the equivalent of a
proof would be a closed typing derivation, where no subterm is left untyped. Thus,
a typing judgement Γ ` t : A is derivable in S when one can build a closed typing
derivation with this judgement as a conclusion.

72 2 — Logical Foundations for Computation72 2 — Logical Foundations for Computation72 2 — Logical Foundations for Computation

Definition 1.2. A λ-term t is said to have type A when ` t : A is derivable in S.

When a typing judgement Γ ` t : A is derivable, we simply write Γ ` t : A in S,
and the fact that t has type A in S can thus be written ` t :A. Now, there are several
important properties of the S system to describe. The first one is related to its use
as a type inference engine, which is given a term t and produces some type if t is a
valid simply typed term, and fails if t is outside of this subset. In order to use this,
type inference must terminate, either returning a type or through a failure, as can
be proved by structural induction on a given term.

Proposition 1.3. The typing process in S is terminating.

As mentioned in the proof of termination, the typing process relies on the ability
to » rename « atoms in a formula, by substituting all occurrences of an atom a by
occurrences of another atom b in the formula. Indeed, a unique λ-term can have
several types3. For example, the identity term λx .x can be assigned the type a→ a,
or b → b, or any other type of the same shape A→ A. But we can prove that all
types assigned to a term t in the system S are equivalent by renaming, and are thus
considered as one type — this standard result is called uniqueness of typing, and is
proved by induction on structure of the term.

Proposition 1.4. For any typing environment Γ and λ-term t, there is at most one
type A such that Γ ` t : A in S, up to renaming of base types in A.

The syntactic presentation used in this system allows to make the observation of
Howard obvious: if λ-terms are erased from a typing rule, what we obtain is a valid
inference rule of NJ. Therefore, there is a bijective correspondence between proofs
of NJ and closed typing derivations. The last observation missing to establish the
complete correspondence on the static level is that derivations are isomorphic to
terms. This is a consequence of the structure of natural deduction proofs, where
rule instances cannot be permuted.

Proposition 1.5. For any λ-term t of type A, there is exactly one derivation of ` t :A.

This S system can be extended in several ways. For example, the introduction
of a conjunction in the logic allows to type terms where one can construct pairs of
terms (u, v), and decompose pairs with the projection operators fst and snd. The
typing rules for this extension are:

Γ ` u : A Γ ` v : B
tup −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` (u, v) : A∧ B

Γ ` u : A∧ B
fst −−−−−−−−−−−−−−−−−−−
Γ ` fst u : A

Γ ` v : A∧ B
snd −−−−−−−−−−−−−−−−−−−−
Γ ` snd v : B

Finally, beyond simple types, the introduction of quantifiers in the logic allows
to handle polymorphism [GLT89], which makes explicit the fact that a function can
be applied on different kind of arguments, provided they have a common shape
that this function exploits. Quantification at second-order in NJ corresponds to the
powerful System F, introduced by Girard and Reynolds [Gir71, Rey74].

3If pure λ-terms are considered, then several types can be assigned, and this is called the Curry-style
presentation of the simply typed λ-calculus, as opposed to the Church-style presentation where type
annotations are introduced in the terms, so that λxA.x has type A→ A while λxB .x has type B→ B.

1 — Proof Normalisation as Functional Computation 731 — Proof Normalisation as Functional Computation 731 — Proof Normalisation as Functional Computation 73

1.2 Detour Elimination as β-reduction

Now that we have described the syntactic correspondence between proofs in the NJ
natural deduction and simply typed λ-terms, we can show how this correspondence
extends to the dynamics of these objects. On the logical side, the dynamics of proofs
is formed by the procedure of detour elimination, and a detour can be considered
through the correspondence between proofs and typing derivations as follows:

��
��

��
??????P1

Γ ` A

��
��

��
�???????

P2

Γ, A` B
→i −−−−−−−−−−−−−−−Γ ` A→ B

→e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ ` B

≡
��

��
��

??????u

Γ ` u : A

��
��

��
�???????

t

Γ, x : A` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

app −−−
Γ ` (λx .t) u : B

The elimination of detours in a proof in NJ, as described in Chapter 1, consists
in the replacement of all axioms in P2 involving the A with the proof P1 of A. This
can in turn be observed as a transformation of typing derivations within the S type
system, and by equivalence of closed derivations and λ-terms, as a transformation
of λ-terms. Since the variables correspond to instances of the var typing rule, and
therefore to axiom instances, this replacement can be read as the replacement of
all occurrences of x by the term u, as illustrated below:

��
��

��
??????u

Γ ` u : A

��
��

��
�???????

t

Γ, x : A` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

app −−−
Γ ` (λx .t) u : B

−→

��
��

��
��

��
�???????????

t{u/x}

Γ ` t{u/x} : B

The elimination of one detour in a proof in NJ thus corresponds to one single
β-reduction step in a λ-term, where a function λx .t is applied to its argument u
by replacing all occurrences of the formal argument x in the body t of the function
by the term u, which is written (λx .t) u −→β t{u/x}. However, the result stating
that all the detours can be eliminated from a given proof in NJ does not necessarily
ensures that any reduction strategy will be able to remove all redexes from a term,
but it provides a weaker result, the existence of such a strategy.

Theorem 1.6. Given a simply typed λ-term t, there exists a terminating strategy that
allows to compute the strong β-normal form of t.

Proof. By detour elimination in NJ. Indeed, since it was proved that all the detours
can be eliminated from any given proof in NJ, through the correspondence shown
above all β-redexes can be eliminated from the simply typed λ-term t. The strategy
depends on the proof of detour elimination: from the proof given in Chapter 1, the
strategy extracted consists in reducing first the β-redexes (λx .u) v such that u and
v are already in normal form, then reducing newly created redexes, and so on.

74 2 — Logical Foundations for Computation74 2 — Logical Foundations for Computation74 2 — Logical Foundations for Computation

The more general result that we would like to obtain is the guarantee that the
complete reduction of a typeable λ-term always produces its normal form, rather
than looping forever if some » wrong choice « of redex was made at some point in the
process. This is called strong normalisation, by opposition to the weak normalisation
result that we have proved through the correspondence between detour elimination
and β-reduction, and this amounts to the termination of a subset of the calculus,
obtained by restricting terms to the simply typed ones.

Proposition 1.7. Strong β-reduction terminates on simply typed λ-terms.

Unfortunately, this theorem is quite complicated to prove. There is no direct,
simple proof, and the usual way of presenting this is to observe that it is a particular
case of the strong normalisation result for System F — the polymorphic λ-calculus,
a powerful extension of the standard λ-calculus —, which was proved by semantic
means, using a the technique of » reducibility candidates «, due to Girard. There are
other proofs, such as the one by Gandy [Gan80], but they rely on a conceptually
complex interpretation of typeis rather than the assignement of a measure to typed
terms, that would decrease at each β-reduction step. From the logical viewpoint,
a generalisation of the weak normalisation result shown above would require the
definition of a detour elimination procedure in which any detour can be picked and
reduced, at any step, but the measure used to control the induction would probably
be quite complex.

In terms of functional programming, the normalisation result is at the heart of
the guarantees offered by the proofs-as-programs methodology. Indeed, the point of
introducing type systems built based on logical systems into real compilers is that
» well-typed terms never go wrong «, which means in a purely applicative language
that no program can pass type-checking and enter an infinite loop when executed.

The extensions made to the basic S type system follow the same scheme as the
basic detour elimination correspondence. For example, the use of the pair syntax,
as shown previously, creates a new situation similar to a usual detour, but involving
a pair of conjunction introduction and elimination instances. The reduction rules
on pairs:

fst (u, v) −→π1
u

snd (u, v) −→π2
v

correspond in this situation to the reduction of a conjunctive detour, when one of
the elimination rules is used below an introduction and allows to choose one of the
branches, to be kept.

��
��

��
??????u

Γ ` u : A
��

��
��

??????v

Γ ` v : B
app −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` (u, v) : A∧ B
app −−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` fst (u, v) : A

−→
��

��
��

??????u

Γ ` u : A

The normalisation result in this setting ensures that any typed term will reduce
properly, and not be blocked in some invalid situation, for example where the fst
operator would be applied on a function rather than a pair.

2 — Cut Elimination and Explicit Substitutions 752 — Cut Elimination and Explicit Substitutions 752 — Cut Elimination and Explicit Substitutions 75

2 Cut Elimination and Explicit Substitutions

As mentioned in Chapter 1, the substitutive detour elimination procedure is not so
informative, leaving the whole substitution process unspecified. This situation is
improved by the use of the permutative procedure, where substitution is explicitly
described in terms of cut instances permuted upwards until they meet a matching
instance. As suggested by the vocabulary we used, this is equivalent, through the
principles of the Curry-Howard correspondence, to the use of explicit substitutions
as an implementation of β-reduction in the λ-calculus. Indeed, the cut rule is the
embodiment of a » detour « and its use can be formally identified to the use of an
explicit substitution, both in standard λ-calculi and in pure explicit substitutions
calculi — that is, in natural deduction and in the sequent calculus, respectively. In
terms of typing, the cut rule is used as the following rule:

Γ ` A Γ, A` B
cut −−−−−−−−−−−−−−−−−−−−−−

Γ ` B
≡

Γ ` u : A Γ, x : A ` t : B
sub −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t[x ← u] : B

and all variants of the cut rule correspond to different ways of handling an explicit
substitution, for example regarding its duplication, in the mutlitplicative or in the
additive presentation.

2.1 The λ-calculus with Explicit Substitutions

The standard variants of the λ-calculus using explicit substitutions are conservative
extensions that refine the standard λ-calculus, in the sense that they allow to deal
with usual terms but introduce a new syntax for terms that are intermediate steps in
the computation. Thus, we start as usual with a countable set of variables, denoted
by small latin letters such as x , y and z.

Definition 2.1. The language of standard λ-calculi with explicit substitutions is an
extension of the language of the λ-calculus, defined by the following grammar:

t, u ::= x | λx .t | t u | t[x ← u]

where the object [x ← u] is a binder for the variable x in a term t.

Such λ-calculi of explicit substitutions have been introduced [ACCL90] in the
setting of the name-free λ-calculus, using deBruijn indices [dB72] instead of names,
because of their relation to the implementation of functional languages or theorem
provers. However, they have been adapted to use names, which are more readable
for humans than indices — many variants can be found in the literature4. For the
sake of simplicity, we will only consider calculi with names.

The notion of binding is central in the λ-calculus and all of its extensions. Here,
it is extended so that explicit substitutions are also binders for variables, in addition
to abstractions. This should be understood as the case where the actual argument
of the function has been attached to the name that was the formal argument, while

4An overview of the jungle of λ-calculi with explicit substitutions can be found in [Kes07].

76 2 — Logical Foundations for Computation76 2 — Logical Foundations for Computation76 2 — Logical Foundations for Computation

the actual argument is still unknown in the case of an abstraction not yet coupled
with an application. The explicit substitution » object « is meant to internalise the
standard notion of substitution, which is defined as usual in the λ-calculus.

Definition 2.2. Given terms t and u, the implicit substitution of u for x in t, denoted
by t{u/x}, is t where all occurrences of x have been simultaneously replaced with u.

The replacement needs to be simultaneous because the variable x could appear
inside u itself, so that incremental replacement could enter a loop. Notice in general
that this definition is problematic when u contains variable names that are also used
in t but do not refer to the same object, because they are introduced by different
binders, since it would result in a term where these initially distinct variables are
identified — this is called a capture of variable. It is possible to refine the definition
of substitution into one of capture-avoiding substitution, but it is also sufficient to
ensure that different names will be used for different variables.

Definition 2.3. Given a term t, the set of its free variables, denoted by fv(t), and the
set of its bound variables, denoted by bv(t), are defined as follows:

fv(x) = {x} bv(x) = ;
fv(λx .t) = fv(t) \ {x} bv(λx .t) = bv(t)∪ {x}

fv(t u) = fv(t)∪ fv(u) bv(t u) = bv(t)∪ bv(u)
fv(t[x ← u]) = (fv(t) \ {x})∪ fv(u) bv(t[x ← u]) = bv(t)∪ {x} ∪ bv(u)

Moreover, we write x ∈ t to denote the fact that a variable x appears in some
term t. A complete functional program is not supposed to use unknown variables,
and it is often required to work only with closed terms, which are terms t such that
fv(t)= ;, or equivalently such that if x ∈ t, then x ∈ bv(t).

Now, we can define an equational theory on terms which allows to solve the
problem of clashes among variable names by renaming them when needed. Given
a term, we will build an equivalent term where some variables have been renamed
using fresh names and thus cannot be captured during substitution.

Definition 2.4. The congruence denoted by≡α and called α-conversion is the smallest
reflexive, symmetric and transitive relation such that:

λx .t ≡α λy.u if t ≡α v{x/y}, where y 6∈ bv(v) and u≡α v
t u ≡α s v if t ≡α s and u≡α v

t[x ← u] ≡α s[y ← v] if t ≡α r{x/y} and u≡α v, where y 6∈ bv(r) and s ≡α r

In the following, we will always consider terms modulo α-conversion so that any
variable is bound at most once in any given term, and new names introduced are
always fresh — an assumption often called Barendregt’s convention [Bar84]. This
simplifies notations by avoiding some side conditions that are thus made implicit
whenever the situation is not ambiguous — for example, if the names x and y are
used in a term, they should be considered distinct. Another consequence of this
convention is that free variables and bound variables are always disjoint sets, and
we can refine the statement x ∈ t by considering |t|x , the number of occurrences
of some variable x in a term t.

2 — Cut Elimination and Explicit Substitutions 772 — Cut Elimination and Explicit Substitutions 772 — Cut Elimination and Explicit Substitutions 77

Remark 2.5. The treatement of terms modulo renaming is necessary only because we
use names to represent variables, rather than other means such as de Bruijn indices,
where variables are identified through the structure of the term itself [dB72].

In order to provide an operational semantics for this language, a set of reduction
rules must be defined, and we expect this reduction system to be able to simulate
somehow the β-reduction rule, since the goal is in the end to refine the evaluation
process of functional programs, seen as λ-terms. There are many different ways of
achieving this, although the basic ideas are always the same, the difference being
a matter of refinement. We will describe here some of the standard solutions, from
the most basic ones to more elaborate solutions where erasure and duplication of
substitutions are handled with care. All the λ-calculi presented in this section have
been described in the literature, often several times under a form or another, with
names or without, and are described in different surveys [Les94, Kes07].

We are interested in strong reduction, in the sense that reduction rules can be
applied anywhere in a term, and in particular under abstractions — that is, within
the body of a function. It is more complex than weak reduction, but is necessary in
many cases, for example when building proof assistants, where equality requires to
fully reduce the two terms to be compared. In all the reduction systems presented
below, we assume that the following basic set of rules is implicitly used:

λx .t −→ λx .v if t −→ v
t u −→ v u if t −→ v
t u −→ t v if u−→ v

t[x ← u] −→ v[x ← u] if t −→ v
t[x ← u] −→ t[x ← v] if u−→ v

(3)

which is equivalent to say that reduction rules can be applied anywhere inside the
term. The treatment of weak reduction, which is used for evaluation in functional
programming languages — where the body of a function is not reduced in advance,
except for some optimisations —, only requires to remove the first rule.

Basic implementation. The most basic system of explicit substitutions is the
naïve approach where substitutions are pushed inside the term and duplicated each
time there are two subterms, until they meet a variable. In this situation, there are
two possible cases: either this variable is the one bound by the substitution, and
a direct replacement is performed, or it is not and the substitution is erased. This
system is known as the λx-calculus [BR95], for which the operational behaviour is
defined by the reduction rules given in Figure 2 — actually, the contextual closure
of these rules, or equivalently these rules extended with the basic system that was
shown in (3). This reduction system will denoted by −→λx from now on.

This calculus is only using explicit substitutions in a weak way, in the sense that
such substitutions cannot be composed. This implies that substitutions cannot be
carried out independently, so that the reduction mechanism defined there closely
resembles plain β-reduction, extended with the complete definition of what the
substitution operation means — that is, how to replace all occurrences of a variable
with a term. This restriction is the key to prove in a simple way that λx has good
properties with respect to the λ-calculus.

78 2 — Logical Foundations for Computation78 2 — Logical Foundations for Computation78 2 — Logical Foundations for Computation

(λx .t) u −→B t[x ← u]
x[x ← u] −→var u
y[x ← u] −→nov y

(λy.t)[x ← u] −→lam λy.t[x ← u]
(t v)[x ← u] −→app t[x ← u] v[x ← u]

Figure 2: Reduction rules of the λx-calculus

Relation to λ. A basic, important property is the ability of a calculus to simulate
the β-reduction rule of the λ-calculus. Indeed, calculi with explicit substitutions
have been introduced to refine the operational behaviour of the λ-calculus, and
in the end the goal is to implement functional programming languages, which are
described informally in terms of functions evaluated by β-reduction. This requires
to have a translation ¹·ºλx from λ-terms to terms with explicit substitutions, but in
the case of the standard explicit syntax, as used in λx, this translation is actually
the identity — the syntax here is a direct extension of the usual λ-terms syntax.

The standard technique to prove this simulation result is to show that the notion
of explicit substitution defined by the reduction rules corresponds exactly to the
usual meta-substitution operation — the so-called full composition result. However,
the lack of composition for substitutions in λx disallows to prove this in general,
but it can be proved for substitutions applied on pure terms, those λx-terms that
happen to be λ-terms, because they use no explicit substitution.

Proposition 2.6. For any given λ-terms t and u, we have t[x ← u]−→∗λx t{u/x}.

Of course, this can work in such a simple way only because any λ-term is also a
valid term in λx, and this implies that the simulation here is not as strong a result
as it is in a system with composition. The idea of simulation is to turn a β-redex
into an explicit substitution and then carry out completely this substitution, before
treating any other β-redex.

Proposition 2.7 (Simulation in λx). Given t and u, if t −→β u then t −→∗λx u.

The other way around, we need to make sure that the result of this simulation is
meaningful, by proving that reductions performed in the λx-calculus always reflect
parts of reductions in the λ-calculus. For this, we need another translation.

Definition 2.8. The translation ¹·ºxλ from λx-terms into λ-terms is defined as:

¹xºxλ = x ¹t uºxλ = ¹tºxλ ¹uºxλ
¹λx .tºxλ = λx .¹tºxλ ¹t[x ← u]ºxλ = ¹tºxλ{¹uºxλ/x}

The idea is that we can establish a correspondence, in both directions, between
reductions in the standard λ-calculus and in our calculus with explicit substitution.

Proposition 2.9 (Projection of λx). For t, u, if t −→λx u then ¹tºxλ −→
∗
β ¹uºxλ.

2 — Cut Elimination and Explicit Substitutions 792 — Cut Elimination and Explicit Substitutions 792 — Cut Elimination and Explicit Substitutions 79

These two results of simulation and projection, together, ensure that we defined
a reasonable set of reduction rules, at least with respect to its goal of implementing
the λ-calculus with a finer-grained operational behaviour.

Confluence. Another important property one can expect from a calculus where
the operational behaviour is expressed by reduction rules is confluence — or even
its generalisation, called the Church-Rosser property [CR36]—, which states that if
a term t reduces to two different terms u and v, then these terms can themselves
be reduced to a unique term s, as illustrated by the following diagram:

t

u v (confluence)

s
In such a diagram, we denote terms with points and reductions with arrows, where
a single headed arrow indicates one-step reduction while a double headed arrow
indicates several steps of reductions. A solid arrow represents an assumption while
a dotted one represents the conclusion of a diagramatic statement. Also, links with
no arrow end denotes a reduction with at most one step, but possibly none.

Showing that a given calculus is confluent is not always immediate, and it may
prove useful to use other similar properties to finally obtain this result5. The most
common ones are illustrated in the following diagrams:

t

u v

s

t

u v

s

t

u v

s
(diamond property) (local confluence) (strong confluence)

These properties are not equivalent6: the diamond property here is clearly the
strongest one, and it trivially implies confluence, but strong confluence also implies
confluence7. Finally, the local confluence does not imply the standard confluence
in the general case, but does if the reduction system is terminating, as ensured by
Newman’s Lemma [New42]. An » interesting « calculus usually does not enjoy the
diamond property, since reduction rules often tend to interfere with each other. But
a standard technique for proving confluence, called parallel reductions [Bar84], is
to design another system where several independent steps can be performed at the
same time, and prove that this reduction system has the diamond property. Then, if
we can show that the two systems have the same transitive closure, we can deduce
that the original system is confluent.

5The standard proofs of confluence that can be found in the literature usually take advantage of the
connection between confluence and other similar properties.

6They are explained in more details in [Sel07], in the setting of the pure λ-calculus.
7Although one should be careful there and handle both of the two symmetric cases [BN98].

80 2 — Logical Foundations for Computation80 2 — Logical Foundations for Computation80 2 — Logical Foundations for Computation

In the case of the λx-calculus, the reduction system is simple, but the diamond
property does not hold, because of only one situation where the diagram cannot be
closed — this case shows that strong confluence does not hold either:

((λy.t) u)[y ← v]

t[x ← u][y ← v] (λx .t)[y ← v] u[y ← v]

(λx .t[y ← v]) u[y ← v]

t[y ← v][x ← u[y ← v]]

But this is not a problem that can be solved by using the parallel reductions
technique, since it is induced by the lack of rules for composition of substitutions.
We will thus rely on the fact that the standard λ-calculus is confluent, and use the
correspondence we just established to prove that λx is also confluent. For this, we
need a lemma stating that the translation of a term can be obtained by reduction.

Proposition 2.10. For any term t, we have t −→∗λx ¹tºxλ.

The ability to reduce a term to its translation is crucial, since it provides a way
to connect the confluence result of the λ-calculus to the situation of λx. This means
that a diagram can be closed by first reducing terms to their translations, and then
reusing the closing reductions from the standard λ-calculus.

Proposition 2.11. The λx-calculus is confluent.

The idea of the proof of confluence is expressed by the diagram below, where
one can observe that it relies on the correspondence between λx and the standard
λ-calculus to lift the result from the standard setting into the refined setting of λx,
using explicit substitutions:

t

u v

¹tºxλ
¹uºxλ ¹vºxλ

s

PSN. In the process of designing a calculus of explicit substitutions refining the
standard λ-calculus, there is an important property to ensure, which concerns the
translation of reduction sequences. This is the preservation of strong normalisation,
often called PSN, which states that if a given λ-term t is strongly normalising, then
its translation, ¹tºλx in the case of λx, which is exactly t, should also be a strongly
normalising term, in the target calculus.

2 — Cut Elimination and Explicit Substitutions 812 — Cut Elimination and Explicit Substitutions 812 — Cut Elimination and Explicit Substitutions 81

In the λ-calculus, and in most of its variants, such as λx, the normal form of a
term t — that is, a term u such that t −→∗ u and u cannot be reduced — is unique
whenever it exists, because of confluence. What we call a strongly normalising term
is then a t such that all possible reduction sequences starting from t are finite, and
thus end with its normal form, as described in the following definition8.

Definition 2.12. The set SNλx of strongly normalising λx-terms is the smallest set
such that t ∈ SNλx if t is in normal form or t −→λx u with u ∈ SNλx.

The PSN property is rather complex to prove, although it is significantly simpler
in λx than in more refined calculi. Several methods have been defined to establish
this result, relying on the idea that pushing an explicit substitution inside another
term should always participate to the process of implementing β-reduction through
small, decomposed steps and never add any additional computation, that would be
completely unrelated to this task — and would thus potentially introduce loops in
the implementation of a strongly normalising λ-term.

Proposition 2.13 (PSN in λx). Given a λ-term t, if t ∈ SNβ then t ∈ SNλx.

This result confirms that we can use the λx-calculus as an implementation of
the standard λ-calculus, but the question remains now to know if this is an efficient
implementation, or if we should try to design a more subtle implementation of the
substitution operation. Unfortunately, reduction in this calculus induces the copy of
whole subterms, of arbitrary size, each time a substitution crosses an application,
which is very inefficient. Moreover, it disallows any kind of interaction between two
explicit substitutions, although we would like to either exchange them, or compose
them, as follows:

t[x ← u][y ← v] −→ t[y ← v][x ← u]
t[x ← u][y ← v] −→ t[x ← u[y ← v]]

However, these operations are dangerous to introduce as reduction rules in the
system. Indeed, the first one is a valid exchange of explicit substitutions only if y
does not appear as a free variable in u, since without this condition this rule would
break the scoping structure of the term. The second operation is also problematic,
since it can lead to non-termination of terms that are actually the translation of a
strongly normalising λ-term, as illustrated by the famous counter-example given by
Melliès [Mel95]. It can be observed that proving the PSN property in the presence
of composition is more complicated than in λx, since if we add this reduction rule,
some subterms can interact in a way that does not correspond to the β-reduction
process, and induce non-termination.

Example 2.14. Consider the term t = (λz.z)[x ← y y][y ← δ], where δ is a term
such that Ω = δ δ is not terminating. Then, we have ¹tºxλ = λz.z, all the subterms of
t have strongly normalising translations, and thus t is strongly normalising in λx, but
if we add the rule for composition described above, we have the new reduction sequence
t −→∗ (λz.z)[x ← Ω], which yields a term that is not strongly normalising.

8The set of strongly normalising terms in any calculus defined through a reduction −→• is defined
following the same scheme as the one used for λx, and it is denoted by SN• as usual.

82 2 — Logical Foundations for Computation82 2 — Logical Foundations for Computation82 2 — Logical Foundations for Computation

(λx .t) u −→B t[x ← u]
x[x ← u] −→var u
t[x ← u] −→not t (x 6∈ t)

(λy.t)[x ← u] −→lam λy.t[x ← u] (x ∈ t)
(t v)[x ← u] −→apl t[x ← u] v (x ∈ t, x 6∈ v)
(t v)[x ← u] −→apr t v[x ← u] (x 6∈ t, x ∈ v)
(t v)[x ← u] −→apb t[x ← u] v[x ← u] (x ∈ t, x ∈ v)

t[x ← u][y ← v] −→cmp t[x ← u[y ← v]] (y 6∈ t, y ∈ u)
t[x ← u][y ← v] −→cpp t[y ← v][x ← u[y ← v]] (y ∈ t, y ∈ u)

t[x ← u][y ← v]≡e t[y ← v][x ← u] (x 6∈ v, y 6∈ u)

Figure 3: Reduction rules and equation of the λes-calculus

Refined calculi. A solution to the problem of introducing the additional rules
for the composition of substitutions without losing good properties of the calculus,
is to handle with care erasure, duplication and distribution of substitutions. This is
what is done for example in the λes-calculus [Kes07], which uses the presence of
variables in a subterm as a condition for the application of some reduction rules.
Such a design of the rules allows to avoid useless duplications of substitutions.

The syntax for the λes-calculus is again the standard syntax of λ-calculi with
explicit substitutions, and its reduction rules are given in Figure 3 — we use again
the contextual closure of the rules, or the basic system shown in (3). This reduction
system will be denoted by −→λes from now on.

This calculus is a refinement of the λx-calculus, which uses the ability to look at
the set of free variables of a given term to decide whether a substitution should be
pushed inside another construction or not. One consequence of this ability is that
the garbage collection operation, that the nov rule embodies in the λx-calculus, can
be generalised into the not rule, which erases the substitution before it is pushed
further inside the term, if it binds an unused variable. The rule dealing with some
substitution applied on an application is also refined into three rules, that shoud be
used depending on the use of the bound variable in the subterms.

Finally, the λes-calculus is equipped with two composition rules, that are also
used depending on the use of the variable bound by the substitution, and also one
equation which embodies the case where two unrelated substitutions are applied
on the same term. This rewriting is expressed as an equation, and not implemented
as another reduction rule, because it would otherwise introduce an obvious looping
mechanism, as mentioned before. The reduction system is extended into −→≡λes
by considering reductions t −→≡λes u of the shape t ≡ v −→λes w ≡ u, where
≡ is the smallest congruence induced by alpha-equivalence and the ≡e relation.
Composition allows to prove the full composition result.

Proposition 2.15 (Full composition in λes). For t and u, t[x ← u]−→≡∗λes t{u/x}.

2 — Cut Elimination and Explicit Substitutions 832 — Cut Elimination and Explicit Substitutions 832 — Cut Elimination and Explicit Substitutions 83

Simulation, confluence, PSN. This result is stronger than its equivalent in λx,
as substitutions are carried out independently, by crossing substitutions or moving
inside the body of another substitution when needed. However, simulation in the
setting of λes is not using the full power of the reduction system, although the
complete β-reduction of different redexes could be implemented in many different
ways. Projection is also handled the same way as in the λx-calculus, through a
translation ¹·ºesλ which is defined the same way as ¹·ºxλ.

Since the basic results of simulation and projection relating reduction in λes to
β-reduction hold, we can use the same technique as for the λx-calculus to prove
that the λes-calculus is confluent, through the lemma showing that translation can
be obtained by reduction. Regarding all of these results, λes is therefore not much
different from λx.

As mentioned, the PSN property is more difficult to prove in the context of a
calculus allowing the composition of explicit substitutions. This result is usually
established through translations into other calculi, such as those equipped with an
explicit erasure operator [Kes07], and the λI -calculus [Klo80] where any weakly
normalising term is also a strongly normalising one. An important observation in
the study of normalisation in the λes-calculus is the distinction between the B rule
and the » substitution pushing « subsystem −→≡es, which can be shown strongly
normalising through the definition of an appropriate measure.

Proposition 2.16. The reduction system −→≡es is strongly normalising.

Notice that this is not sufficient to obtain any normalisation result on the whole
reduction system −→≡λes, since the B rule is crucial in its role of manipulating the
distinction in a term between the β-redexes of this term and explicit substitutions.

Proposition 2.17 (PSN in λes). Given a λ-term t, if t ∈ SNβ then t ∈ SNλes.

This result is quite important, since it means that we can design such a complex
implementation of the λ-calculus while retaining the most important properties of
programs written in this language — although the mechanism of composition of
substitutions can induce highly complex behaviours in the reduction of terms.

Other calculi. There are several different possibilities in the design of λ-calculi
with explicit substitutions, in particular depending on the choices made to handle
erasure and duplication of the substitutions. For instance, a refinement of λes
can be obtained by separating the duplication operation from the structure of the
term under the substituition. Such a calculus, called the λs-calculus [Ren11], can
be described by the rules given in Figure 4, where t[y/x] denotes the term t where
exactly one occurrence of x has been replaced with y . The operation of duplicating
a substitution is here implemented only in the special dup rule, but this calculus
behaves like λes and it can be proved that it has all the same good properties of
simulation, confluence and preservation of strong normalisation [KR11].

A further step in the refinement of such λ-calculi with explicit substitutions is
the introduction of resource operators, in order to handle explicitly the erasure and
duplication of explicit substitutions. This was done for erasure only in the calculus
with garbage collection λxgc [BR95], and it was later generalised to both erasure
and duplication in the λlxr-calculus [KL05].

84 2 — Logical Foundations for Computation84 2 — Logical Foundations for Computation84 2 — Logical Foundations for Computation

(λx .t) u −→B t[x ← u]
x[x ← u] −→var u
t[x ← u] −→not t (|t|x = 0)
t[x ← u] −→dup t[y/x][x ← u][y ← u] (|t|x ≥ 2)

(λy.t)[x ← u] −→lam λy.t[x ← u] (|t|x ≥ 1)
(t v)[x ← u] −→apl t[x ← u] v (|t|x ≥ 1, |v|x = 0)
(t v)[x ← u] −→apr t v[x ← u] (|t|x = 0, |v|x ≥ 1)

t[x ← u][y ← v] −→cmp t[x ← u[y ← v]] (|t|y = 0, |u|y ≥ 1)

t[x ← u][y ← v]≡e t[y ← v][x ← u] (x 6∈ v, y 6∈ u)

Figure 4: Reduction rules and equation of the λs-calculus

In such a calculus, an explicit substitution on x can be erased or duplicated only
when it meets a term where the related operator on x appears at toplevel. In the
syntax of λlxr, the rules are:

(Wx .t)[x ← u] −→ Wφ .t
(C y,z

x .t)[x ← u] −→ Wψ,µ
φ

.t[y ← uψ][z← uµ]

where φ is the list fv(u) and uψ and uµ are copies of the term u where all the free
variables have been replaced by fresh variables from the lists ψ and µ.

2.2 Cut in Natural Deduction and Explicit Substitutions

The cut rule is used in NJ as a tool to perform detour elimination, but it can also
be given the normal status of rule. The permutative proof of detour elimination in
NJ can then be trivially interpreted as a normalisation result in NJ∪ {cut}, where
two different kinds of redexes are targeted, standard detours and cut instances. In
this setting, the dynamics of proofs and programs are refined:

Logic Computation

proof P of A in NJ closed, pure λx-term t of type A

proof P of A in NJ∪ {cut} closed λx-term t of type A

cut on B in P redex u[x ← v] in t, with v of type B

detour elimination in P strong reduction t −→∗λx r

elimination of a cut in P reduction u[x ← v]−→∗x u{v/x} in t

where the computational device used in the λx-calculus, which corresponds to the
additive presentation of NJ. The refinement of the pure λ-calculus into λx is there
an equivalent to the extension of NJ with the cut rule.

2 — Cut Elimination and Explicit Substitutions 852 — Cut Elimination and Explicit Substitutions 852 — Cut Elimination and Explicit Substitutions 85

On a syntactic level, the S type system is extended into the Sx system by adding
the sub rule shown above. This rule expresses the idea that in order to assign type
B to the term t[x ← u], one must be able to assign some type A to u and type t
with B under the assumption that the variable x has type A inside t. This extension
does not change the way other syntactic constructs are handled, and all the notions
used in S are used the same way in Sx. This system is also syntax-directed, as the
explicit substitution [x ← u] is given the status of valid construct in the syntax of
terms, and Sx has the same properties as S concerning the static level of typing
derivations. In particular:

• The typing process in Sx is terminating.

• A λx-term t has at most one type in an environment Γ in Sx, up to renaming.

• There is exactly one derivation of ` t : A in Sx, for any λx-term t of type A.

These results can be proved the same way as they are proved in S, with some minor
adaptations to accomodate the cut. Typing is essentialy performed the same way
in S and in the Sx system. The dynamics of proofs seen as programs, however, is
described differently in this setting. The correspondence between local rewritings
of proof objects, by permutation of cuts, and the reduction steps used in λx can be
observed by interpreting each step9 independently:

1. The reduction rule (λx .t) u−→B t[x ← u] corresponds to the transformation
of a detour into a cut instance:

Γ ` u : A

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

app −−
Γ ` (λx .t) u : B

−→
Γ ` u : A Γ, x : A ` t : B

sub −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` t[x ← u]

2. The reduction rule x[x ← u] −→var u corresponds to the replacement of an
axiom by the proof of the lemma involved in the cut:

Γ ` u : A
var −−−−−−−−−−−−−−−−−−−−
Γ, x : A ` x : A

sub −−−
Γ ` x[x ← u] : A

−→ Γ ` u : A

3. The reduction rule y[x ← u] −→nov y corresponds to the erasure of the cut
and of the proof of the lemma, when an axiom on another formula than the
lemma A is encountered:

Γ, y : B ` u : A
var −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, y : B, x : A ` y : B

sub −−−
Γ, y : B ` y[x ← u] : B

−→ var −−−−−−−−−−−−−−−−−−−−−
Γ, y : B ` y : B

9We show here only the part of the typing derivation being rewritten, since all the transformations
involved are local, and proofs of the premises can be reused after transformation — and we show no
case involving con, since it is similar to var, and it is not necessary to have constants.

86 2 — Logical Foundations for Computation86 2 — Logical Foundations for Computation86 2 — Logical Foundations for Computation

4. The reduction rule (λy.t)[x ← u] −→lam λy.t[x ← u] corresponds to the
permutation of the cut above an introduction instance, so that the derivation:

Γ ` u : A

Γ, x : A, y : C ` t : D
lam −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, x : A ` λy.t : C → D

sub −−−
Γ ` (λy.t)[x ← u] : C → D

is turned into the following derivation:

Γ, y : C ` u : A Γ, y : C , x : A ` t : D
sub −−

Γ, y : C ` t[x ← u] : D
lam −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λy.t[x ← u] : C → D

5. The reduction rule (t v)[x ← u] −→app t[x ← u] v[x ← u] corresponds to
the permutation of the cut above an elimination, so that the derivation:

Γ ` u : A

Γ, x : A ` v : C Γ, x : A ` t : C → B
app −−−

Γ, x : A ` t v : B
sub −−−

Γ ` (t v)[x ← u] : B

is turned into the following derivation:

Γ ` u : A Γ, x : A ` v : C
sub −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` v[x ← u] : C

Γ ` u : A Γ, x : A ` t : C → B
sub −−

Γ ` t[x ← u] : C → B
app −−

Γ ` t[x ← u] v[x ← u] : B

and the complete typing derivation above the premise Γ ` u : A needs to be
duplicated, and plugged above both copies of this premise.

In this analysis, we can see how the transformation of a detour into a cut instance
corresponds to the B rule in λx, which triggers a substitution by creating the explicit
substitution object in the term, and how the permutation of one cut corresponds to
the other rules, where the explicit substitution is simply pushed through the term,
to the variables.

Refined calculi. The correspondence established for NJ∪ {cut} allows only
to handle the λx-calculus, with its basic handling of erasure and duplication, but
this can be extended, by modifying the proof system, to more refined λ-calculi with
explicit substitutions. For example, we can use a separate weakening rule and allow
the use of an axiom only when the antecedent contains only one formula. Since a
cut then cannot reach an axiom on an unrelated formula, this would correspond to
a λ-calculus with a form of garbage collection, where unused explicit substitutions
can be erased before they reach a » dead end «. Similarly, separating the contraction
from other inference rules implies a correspondence to a calculus where duplication
is not performed only at the point where a substitution is propagated inside an
application.

2 — Cut Elimination and Explicit Substitutions 872 — Cut Elimination and Explicit Substitutions 872 — Cut Elimination and Explicit Substitutions 87

var −−−−−−−−−−−−−−−−−
x : A ` x : A

Γ ` u : A ∆, x : A ` t : B
sub −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` t[x ← u] : B

Γ ` t : B
rem −−−−−−−−−−−−−−−−−−−−
Γ, x : A ` t : B

Γ, x : A, y : A ` t[y/x] : B
dup −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, x : A ` t : B

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

Γ ` u : A ∆ ` t : A→ B
app −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` t u : B

Figure 5: Type system Ss for the λs-calculus

The variant of NJ where both weakening and contraction are separated from
other rules can be used as type system for the λs-calculus, as illustrated by the type
system Ss, shown in Figure 5. The dynamics of detour elimination is mostly the
same as in NJ, but the handling of weakening and contraction yields the following
rules of the λs-calculus:

1. The reduction rule t[x ← u] −→not t, which can be applied when x 6∈ t,
corresponds to the erasure of the cut when it encounters a weakening:

Γ ` u : A

∆ ` t : B
rem −−−−−−−−−−−−−−−−−−−−−
∆, x : A ` t : B

sub −−
Γ,∆ ` t[x ← u] : B

−→
∆ ` t : B

rem∗ =================
Γ,∆ ` t : B

where rem instances must be added to erase substitutions corresponding to
the free variables of u, which have disappeared.

2. The reduction rule t[x ← u] −→dup t[y/x][y ← u][x ← u] corresponds
to the duplication of the cut when it encounters a contraction, so that the
derivation:

Γ ` u : A

∆, x : A, y : A ` t[y/x] : B
dup −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∆, x : A ` t : B
sub −−−

Γ,∆ ` t[x ← u] : B

is turned into the following derivation:

Γ ` u : A

Γ ` u : A ∆, x : A, y : A ` t[y/x] : B
sub −−

Γ,∆, x : A ` t[y/x][y ← u] : B
sub −−−

Γ,Γ,∆ ` t[y/x][y ← u][x ← u] : B
dup∗ ===

Γ,∆ ` t[y/x][y ← u][x ← u] : B

where new dup instances must be added to duplicate the environment Γ and
have enough copies of other explicit substitutions to be propagated later into
different copies of u.

88 2 — Logical Foundations for Computation88 2 — Logical Foundations for Computation88 2 — Logical Foundations for Computation

The problem with the Ss type system is that both the rem and dup rules are
not syntax-directed, and they can be applied at any time during the type inference
process. This implies that there can be several valid typing derivations for a given
λs-term, which is breaking the notion of full correspondence between intuitionistic
proofs and λ-terms, as it exists for the natural deduction system NJ. Observe that
this is related to the treatment of names in the duplication rule: depending on
the use made of the rule dup when typing a given λs-term t, the rewriting step
applied when the cut encounters the contraction is different — leading to different
possible proofs, which are different possible typing derivations. Therefore, a unique
typing derivation cannot model by its normalisation the reduction behaviour of a
λs-term, this behaviour is described by a set of derivations. For example, the term
(λy.t)[x ← u] can be typed by the two derivations:

��
��

�?????u

Γ ` u : A

��
��

��
�???????

t

∆, x : A, z : A, y : B ` t[z/x] : C
lam −−
∆, x : A, z : A ` λy.t[z/x] : B→ C

dup −−
∆, x : A ` λy.t : B→ C

sub −−
Γ,∆ ` (λy.t)[x ← u] : B→ C

and

��
��

�?????u

Γ ` u : A

��
��

��
�???????

t

∆, x : A, z : A, y : B ` t[z/x] : C
dup −−−

∆, x : A, y : A ` t : C
lam −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∆, x : A ` λy.t : B→ C

sub −−
Γ,∆ ` (λy.t)[x ← u] : B→ C

which correspond to two possible reductions of this term, where the duplication of
the substitution is performed before or after pushing it through the abstraction:

(λy.t)[x ← u] −→ λy.t[x ← u] −→ λy.t[z/x][x ← u][z← u]
−→ (λy.t[z/x])[x ← u][z← u] −→∗ λy.t[z/x][x ← u][z← u]

so that these two derivations are part of the description of this term. The problem
can be solved by introducing an explicit syntax for erasure and duplication, as done
in the λlxr-calculus. In the syntax of this extension of λx, there are two resource
operators, Wx for erasure and C z,w

x for duplication. These two typing derivations,
shown above, would correspond in λlxr to two distinct terms, (C z,w

x .λy.t)[x ← u]
and (λy.C z,w

x .t)[x ← u]. Reduction for each of these terms follows one of the two
possible reductions shown above. This refined calculus is a more precise account
of the computational contents of proofs in a variant of NJ where weakening and
contraction are implemented in separate rules, but it is also more complex than λs,
and has strong linearity constraints for terms to be well-formed. This is the price
to pay for a representation of computation where resources are controlled than in
the plain, standard λ-calculus and other of its extensions.

2 — Cut Elimination and Explicit Substitutions 892 — Cut Elimination and Explicit Substitutions 892 — Cut Elimination and Explicit Substitutions 89

2.3 The λ-calculus with Pure Explicit Substitutions

The syntax of the traditional λ-calculus is ambiguous, in the sense that there is no
way of knowing a priori wether an application t u reduces to some redex (λx .v) u
or to the simple application x u of a function name x to a term u. Therefore, the
usual syntax t u assimilates two different realities, while the explicit substitutions
syntax allows to distinguish β-redexes from other syntactic constructs. This yields
a problem in the study of λ-calculi with explicit substitutions from the perspective
of the Curry-Howard correspondence. Indeed, as mentioned before, the standard
λ-calculi with explicit substitutions correspond to some natural deduction systems,
where the cut rule from the sequent calculus has been artificially introduced. Only
a few satisfactory correspondences have been established between sequent calculi
and such λ-calculi, using some particular variants [Her94] or the standard system
for intuitionistic logic [BG00, SU06]. This involves a generalisation of the shape of
applications [JM00], and it often requires to define rules dealing with interactions
between several applications [DP99]. In any case, the usual syntax for application
must be dropped from the syntax, and the construction t[x ← u] should be used
as the only representation of a β-redex.

Moreover, the simplest case of application, of the shape x u, is not expressive
enough to represent all possible applications in the standard λ-calculus. One could
think of applying a variable to a list of arguments, but this is again not enough, as
we may want to apply the result of a computation to an argument. To allow this
kind of construction while keeping a separate syntax for applications and redexes,
we can use a construct like let x = u in t, as presented in Moggi’s computational
λ-calculus [Mog89]. This syntax has the benefit of explicitly providing sequentiality
information about applications in a flexible way, while with a term of the shape
(t v) (u w) one cannot add any information to indicate that u w should be reduced
first — this is interesting in the study of evaluation strategies, and in general in the
λ-calculus because it is a theory of sequential programs. This also corresponds to a
finer-grain representation of proofs, as found in the sequent calculus. We try here
to keep the calculi as simple as possible, and for this reason we will not push the
generalisation of application is it is done in some other studies of the computational
contents of sequent calculi [San09].

We want a syntax using this sequential construct, but where the application of
unrestricted terms is disallowed. This can be done by using only the particular case
where a name is given to the result of applying a variable to a term, which can be
written as let x = z t in u, where z is some variable10.

Definition 2.18. The language of sequentialised and explicit λ-terms is defined as:

t, u ::= x | λx .t | let x = z t in u | t[x ← u]

We use the same syntactic convention as in the standard calculi of the previous
sections. In this syntax, the two constructs λx .t and t[x ← u] bind x in t, and the
construct let x = z t in u binds x in u, not in t.

10This solution has been used in the literature to design calculi corresponding to the structure of the
sequent calculus, but this is often not well-developped [SU06], and there is no real » standard « in this
field, since these λ-calculi have rarely been studied outside of the typed setting.

90 2 — Logical Foundations for Computation90 2 — Logical Foundations for Computation90 2 — Logical Foundations for Computation

We always consider terms modulo α-conversion, which is defined the same way
as it was in the standard syntax, so that variables are bound at most once in a term.
The sets of bound variables of the term t, denoted by bv(t), and of free variables
of t, denoted by fv(t), are defined again as in the standard syntax, with a trivial
adaptation to handle sequentialised application. We also reuse the notation x ∈ t
to indicate that a variable x appears free in the term t, and the notation |t|x for
the number of occurrences of x that appear in t. The notion of substitution is also
defined as before, without clashes of names thanks to the α-conversion convention.

We are again interested in strong reduction, so that we have to use a basic set
of reduction rules in all the rewrite systems defined later in this section:

λx .t −→ λx .v if t −→ v
let x = z t in u −→ let x = z v in u if t −→ v
let x = z t in u −→ let x = z t in v if u−→ v

t[x ← u] −→ v[x ← u] if t −→ v
t[x ← u] −→ t[x ← v] if u−→ v

(4)

In order to relate the sequentialised calculi that are presented in this section to
the standard calculi described in the previous sections, we follow the same scheme,
starting with a naïve approach to explicit substitutions, improving the calculus to
refine it into a more interesting calculus, with a rich operational behaviour. Such
a calculus, where the application is generalised into a sequential application that
cannot be confused with a β-redex, will be called here a pure explicit substitutions
calculus, because it focuses on the explicit substitution construct and removes the
need for the B reduction rule, which does not apply on an explicit substitution.

Basic implementation. The first, naïve approach to pure explicit substitutions,
that we call the λx-calculus, is a variant of the standard λx-calculus integrating
the syntax with sequentialised application. The set of reduction rules used in this
system is presented in Figure 6, to which the rules of (4) are added to form the
−→λx reduction — this is the basic approach in this setting [SU06].

Some of the rules are similar to those of the λx-calculus, and the let rule is an
adaptation of the rule for application in the context of sequentialised application,
where the substitution is pushed down on both sides of the application. Then, the
apd reduction rule can be seen as a compound rule, necessary because there is no
standard application syntax. It is equivalent to the following reduction sequence in
a λx-like system that would allow arbitrary named applications:

(let y = x v in t)[x ← λz.u]
−→ (let y = x[x ← λz.u] v in t)[x ← λz.u]
−→ (let y = (λz.u) v in t)[x ← λz.u]
−→ (let y = u[z← v] in t)[x ← λz.u]
−→ t[y ← u[z← v]][x ← λz.u]

but it is defined as one single-step reduction rule because there is no representation
of the intermediate steps in the syntax of the λx-calculus.

2 — Cut Elimination and Explicit Substitutions 912 — Cut Elimination and Explicit Substitutions 912 — Cut Elimination and Explicit Substitutions 91

t[x ← y] −→ren t{y/x}
x[x ← u] −→var u
z[x ← u] −→nov z

(λy.t)[x ← u] −→lam λy.t[x ← u]
(let y = z v in t)[x ← u] −→let let y = z v[x ← u] in t[x ← u]

(let y = x v in t)[x ← λz.u] −→apd t[y ← u[z← v]][x ← λz.u]
t x[x ← let y = w v in u] −→out let y = w v in t[x ← u]

where z 6= x and t x denotes a term of the shape let z = x p in q

Figure 6: Reduction rules of the λx-calculus

This rule requires to get a λ-abstraction at toplevel inside the substitution, and
this is only possible if we have rules to deal with other syntactic constructs that can
appear. The first case left to treat is the case of an application, and this is handled
through the out rule, which is unusual for a λ-calculus with explicit substitutions,
although it needs to be introduced when using such a syntax [SU06, JM00]. Notice
that the out rule is extremely constrained, so that the let construct can be moved
out only at a particular position — this is meant to preserve confluence, so that the
applications from the body of some substitution are not randomly located anywhere
in the structure of the term after reduction. Finally, the case of a variable is treated
through the ren rule, required since not all abstractions match an application.

Confluence. A problem of λx is the limitation in moving applications imposed
by the out rule, although one of the benefits of using this generalised application
is a better control over the localisation of applications. We could therefore think of
simplifying this rule and allow a let construct to move out of a substitution at any
time, but this yields the following problematic situation:

?

(λy.t)[x ← let w = z u in v]

let w = z u in (λy.t)[x ← v]

let w = z u in λy.t[x ← v]

λy.t[x ← let w = z u in v]

λy.let w = z u in t[x ← v]

where two different reduction sequences produce different sequential organisations
of abstractions and applications. A solution could be the use of equations on terms,
to allow for example the exchange of any unrelated abstractions and applications,
so that the two reduced terms above would be considered equal. But this comes
with some problems, as it would require to equate a term t where z does not appear
free with any term of the shape let z = x u in t. Moreover, this would reduce the
interest of placing applications at particular locations.

92 2 — Logical Foundations for Computation92 2 — Logical Foundations for Computation92 2 — Logical Foundations for Computation

In the setting of pure explicit substitutions, it is not obvious that a given calculus
can simulate the standard λ-calculus, because the reduction rules operate in a quite
different way. This is a good opportunity to illustrate how to prove confluence using
the parallel reductions technique [Bar84] mentioned before, which is independent
from the fact that a calculus can or cannot simulate β-reduction — as λx is present
but underdevelopped in the literature, there seem to be no confluence proof for it.
This method is useful in the setting of pure explicit substitutions, since it is quite
versatile and can be adapted to various calculi based on the same ideas as standard
λ-calculi with or without explicit substitutions. For example, it can use a parallel
reduction system where rules are grouped to produce a term normal with respect
to a subsystem — often the group of rules pushing substitutions inside terms. Here,
we will define a direct parallel variant of −→λx.

Definition 2.19. The parallel reduction for λx is denoted byÖλx and defined as the
reflexive closure of the the following set of reduction rules:

λx .t Ö λx .t1
let y = x t in u Ö let y = x t1 in u1

t[x ← u] Ö t1[x ← u1]

t[x ← y] Ö t1{y/x}
x[x ← u] Ö u1
z[x ← u] Ö z

(λy.t)[x ← u] Ö λy.t1[x ← u1]
(let y = z v in t)[x ← u] Ö let y = z v1[x ← u1] in t1[x ← u2]

(let y = x v in t)[x ← λz.u] Ö t1[y ← u1[z← v1]][x ← λz.u2]
t x[x ← let y = z v in u] Ö let y = z v1 in (let w = x p1 in q1)[x ← u1]

where t x is the term let w = x p in q, and we have11 t Ö t1 and uÖ u1 as well as
uÖ u2 and v Ö v1, and similarly pÖ p1 and qÖ q1, so that the definition is done
inductively on the terms.

This system performs multiple one-step reductions on different redexes in the
given term. The idea is that if two reductions can be applied on redexes that do not
overlap, then they can be performed simultaneously, so that two reduction steps
can be merged into one single compound reduction step, where every basic step
corresponds to a step that can be performed in the basic −→λx reduction system.
This allows us to prove that this parallel system has the diamond property, using a
case analysis on the different rules that can be applied on a given term.

Lemma 2.20. TheÖλx reduction has the diamond property.

Proof. We proceed by induction on the size of a λx-term t, using a case analysis
at each step on the reduction rules that can be applied to t. In the base case, t is
some variable x and the result is trivial. Then, in the general case, we prove that
given u and v such that t Öλx u and t Öλx v there is a term to which we can build
two one-step reductions, to close the diagram.

11In the following, we will use a similar notation, where for example a term t reduces into t1 and t2,
and the term t1 might reduce into another term t3, and so on.

2 — Cut Elimination and Explicit Substitutions 932 — Cut Elimination and Explicit Substitutions 932 — Cut Elimination and Explicit Substitutions 93

1. If t, u and v have the same toplevel structure, we use directly the induction
hypothesis on the different subterms:

C[p]

C[p1] C[p2]

C[p3]

2. If u and v have both applications at toplevel, then we can use the induction
hypothesis twice, on the corresponding subterms:

let z = x p in q

let z = x p1 in q1 let z = x p2 in q2

let z = x p3 in q3

3. If u and v have both explicit substitutions at toplevel, we do the same and
use the induction hypothesis twice, on the corresponding subterms:

p[x ← q]

p1[x ← q1] p2[x ← q2]

p3[x ← q3]

4. If t is of the shape p[x ← y], we can use directly the induction hypothesis on
the term p, and close the diagram immediatly, since the reduction step thus
performed on p is not affected by the renaming of x into y .

5. If t is of the shape z[x ← p], we use the induction hypothesis on p, in both
of the cases where z is x or a different variable, as follows:

x[x ← p]

p1 x[x ← p2]

p3

z[x ← p]

z z[x ← p1]

z

94 2 — Logical Foundations for Computation94 2 — Logical Foundations for Computation94 2 — Logical Foundations for Computation

6. If t is of the shape (λy.p)[x ← q], we use the induction hypothesis on both
p and q, and we can then build easily the resulting term:

(λy.p)[x ← q]

λy.p1[x ← q1] (λy.p2)[x ← q2]

λy.p3[x ← q3]

7. If t is of the shape (let z = y p in q)[x ← s], we can again use directly the
induction hypothesis on p, q and twice on s to build the resulting term:

(let z = y p in q)[x ← s]

(let z = y p1 in q1)[x ← s1] let z = y p2[x ← s2] in q2[x ← s3]

let z = y p3[x ← s4] in q3[x ← s5]

8. If t is of the shape (let z = x p in q)[x ← λy.s], we can use the induction
hypothesis on p, q and twice on s, as follows:

(let z = x p in q)[x ← λy.s]

(let z = x p1 in q1)[x ← λy.s1] q2[z← s2[y ← p2]][x ← λy.s3]

q3[z← s4[y ← p3]][x ← λy.s5]

9. If t has the shape s[x ← let z = y p in q] and s is let w = x m in r, we
directly use the induction hypothesis on s, p and q to build the resulting term:

s[x ← let z = y p in q]

s1[x ← let z = y p1 in q1] let z = y p2 in s2[x ← q2]

let z = y p3 in s3[x ← q3]

Now, we can prove that the calculus we are actually interested in is confluent,
by showing how it has the same transitive closure as the parallel system.

2 — Cut Elimination and Explicit Substitutions 952 — Cut Elimination and Explicit Substitutions 952 — Cut Elimination and Explicit Substitutions 95

Theorem 2.21. The λx-calculus is confluent.

Proof. First, we prove that the parallel systemÖλx is confluent, which is immediate
by applying Lemma 2.20, since the diamond property implies confluence, so that
its closureÖ∗

λx
is confluent. Then, we prove thatÖ∗

λx
and −→∗

λx
are the same:

• If for two terms t and u we have t −→λx u then it is clear that t Öλx u, and
thus we have the inclusion −→λx ⊆Öλx which implies −→∗

λx
⊆Ö∗

λx
.

• If we have t Öλx u then by induction we can show that t −→∗
λx

u, and thus
the inclusionÖλx ⊆−→∗λx, so that we also haveÖ∗

λx
⊆−→∗

λx
.

Finally, since Ö∗
λx

is confluent and is the same as the reduction −→∗
λx

we know
that −→∗

λx
is confluent and therefore −→λx is also confluent.

Notice that this result would be slightly more complicated in a setting using
equations rather than the restriction on the out rule. Indeed, a reduction diagram
would then be closed by two terms which are considered equal, but it would also be
necessary to consider a diagram formed by reductions on equal terms. This means
that more reductions can be applied on a given term, since redexes can be created
by associating subterms in other ways.

The most important problem of the λx-calculus is that it is weak, even weaker
than the λx-calculus, since we cannot simulate β-reduction on any redex, and even
the weak variant of full composition expressed by Lemma 2.6 does not hold. The
reason is that there is no rule for composing or exchanging substitutions, although
β-redexes must be translated as explicit substitutions. This means we cannot just
choose any redex we want in a term and perform the associated substitution, since
it needs to be in a particular position — it must be an innermost redex, involving a
subterm where no other redex appears. General β-reduction, where no particular
evaluation strategy is enforced, can thus not be simulated here. Because the ability
to simulate one particular evaluation strategy is not enough for the goals of explicit
substitutions calculi, we will not investigate further the properties of λx and extend
it to reach a decent12 expressive power.

Remark 2.22. Since the λx-calculus is too weak to simulate properly the standard
λ-calculus, the PSN property is not interesting in this setting.

Refined calculi. One way to extend the λx-calculus to a richer system is to add
reduction rules for composing substitutions. However, as mentioned for standard
calculi, this can induce non-terminating behaviours, and break the PSN property.
We need to refine the λx-calculus into a new calculus similar to λes, where erasure
and duplication are handled with care. The reduction rules for this calculus, called
λe-calculus — which does not exist as such in the literature — are given in Figure 7,
along with the usual equation on independent substitutions. Once again, the basic
rules shown in (4) are implicitly part of the reduction system, and we will denote
reduction in this calculus by −→λe from now on.

12By » decent expressive power « we mean here that a calculus should at least have the full composition
property, and thus allow stepwise simulation of β-reduction, to be really interesting — if it has no other
purpose than implementing the standard λ-calculus, and no additional expressive feature.

96 2 — Logical Foundations for Computation96 2 — Logical Foundations for Computation96 2 — Logical Foundations for Computation

t[x ← y] −→ren t{y/x}
x[x ← u] −→var u
t[x ← u] −→not t (x 6∈ t)

(λy.t)[x ← u] −→lam λy.t[x ← u] (x ∈ t)

(let y = z v in t)[x ← u] −→inl let y = z v[x ← u] in t
(let y = z v in t)[x ← u] −→inr let y = z v in t[x ← u]
(let y = z v in t)[x ← u] −→inb let y = z v[x ← u] in t[x ← u]
(let y = x v in t)[x ← u] −→ins (let y = z v in t)[x ← u][z← u]

where (x 6∈ t, x ∈ v), (x ∈ t, x 6∈ v), (x ∈ t, x ∈ v)
and (x ∈ v or t, z 6∈ v, z 6∈ t) respectively

t x[x ← λz.u] −→apc q[w← u[z← p]]
t x[x ← let y = z v in u] −→out let y = z v in t x[x ← u]

where t x is a term of the shape let w = x p in q with (x 6∈ p, x 6∈ q)

t[x ← u][y ← v] −→cmp t[x ← u[y ← v]]
t[x ← u][y ← v] −→cmb t[y ← v][x ← u[y ← v]]

where (y 6∈ t, y ∈ u) and (y ∈ t, y ∈ u) respectively

t[x ← u][y ← v] ≡e t[y ← v][x ← u] (x 6∈ v, y 6∈ u)

Figure 7: Reduction rules and equation of the λe-calculus

This calculus is an adaptation of λes to the sequentialised application setting,
and it requires to add the ≡e equation, as done in the λes-calculus, to handle cases
where substitutions must be exchanged, without creating loops. However, in order
to obtain a calculus that allows to simulate stepwise β-reduction, the handling of
redexes done through the apd rule in λx has to be slightly complicated. The apc
rule is actually a simplified variant, since it does not keep a copy of the substitution
used, but the copy has to be performed separately by the ins rule, introducing a
fresh name z for the variable being applied, so that the substitution can be pushed
separately inside the subterms. For this reason, the variable x applied in both apc
and out should not appear in the subterms.

The decomposition of the apd rule was not done in λx because the calculus
would not have allowed for stepwise simulation of β-reduction even in this case,
but also because it does not fit the naïve treatment of duplication of this setting. In
the case of λe, the use of the ins rule can be seen as a special case of copy.

Implicit substitution. The particular shape of the terms in the sequentialised
syntax and the kind of reduction rules used in λe induce a more complex relation
between explicit and implicit substitution than in the standard setting. Indeed, we
need a specific definition of meta-level substitution to handle the lack of β-redexes,
so that an explicit substitution can be created as the result of implicit substitution,
at a particular position — directly applied on a let construct.

2 — Cut Elimination and Explicit Substitutions 972 — Cut Elimination and Explicit Substitutions 972 — Cut Elimination and Explicit Substitutions 97

Definition 2.23. The implicit substitution t{u/x} of a term u for some variable x in
another term t is defined in pure explicit substitutions calculi as:

x{u/x} = u (λy.t){u/x} = λy.t{u/x}
y{u/x} = y t[y ← v]{u/x} = t{u/x}[y ← v{u/x}]

(let z = y v in t){u/x} = let z = y v{u/x} in t{u/x}
(let z = x v in t){u/x} = (let z = w v{u/x} in t{u/x})[w← u]

where y 6= x and w is a fresh variable, not free in u, v or t.

Relation to λ. The λe-calculus is stronger than the λx-calculus, since it allows
to simulate a single step of β-reduction, and thus the general result of simulation
of β-reduction, using the equation and reduction rules allowing to compose and
exchange the substitutions. The starting point is the full composition result, which
states that even with a different way of reducing terms — handling subterms inside
and outside explicit substitutions alternatively — we can ensure a correspondence
between explicit substitutions and meta-level, implicit substitutions. We denote by
−→≡

λe
the reduction modulo the congruence generated by the ≡e equation, such

that t −→≡
λe

u when there are t ′ and u′ such that t ≡ t ′ −→λe u′ ≡ u.

Lemma 2.24 (Full composition in λe). For any t and u, t[x ← u]−→≡∗
λe

t{u/x}.

Proof. We proceed by structural induction on the given term t. In the base case, t
is a variable and there are two possibilities. If t is y 6= x , we use the not rule, and
if t is x , we use the var rule. In the general case, we use a case analysis on t:

1. If t is an abstraction λy.v, we use the lam rule and the induction hypothesis
on v[x ← u] to reduce t to the expected term λy.v{u/x}.

2. If t is some application let z = y v in r, we use the inl, inr or inb rule,
depending on the use of x in the subterms v and r, and then use the induction
hypothesis on v[x ← u] or r[x ← u], or both.

3. If t is an application let z = x v in r, there are two cases: if x does not
appear in v or r then we are done, and if it does then we can use the ins
rule and go on by induction hypothesis on v[x ← u] and r[x ← u].

4. If t is of the shape v[y ← r], we use the cmp or cmb rule, or the ≡e equation,
depending on the use of x in the subterms v and r, and then use the induction
hypothesis on v[x ← u] or r[x ← u], or both.

We can use this result to prove that a single step of β-reduction can be simulated
in the λe-calculus, whatever strategy is used. Because this setting is different from
more standard λ-calculi with explicit substitutions, we will need to define a specific
translation from λ-terms into the λe-calculus, relating the application schemes.

Definition 2.25. The translation ¹·ºλ
e

from λ-terms to λe-terms is defined as follows:

¹xºλ
e
= x

¹λx .tºλ
e
= λx .¹tºλ

e

¹t uºλ
e
= (let z = x ¹uºλ

e
in z)[x ← ¹tºλ

e
] (x and z fresh)

98 2 — Logical Foundations for Computation98 2 — Logical Foundations for Computation98 2 — Logical Foundations for Computation

This translation is particular, as it introduces names to articulate the application
of a term to another while respecting the scheme for application in λe. One direct
consequence of this is that the translation of a given λ-term in normal form is not
always in normal form in λe. However, we can prove that the reductions yet to be
performed on such a term are reduced to a small subset of the rules.

Proposition 2.26. For any λ-term t in normal form, there is a λe-term u in normal
form such that we have ¹tºλ

e
−→∗{ren,out} u.

Proof. We proceed by structural induction on t, using a case analysis on its shape,
with a trivial base case when t is a variable x . If t is of the shape λx .p, we can go
on directly by induction hypothesis on p since ¹λx .pºλ

e
= λx .¹pºλ

e
. Finally, if t is

of the shape x p1 · · · pn then we use another induction, on n. If n is 1 we have:

¹x p1º
λ
e = (let z1 = x1 ¹p1º

λ
e in z1)[x1← x] −→ren let z1 = x ¹p1º

λ
e in z1

and in the general case we have:

¹x p1 · · · pkº
λ
e −→

∗
ren,out let z1 = x ¹p1º

λ
e in · · · let zk = zk−1 ¹pkº

λ
e in zk

so that after k+1 step, we can add k times the out rule to the reduction sequence
to obtain the result for ¹x p1 · · · pk+1º

λ
e
, which can obviously be turned in normal

form if all the ¹piº
λ
e

can be turned into normal forms as well following the same
procedure — and this is ensured by the induction hypothesis.

This translation is thus acceptable, as the ren and out rule implement minor
rewritings, mostly reordering sequences of applications. Also notice that sequential
applications in the translation of a term are all of the shape let z = x v in z. We
can now use the full composition lemma and the translation to prove the stepwise
simulation of β-reduction, based on the observation that the implicit substitution
is compatible with this translation.

Lemma 2.27. For any λe-terms t and u we have ¹t{u/x}ºλ
e
= ¹tºλ

e
{¹uºλ

e
/x}.

Proof. We proceed by structural induction on t. First, if t is y then the substitution
has no effect, and if t is x then t{u/x} is u and the translation is indeed ¹uºλ

e
. If t

is λy.p, then ¹tºλ
e
= λy.¹pºλ

e
and we use the induction hypothesis on p. Finally,

if t is of the shape p q then ¹tºλ
e
= (let z = y ¹qºλ

e
in z)[y ← ¹pºλ

e
] and by

definition of the substitution, we can use the induction hypothesis on p and q.

Theorem 2.28 (Simulation in λe). For t and u, if t −→β u then ¹tºλ
e
−→≡∗

λe
¹uºλ

e
.

Proof. We proceed by structural induction on t. If t is λx .p, we use the induction
hypothesis on p, since if ¹pºλ

e
−→≡∗

e
¹qºλ

e
then λx .¹pºλ

e
−→≡∗

e
λx .¹qºλ

e
. If t is

p q and the reduction happens inside p or inside q, we use the induction hypothesis
on p or q respectively, for the same reason as in the previous case. Finally, if t is
(λx .p) q and u is p{q/x}, then ¹tºλ

e
= (let z = y ¹qºλ

e
in z)[y ← λx .¹pºλ

e
] and

we have ¹tºλ
e
−→apc,var ¹pºλ

e
[x ← ¹qºλ

e
]−→≡∗

λe
¹pºλ

e
{¹qºλ

e
/x} by Lemma 2.24,

so that ¹tºλ
e
−→≡∗

λe
¹p{q/x}ºλ

e
through the result of Lemma 2.27.

2 — Cut Elimination and Explicit Substitutions 992 — Cut Elimination and Explicit Substitutions 992 — Cut Elimination and Explicit Substitutions 99

In order to also prove the projection result, which ensures that this simulation is
meaningful, in the sense that it creates a close correspondence between reduction
in λe and the λ-calculus, we need to define the opposite translation, shown below
and based on the transformation of let constructs into standard applications.

Definition 2.29. The translation ¹·ºeλ from λe-terms to λ-terms is defined as follows:

¹xºeλ = x ¹let z = x u in tºeλ = ¹tºeλ{x ¹uºeλ/z}
¹λx .tºeλ = λx .¹tºeλ ¹t[x ← u]ºeλ = ¹tºeλ{¹uºeλ/x}

Theorem 2.30 (Projection in λe). For t and u, if t −→λe u then ¹tºeλ −→
∗
β ¹uºeλ.

Proof. By case analysis on the rule used to reduce t into u. Because of contextual
closure, and of compositionality of the translation ¹·ºeλ, we assume without loss of
generality that the rule is applied at the root of t.

1. If one of the rules ren, var and not was used, then it is clear, by definition
of the implicit substitution operation, that t and u have the same translation.

2. If one of the rules inl, inr, inb and ins was used, then t and u again have
the same translation, by definition of the translation, and possibly using the
standard substitution lemma [Klo80] of the λ-calculus. The situation is the
same if one of the rules lam, out, cmp and cmb was used.

3. If the rule apc was used, then t is of the shape (let z = x v in r)[x ← λy.s]
and thus ¹tºeλ is ¹rºeλ{x ¹vºeλ/z}{λy.¹sºeλ/x}, which can be reduced by β
into ¹rºeλ{¹sºeλ{¹vºeλ/y}/z}, and this is exactly ¹uºeλ.

This means that one application of the apc rule can be projected as one β-reduction,
and all other rules preserve the translation of the initial term, so that reduction in
λe can indeed be projected into the standard β-reduction system.

Notice that the translation used for the projection result allows to retrieve some
original λ-term t from its translation into λe, because it collapses the structures
of explicit substitutions and sequential applications into the correct applications, in
the special case where these have been created by the translation ¹·ºλ

e
. Precisely,

we have for any λ-term t the equation ¹¹tºλ
e
º

e
λ = t, as illustrated in the following

example:

¹¹p qºλeº
e
λ = ¹(let z = x q in z)[x ← p]ºeλ = z{x ¹qºeλ/z}{¹pºeλ/x}= p q

but the equation does not hold if translations are inverted. Indeed, the structure of
the pure λ-calculus is too weak to preserve the order of the sequential applications,
and the translation from λe cannot be used to retrieve the original term.

Confluence. Now that we have established a strong correspondence between
reduction in λe and in the standard λ-calculus, we can apply the usual techniques
to investigate the operational properties of λe, starting with confluence. However,
we cannot use full composition for this, as we would need for this a lemma similar
to Proposition 2.10, but standard λ-terms are not a particular kind of λe-terms.

100 2 — Logical Foundations for Computation100 2 — Logical Foundations for Computation100 2 — Logical Foundations for Computation

A solution following this idea would thus require a translation back from the
λ-calculus, but the translation into λe of the λ-calculus translation of a term is not
the same term, and we cannot reduce one into the other13, so that we cannot use
the following diagram with ¹·º defined as ¹·ºeλ:

t

u v¹tºeλ

¹uºeλ¹¹uºeλº ¹vºeλ ¹¹vºeλº

s

¹sºλ
e

and we will not define another translation that would allow to prove simulation
and projection, and interact nicely with the translation ¹·ºeλ. Fortunately, there are
other methods to overcome this problem.

Since we are in a situation similar to the one of λx, we apply the same method
and use parallel reductions. In order to simplify the definition of this reduction, we
use normal forms, but in the setting of pure explicit substitutions, it is impossible to
use normal forms without explicit substitutions [Kes07], since this would require
termination. The solution is to isolate problematic rules, in particular the apc rule
which corresponds to the standard B rule.

Definition 2.31. The pushing normal form of a term t, denoted by ps(t), is a term
obtained by maximal application of any rule of λe except apc and out.

This normal form is well-defined because the part of the reduction−→≡
λe

formed
by these pushing rules, and called −→≡

e
, can be shown to be terminating. For that,

we need a measure that will decrease during reduction, adapted from λes [Kes07].

Definition 2.32. The substitution rank of a term t, denoted by R(t), is defined as:

R(x) = 1 R(let y = z t in u) = R(t) + R(u) + 1
R(λx .t) = R(t) R(t[x ← u]) = R(t) + Mx(t)× (|t|2x + 1)× R(u)

where Mx(z) = 1 for any z
Mx(λy.t) = Mx(t) + 1

Mx(let y = z t in u) = Mx(t) + Mx(u) + 1
Mx(t[y ← u]) = Mx(t) if x 6∈ u
Mx(t[y ← u]) = Mx(t) + My(t)× (|t|2y + 1)× (Mx(u) + 1) if x ∈ u

13This would require to move applications within a term, so that it would be possible in the system
based on equations mentioned before, but not in the variant we use here.

2 — Cut Elimination and Explicit Substitutions 1012 — Cut Elimination and Explicit Substitutions 1012 — Cut Elimination and Explicit Substitutions 101

Lemma 2.33. For any t and u, if t −→≡
e

u then R(u)< R(t).

Proof. By case analysis on the reduction rule used for rewriting t into u, using the
observation that for any v and any x , we have R(v) ≥ 1 and Mx(v) ≥ 1, and also
the fact that if v ≡ v′ then we have R(v) = R(v′).

Moreover, given a term t, the term ps(t) is uniquely defined, since this pushing
subsystem is clearly confluent, as we always have t[x ← u] −→≡∗

e
t{u/x}. Notice

that the equation ≡e never associates two different terms in pushing normal form,
because the only explicit substitutions left in such a term are located directly above
the applications involving their bound variable. We need to prove two lemmas that
describe how pushing normal forms interact with reduction and the ≡ congruence.

Lemma 2.34. For any terms t and u, if t −→∗
λe

u then ps(t)−→≡∗
λe

ps(u).

Proof. We proceed by induction on the length of the reduction from t to u, and in
the base case we have t = u and thus ps(t) = ps(u). In general, there is a v such
that t −→λe v −→∗

λe
u and we use a case analysis on the reduction from t to v. If v

is obtained from t by a pushing rule, then ps(t) = ps(v) and we can conclude by
induction hypothesis on v −→∗

λe
u. Otherwise, if t −→out v we have immediately

ps(t)−→out ps(v) since out cannot create new redexes for pushing rules. Finally,
if t −→apc v there are new substitutions inside v to push, we have some term s such
that ps(t) −→apc s −→≡∗

e
ps(v). In both of these cases, we conclude by induction

hypothesis on v −→∗
λe

u.

Lemma 2.35. For any terms t and u, if t ≡ u then ps(t) = ps(u).

Proof. This is a direct consequence of the confluence of the pushing subsystem, as
a substitution inside t and u is pushed and either carried out completely or blocked
above applications involving the variable it is binding, independently of the original
location of the substitution in the term.

Now, we can define the parallel reduction for λe on pushing normal forms, so
that it hides the details of the pushing subsystem.

Definition 2.36. The parallel reduction for λe is denoted by Öλe and defined on
pushing normal forms as the reflexive closure of the following set of rules:

λx .t Ö λx .t1
let x = z u in t Ö let x = z u1 in t1

t[x ← u] Ö t1[x ← u1]

t x[x ← λy.u] Ö ps(r1[z← u1[y ← p1]])
t x[x ← let y = w q in u] Ö let y = w q1 in (let z = x p1 in r1)[x ← u1]

where t x is the term let z = x p in r, with (x 6∈ p, x 6∈ r), and we have t Ö t1 and
uÖ u1 as well as pÖ p1 and qÖ q1 and r Ö r1.

Notice that the parallel reductionÖλe is defined inductively, so that we may use
an induction on the structure of a reduction t Öλe u, as in the following lemma.

102 2 — Logical Foundations for Computation102 2 — Logical Foundations for Computation102 2 — Logical Foundations for Computation

Lemma 2.37. For any terms t and u in pushing normal form, if we have t Öλe t1
and uÖλe u1 then we also have ps(t[x ← u])Öλe ps(t1[x ← u1]).

Proof. By induction on the structure of the reduction t Öλe t1. In the base case we
have t = t1 and the result is immediate, since pushing a substitution inside some
term is independent from the body of this substitution. If the reduction modifies
only subterms of t, we use the induction hypothesis on these subterms, since the
substitution is pushed the same way in t and t1. If t is a redex for the out rule and
an application is moved out of it, we can also use the induction hypothesis since
the substitution can be pushed inside this application and inside other substitutions.
Finally, if t is a redex for apc, the induction hypothesis also applies, since the new
substitution created binds a variable that cannot appear in u.

Then, we can prove that this parallel reduction has the diamond property, by a
case analysis of a given term and of the possible reductions.

Lemma 2.38. TheÖλe reduction has the diamond property.

Proof. We proceed by induction on the size of a λe-term t in pushing normal form,
using a case analysis at each step on the reductions that can be applied to t. In the
base case, t is some variable x and the result is trivial. Then, in the general case,
we prove that given u and v such that t Öλe u and t Öλe v there is a term to which
we can build two one-step reductions, to close the diagram:

1. If t, u and v have the same toplevel structure, we use directly the induction
hypothesis on the different subterms, and if u and v have both applications,
or both substitutions, at toplevel, we can use the induction hypothesis twice,
on the corresponding subterms, as shown below in the case of an application:

C[p]

C[p1] C[p2]

C[p3]

let z = x p in q

let z = x p1 in q1 let z = x p2 in q2

let z = x p3 in q3

2. If t is of the shape (let z = x p in q)[x ← λy.s], we can use the induction
hypothesis on p, q and s, as follows, and conclude by Lemma 2.37:

(let z = x p in q)[x ← λy.s]

(let z = x p1 in q1)[x ← λy.s1] ps(q2[z← s2[y ← p2]])

ps(q3[z← s4[y ← p3]])

2 — Cut Elimination and Explicit Substitutions 1032 — Cut Elimination and Explicit Substitutions 1032 — Cut Elimination and Explicit Substitutions 103

3. If t has the shape s[x ← let z = y p in q] and s is let w = x m in r, we
directly use the induction hypothesis on s, p and q to build the resulting term:

s[x ← let z = y p in q]

s1[x ← let z = y p1 in q1] let z = y p2 in s2[x ← q2]

let z = y p3 in s3[x ← q3]

This allows to conclude that the basic reduction system for λe is confluent,
through its correspondence to the parallel reduction system.

Theorem 2.39. The λe-calculus is confluent.

Proof. We consider terms t and t ′ such that t ≡ t ′ and t −→≡∗
λe

u and t ′ −→≡∗
λe

v,
to show that both u and v can be reduced into a unique term r. First observe that
we have u −→≡∗

λe
ps(u) and v −→≡∗

λe
ps(v) by definition. Then, by Lemma 2.35 we

know that ps(t) = ps(t ′) and by Lemma 2.34 we conclude that ps(t)−→≡∗
λe

ps(u)
and ps(t)−→≡∗

λe
ps(v). Moreover, we have:

• If for two terms t and u in pushing normal form we have t −→≡∗
λe

u then by
induction on this reduction we can show that t Ö∗

λe
u.

• If we have t Öλe u then by induction on the structure of the reduction we can
show that t −→≡∗

λe
u, so that by repeating the operation we can also conclude

that if t Ö∗
λe

u then we have t −→≡∗
λe

u as well.

This implies that we can translate reduction sequences into the parallel reduction
system, and thus we have ps(t)Ö∗

λe
ps(u) and ps(t)Ö∗

λe
ps(v). But the parallel

reduction has the diamond property and therefore is confluent, so that there exists
some term r such that ps(u)Ö∗

λe
r and ps(v)Ö∗

λe
r, which provides the expected

result, through the reductions from u and v to their pushing normal form.

PSN. As in other λ-calculi of explicit substitutions, we may want to ensure that
the translation from the standard λ-calculus into this refined λe-calculus preserves
the most important property of a term, its normalisability. However, the situation
here is more complex than usual, because the translation given in Definition 2.25
performs a significant amount of reorganisation within the term. In particular, the
translation of standard applications into sequential ones changes the order in which
arguments are encountered in the syntactic tree of the term, and new variables are
introduced to represent intermediate results.

It seems reasonable to attempt proving the PSN property for λe by reducing it
to the PSN property of the standard λes-calculus, since both calculi use the same
mechanisms for handling the distribution of the explicit substitutions. But relating
reduction steps in λe to the steps of λes is made difficult by the particular shape
of the apc rule, which corresponds to the transformation of a β-redex into a new
explicit substitution — as this rule modifies an application in a way that cannot be

104 2 — Logical Foundations for Computation104 2 — Logical Foundations for Computation104 2 — Logical Foundations for Computation

t[x ← y] −→ren t{y/x} (|t|x ≥ 1)
x[x ← u] −→var u
t[x ← u] −→not t (|t|x = 0)

(λy.t)[x ← u] −→lam λy.t[x ← u] (|t|x ≥ 1)
t[x ← u] −→dup t[y/x][x ← u][y ← u] (|t|x ≥ 2)

(let y = z v in t)[x ← u] −→inl let y = z v[x ← u] in t
(let y = z v in t)[x ← u] −→inr let y = z v in t[x ← u]

where (|t|x = 0, |v|x ≥ 1) and (|t|x ≥ 1, |v|x = 0) respectively

t x[x ← λz.u] −→apc p[y ← u[z← v]]
t x[x ← let w = z q in u] −→out let w = z q in t x[x ← u]

where t x is of the shape let y = x v in p with (|v|x = 0, |p|x = 0)

t[x ← u][y ← v] −→cmp t[x ← u[y ← v]] (|t|y = 0, |u|y ≥ 1)

t[x ← u][y ← v] ≡e t[y ← v][x ← u] (x 6∈ v, y 6∈ u)

Figure 8: Reduction rules and equation of the λs-calculus

immediately related to the structure of a corresponding standard application. The
choice of reduction rules as adaptations of the rules of λes into the setting of pure
explicit substitutions, and the fact that apc was introduced as a compound of more
standard steps, suggests that λe enjoys the PSN property, but we leave the question
of the proof technique to use open.

Proving this result would show that explicit substitutions calculi, with rules for
composition of substitutions, can be as well-behaved in the setting of pure explicit
substitutions, with a sequential form of application, as in the standard case. Indeed,
the λe-calculus that we have presented here is confluent, it allows to simulate in
a sensible way the standard λ-calculus, and with this result we would make sure
that it preserves the strong normalisation of λ-terms, although it introduces a clear
distinction between pure application and β-redexes.

Other calculi. As in the standard case, there are other possible presentations
of a calculus with pure explicit substitutions, and in particular we can refine the
λe-calculus the same way λes was refined into the λs-calculus. This would lead
to the λs-calculus, for which the reduction rules are shown above in Figure 8. The
operational behaviour of this system is similar to the one of λe, with the difference
that duplication of substitutions is decoupled from propagation into terms that
have several compound subterms, and side conditions are expressed in terms of the
number of occurrences of variables bound in explicit substitutions. We could use
the same techniques as before to show that this refined calculus is also confluent,
simulates β-reduction and has the PSN property. Finally, the λlxr-calculus could
also be adapted to the setting of pure explicit substitutions, by modifying λs for
example, to control the not and dup rules with explicit resource operators.

2 — Cut Elimination and Explicit Substitutions 1052 — Cut Elimination and Explicit Substitutions 1052 — Cut Elimination and Explicit Substitutions 105

2.4 The Sequent Calculus and Pure Explicit Substitutions

In the sequent calculus, the cut rule has always the status of a rule, and this is the
only rule that is normally eliminated from any proof to obtain its normal form. It
can be given the same interpretation in this setting as in natural deduction, through
the typing of an explicit substitution. The difference between interpretation of the
sequent calculus and of natural deduction is not in the use of the cut, but in the
handling of applications. Since there is no implication elimination rule in LJ, it is
impossible to type the standard application in a system based on LJ. This is where
pure explicit substitutions come into play: the left implication rule can be used to
type the sequentialised, general form of application they use, with the rule:

Γ ` u : A ∆, z : B ` t : C
let −−
Γ,∆, x : A→ B ` let z = x u in t : C

which simply ensures that the argument u given to the function x : A→ B has the
correct type A, and it requires to type t under the assumption that the result z of
this application is of type B. The simplest example for a correspondence between
functional terms and the sequent calculus is therefore not λx in this setting, but its
variant λx. We can now update our picture:

Logic Computation

proof P of A in LJa∪ {cut} closed λx-term t of type A

cut on B in P redex u[x ← v] in t, with v of type B

cut elimination in P strong reduction t −→∗
λx

r

where the sytem LJa∪ {cut} is an » additive « presentation14 of intuitionistic logic
in the sequent calculus. The use of other variants of LJ as the basis for type systems
induces a correspondence with some other λ-calculi with pure explicit substitutions
which were described previously. In particular, using separate rules for weakening
and contraction will have the same effect here than in natural deduction, and leads
to consider calculi using an elaborate form of management of resources.

The type system Sx for the λx-calculus is given below in Figure 9, and it uses
the same rules as Sx, except for the app which is replaced with let15 — and
the con rule which will not be used from now on, since we can decide not to use
constants, and it is not a particularly interesting rule. This system is syntax-directed
and behaves the same as Sx, with a terminating typing process, uniqueness of the
computed type, and it provides a matching between proofs and terms — where the
sequential application in λx corresponds to the use of the left implication rule.

14This system is not completely additive since the succedent of the sequent is not duplicated in the
left implication rule, but otherwise it conforms to the policies of duplication of additive systems.

15In this variant of the let rule, the assumption on the type of x is part of the multiset Γ, and this is
denoted by Γ 3 x :A→ B to avoid explicitly writing this assumption in the premises — where x appears,
since it is duplicated when Γ is duplicated.

106 2 — Logical Foundations for Computation106 2 — Logical Foundations for Computation106 2 — Logical Foundations for Computation

var −−−−−−−−−−−−−−−−−−−−
Γ, x : A ` x : A

Γ ` u : A Γ, x : A ` t : B
sub −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t[x ← u] : B

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

Γ ` u : A Γ, z : B ` t : C
let −−−
Γ 3 x : A→ B ` let z = x u in t : C

Figure 9: Type system Sx for the λx-calculus

We can now consider the reduction rules of λx and describe how they relate to
the rewriting steps on proofs used in the cut elimination procedure for the sequent
calculus, as described in Chapter 1. The reduction cases are:

1. The reduction rule t[x ← y] −→ren y corresponds to the erasure of a cut
introducing a lemma reduced to an axiom instance:

var −−−−−−−−−−−−−
Γ ` y : A Γ, x : A ` t : B

sub −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ 3 y : A ` t[x ← y] : B

−→ Γ 3 y : A ` t{y/x} : B

2. The reduction rule x[x ← u] −→var u corresponds to the replacement of an
axiom by the proof of the lemma involved in the cut:

Γ ` u : A
var −−−−−−−−−−−−−−−−−−−−
Γ, x : A ` x : A

sub −−−
Γ ` x[x ← u] : A

−→ Γ ` u : A

3. The reduction rule z[x ← u] −→nov z corresponds to the erasure of the cut
and of the proof of the lemma, when an axiom on another formula than the
lemma is encountered:

Γ ` u : A
var −−−−−−−−−−−−−−−−−−−−
Γ, x : A ` z : B

sub −−−
Γ 3 z : B ` z[x ← u] : B

−→ var −−−−−−−−−−−−−−−−−−−−−−−
Γ 3 z : B ` z : B

4. The reduction rule (λy.t)[x ← u] −→lam λy.t[x ← u] corresponds to the
permutation of the cut above an introduction instance, so that the derivation:

Γ ` u : A

Γ, x : A, y : C ` t : D
lam −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, x : A ` λy.t : C → D

sub −−−
Γ ` (λy.t)[x ← u] : C → D

is turned into the following derivation:

Γ, y : C ` u : A Γ, y : C , x : A ` t : D
sub −−

Γ, y : C ` t[x ← u] : D
lam −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λy.t[x ← u] : C → D

2 — Cut Elimination and Explicit Substitutions 1072 — Cut Elimination and Explicit Substitutions 1072 — Cut Elimination and Explicit Substitutions 107

5. The rule (let y = z v in t)[x ← u] −→let let y = z v[x ← u] in t[x ← u]
corresponds to the permutation of the cut above a left implication instance,
so that the derivation:

Γ ` u : A

Γ, x : A ` v : B Γ, x : A, y : C ` t : D
let −−

Γ, x : A ` let y = z v in t : D
sub −−

Γ 3 z : B→ C ` (let y = z v in t)[x ← u] : D

is turned into the following derivation:

Γ ` u : A Γ, x : A ` v : B
sub −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` v[x ← u] : B

Γ, y : C ` u : A Γ, y : C , x : A ` t : D
sub −−

Γ, y : C ` t[x ← u] : D
let −−

Γ 3 z : B→ C ` let y = z v[x ← u] in t[x ← u] : D

and the complete typing derivation above the premise Γ ` u : A needs to be
duplicated, and plugged above both copies of this premise.

6. The rule (let y = x v in t)[x ← λz.u] −→apd t[y ← u[z ← v]][x ← λz.u]
corresponds to the permutation of the cut above a left implication instance
where the lemma is the formula decomposed, so that the derivation:

Γ, z : A ` u : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λz.u : A→ B

Γ, x : A→ B ` v : A Γ, x : A→ B, y : B ` t : C
let −−

Γ, x : A→ B ` let y = x v in t : C
sub −−

Γ ` (let y = x v in t)[x ← λz.u] : C

is turned into the following derivation:

Γ, z : A ` u : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λz.u : A→ B

��
��

��
�???????

D1

Γ, x : A→ B ` t[y ← u[z← v]] : C
sub −−

Γ ` t[y ← u[z← v]][x ← λz.u] : C

where D1 is the derivation:

Γ, x : A→ B ` v : A Γ, x : A→ B, z : A ` u : B
sub −−−

Γ, x : A→ B ` u[z← v] : A Γ, x : A→ B, y : B ` t : C
sub −−

Γ, x : A→ B ` t[y ← u[z← v]] : C

7. The reduction rule t[x ← let y = z v in u]−→out let y = z v in t[x ← u]
corresponds to the permutation of the cut above a left implication instance
located in the proof of the lemma, so that the derivation:

Γ ` v : B Γ, y : C ` u : A
let −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` let y = z v in u : A Γ, x : A ` t : D
sub −−−
Γ 3 z : B→ C ` t[x ← let y = z v in u] : D

108 2 — Logical Foundations for Computation108 2 — Logical Foundations for Computation108 2 — Logical Foundations for Computation

var −−−−−−−−−−−−−−−−−−−−
Γ, x : A ` x : A

Γ ` u : A Γ, x : A ` t : B
sub −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t[x ← u] : B

Γ ` t : B
rem −−−−−−−−−−−−−−−−−−−−
Γ, x : A ` t : B

Γ, x : A, y : A ` t[y/x] : B
dup −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, x : A ` t : B

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

Γ ` u : A Γ, z : B ` t : C
let −−−
Γ 3 x : A→ B ` let z = x u in t : C

Figure 10: Type system Ss for the λs-calculus

is turned into the following derivation:

Γ ` v : B

Γ, y : C ` u : A Γ, y : C , x : A ` t : D
sub −−

Γ, y : C ` t[x ← u] : D
let −−−
Γ 3 z : B→ C ` let y = z v in t[x ← u] : D

Notice that in the λx-calculus, the last case, where a left implication instance is
moved down from the left premise of a cut, under this cut, is not always accepted
as a valid rewriting, since the out rule can be applied only when the term t under
the substitution [x ← u] is itself an application of x to some other term v. This is
necessary to preserve the confluence, and this can also be seen on the logical level,
since an unrestricted permutation of rules from the left premise of a cut would lead
to different proofs as results of the cut elimination procedure.

Refined calculi. As in the setting of standard calculi with explicit substitution,
based on natural deduction, the basic λx-calculus can be refined to treat resources
more carefully, and type systems improving on Sx can be defined for these calculi.
In particular, the type system Ss, shown above in Figure 10, allows to establish a
correspondence between the multiplicative presentation of LJ and the λs-calculus
with pure explicit substitutions. The system Ss, just as Ss, is not syntax-directed
because the calculus allows free duplication of substitutions, so that the structural
rules can be applied at any point.

The reduction rules of λs correspond to the same cases as shown above for λx,
but where the typing assumptions are treated in a multiplicative way. The two new
rules rem and dup interact with the rule sub exactly as in the λs-calculus:

Γ ` u : A

∆ ` t : B
rem −−−−−−−−−−−−−−−−−−−−−
∆, x : A ` t : B

sub −−
Γ,∆ ` t[x ← u] : B

−→
∆ ` t : B

rem∗ =================
Γ,∆ ` t : B

and contraction is also equivalent to the permutation and duplication of a cut above
a contraction, when this contraction affects the cut formula.

3 — Linear Logic and Resources 1093 — Linear Logic and Resources 1093 — Linear Logic and Resources 109

3 Linear Logic and Resources

Historically, the development of structural proof theory, in the frameworks defined
by Gentzen, Prawitz and others, was tied to the development of logical approaches
to computation, mainly through the Curry-Howard correspondence and its various
extensions. In particular, the treatment of erasure and duplication of assumptions,
its relation to intuitionism and constructivism, and its use in the design of various
functional interpretations can be seen as a motivation for the introduction of linear
logic [Gir87], where this question is made explicit by the strict distinction between
connectives allowing erasure and duplication, and linear connectives. As it implies
that one can deal explicitly with the availability of » enough « copies of a formula,
for example, linear logic is often described as the logic of resources, and motivated
many investigations around this topic, in terms of different logical approaches to
computation, such as logic programming [HM94] and typed functional languages
with complexity bounds [Gir98, Laf04]. The general methodology used in linear
logic, proceeding by decomposition of existing system, through a careful structural
analysis, and validating this by the recomposition of the original system, has been
influential, for example in the development of the deep inference methodology.

3.1 A Linear Decomposition of Classical Logic

The basic idea of disallowing erasure and duplication of usual formulas, and then
allowing that only when a particular operator is used, comes from the intuitionistic
setting, through the analysis of models of System F. Indeed, the usual interpretation
of the type A→ B is a function taking an argument A and returning some result
B, disregarding how many copies of the argument are needed to actually compute
the result. The decomposition performed in linear logic is written !A−◦ B, and this
can be interpreted as a function asking for » as many copies of A as required « and
returning exactly one copy of the resulting B.

However, the most general, and original presentation of linear logic is classical,
using disjunctive and conjunctive connectives rather than the linear implication−◦,
and it can be described as a decomposition of the standard presentation of classical
logic in the sequent calculus.

Multiplicatives and Additives. The linear decomposition of LK is based on the
observation, described in Chapter 1, that there are two alternative presentations,
where weakening and contraction are handled differently. For example, ∧ could be
described by an inference rule with built-in contraction, or by a rule that requires
to split the context, so that contraction would be implemented in another inference
rule. This can be expressed as follows:

` Γ, A ` Γ, B
∧ −−−−−−−−−−−−−−−−−−−−
` Γ, A∧ B

≡
` Γ, A `∆, B
∧ −−−−−−−−−−−−−−−−−−−−−
` Γ,∆, A∧ B

+
` Γ, A, A

cont −−−−−−−−−−−
` Γ, A

and the idea is to allow the use of both kinds of rules in the same system, through
a distinction between a multiplicative ∧ and an additive ∧.

110 2 — Logical Foundations for Computation110 2 — Logical Foundations for Computation110 2 — Logical Foundations for Computation

In linear logic, each classical connective and unit is divided into its two possible
variants, multiplicative or additive. Syntactically, this doubles the number of logical
symbols, and allows to control the use of variants of the standard classical rules.

Classical Mutiplicative Additive

∨ O ⊕

∧ ⊗ N

> 1 >

⊥ ⊥ 0

The connectives of linear logic16 also inherit the nice symmetries of conjunction
and disjunction in classical logic, within their structural category, so that O is the
dual of ⊗ while ⊕ is the dual of N, and for the units we have 1 dual to ⊥ while >
is dual to 0. However, this decomposition and the rules corresponding to the two
structural presentations, even used together in the same system, does not allow to
define a system that would be complete with respect to classical logic [Hug10].

Exponentials and Unbounded Behaviour. The missing piece in the definition
of a complete decomposition of classical logic is the ability to erase or to duplicate
formulas, as allowed by the weakening and contraction rules in LK. In linear logic,
the formulas that can be erased or duplicated are marked using a unary connective,
so that weakening and contraction can be defined as rules which apply only on the
formulas of the shape ?A — and to preserve symmetry, the dual of ? is also defined
and denoted by !17 so that we can write (?A)⊥ = !A⊥.

These two new connectives are called the exponentials, and they have particular
properties with respect to the multiplicative and additive connectives. Indeed, they
represent weakening and contraction, and as mentioned these structural operations
are exactly the difference between the two basic categories of linear logic formulas,
as expressed in the following equations:

!(AN B) ≡ !A⊗ !B and ?(A⊕ B) ≡ ?AO ?B

which are valid equivalences in linear logic. This makes explicit the fact that the
exponentials are needed to relate multiplicative and additive connectives, in order
to have a system complete for classical logic — that is, a system which can simulate
the LK sequent calculus. Indeed, using a mixture of the multiplicative and additive
presentations of conjunction and disjunction, it is impossible to define a classically
complete system [Hug10], because there are formulas in which it is necessary to
consider some connectives as a blend of multiplicative and additive flavours.

16The symbols used for connectives in linear logic are meant to express their interpretations, and have
become standard in the literature: O is called » par « and ⊗ is called » tensor « while ⊕ is called » plus «
and N is called » with « and the units are simply read » one, bottom, top « and » zero «.

17In the linear logic literature, the symbol ? is called » why not « and the symbol ! is called » of course «,
or sometimes » bang « — this raises the question of a name for ? that would be short: some say » plic «.

3 — Linear Logic and Resources 1113 — Linear Logic and Resources 1113 — Linear Logic and Resources 111

ax −−−−−−−−−−
` A, A⊥

1 −−−−
` 1

` Γ, A, B
O −−−−−−−−−−−−−−
` Γ, AO B

` Γ, A `∆, A⊥
cut −−−−−−−−−−−−−−−−−−−−−−−

` Γ,∆

` Γ
⊥ −−−−−−−−−
` Γ,⊥

` Γ, A `∆, B
⊗ −−−−−−−−−−−−−−−−−−−−−
` Γ,∆, A⊗ B

Figure 11: Inference rules for system MLL∪ {cut}

3.2 Fragments of Linear Logic

The design of linear logic has the nice property that its sequent calculus LL can be
divided into fragments, with different purposes, that can be composed in different
ways or used all together as the calculus for full linear logic.

Purely multiplicative fragment. The first and most foundamental fragment of
linear logic is called MLL, and it deals only with multiplicative connectives. This is
the heart of linear logic, since MLL contains both the identity axiom, and the cut
rule when it is used. The inference rule for this sequent calculus are given above in
Figure 11, and it can be observed immediately that through the translation of linear
formulas into classical formulas, this is nothing else than LK without weakening
and contraction.

Example 3.1. Below are shown two proofs in MLL illustrating the use of inference
rules, in particular for units in the proof on the left, and the interaction between dual
connectives in the proof on the right.

1 −−−−
` 1

ax −−−−−−−−−−
` A, A⊥

⊥ −−−−−−−−−−−−−−
` A, A⊥,⊥

O −−−−−−−−−−−−−−−−−
` A, A⊥O⊥

⊗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A,1⊗ (A⊥O⊥)

ax −−−−−−−−−−−
` B, B⊥

ax −−−−−−−−−−
` A⊥, A

⊗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A⊥, B, B⊥ ⊗ A

O −−−−−−−−−−−−−−−−−−−−−−−−−
` A⊥O B, B⊥ ⊗ A

It is important to notice the consequences of linearity, as shown in the two derivations
below — on the left, the B⊥ formula prevents the use of an axiom on A, and in the one
on the right, the use of the cut illustrates how the meta-level is also made linear, by
splitting contexts in a multiplicative way rather than duplicating formulas.

ax −−−−−−−−−−−
` B⊥, B

` A, B⊥, A⊥
O −−−−−−−−−−−−−−−−−−−
` AO B⊥, A⊥

⊗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` AO B⊥, B⊥, B⊗ A⊥

ax −−−−−−−−−−−−−−−−−−−−−−−−−
` A⊗ B, A⊥O B⊥

ax −−−−−−−−−−
` A, A⊥ ` B

⊗ −−−−−−−−−−−−−−−−−−
` A⊗ B, A⊥

cut −−−
` A⊗ B, A⊥

112 2 — Logical Foundations for Computation112 2 — Logical Foundations for Computation112 2 — Logical Foundations for Computation

> −−−−−−−−−
` Γ,>

` Γ, A
⊕L −−−−−−−−−−−−−−` Γ, A⊕ B

` Γ, B
⊕R −−−−−−−−−−−−−−` Γ, A⊕ B

` Γ, A ` Γ, B
N −−−−−−−−−−−−−−−−−−−−
` Γ, AN B

Figure 12: Inference rules of the additive fragment of LL

Multiplicative, additive fragment. Beyond the core multiplicative fragment of
the logic, the first step is to use additive connectives. However, there is no purely
additive fragment, because there is no equivalent of the identity rule there. In order
to use the rules for additives, we add them to the multiplicative fragment to define
the MALL system. The inference rules for the additive connectives extending MLL

into this new calculus are shown above in Figure 12.
In this fragment, the > unit is the source of problems, because its associated

inference rule erases the other formulas in a sequent containing it, although these
formulas are separated by commas — and the comma is logically equivalent to the
O connective, which is multiplicative. In particular, the handling of permutations
involving > is complicated, since permuting this rule downwards in a proof erases
parts of the proof, and this is an irreversible change.

Example 3.2. Below are shown two proofs in the MALL fragment, illustrating how
the additive connectives behave and interact with each other. The one on the left shows
how the additive truth unit allows to close branches without applying the identity
rule, and on the right we can see that an additive disjunction must match an additive
conjunction — if the ⊕ was a O there, the proof could not be completed.

> −−−−−−−−−−−−
` B, A,>

O −−−−−−−−−−−−−−−
` B, AO>

⊕L −−−−−−−−−−−−−−−−−−−−−−−−` B, (AO>)⊕ 0

ax −−−−−−−−−−
` A, A⊥

⊕L −−−−−−−−−−−−−−−−` A⊕ B, A⊥

ax −−−−−−−−−−−
` B⊥, B

⊕R −−−−−−−−−−−−−−−−−` A⊕ B⊥, B
N −−

` A⊕ B⊥, A⊥N B

Then, the two derivations below cannot be completed because of linearity. On the left,
the sequent ` 0, B has no proof because there is no rule for 0 — it cannot be removed
by weakening. On the right, the derivation shows that even with additive formulas,
the cut is multiplicative, so that the context is linearly splitted.

ax −−−−−−−−−−
` A, A⊥

⊕L −−−−−−−−−−−−−−−−` A⊕ 0, A⊥
` 0, B

⊕R −−−−−−−−−−−−−−` A⊕ 0, B
N −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` A⊕ 0, A⊥N B

ax −−−−−−−−−−
` A, A⊥

⊕L −−−−−−−−−−−−−−−−−−` A, A⊥ ⊕ B⊥
` B⊥, A⊥

ax −−−−−−−−−−−
` B⊥, B

N −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` B⊥, AN B

cut −−
` A, B⊥

Notice that the derivation on the right could not be modified in a way that would
allows to close it, since that would require to duplicate the formula A in the conclusion,
and to erase the B⊥ in the left branch of the N rule instance.

3 — Linear Logic and Resources 1133 — Linear Logic and Resources 1133 — Linear Logic and Resources 113

` Γ
we −−−−−−−−−−
` Γ, ?A

` Γ, A
de −−−−−−−−−−
` Γ, ?A

` Γ, ?A, ?A
ce −−−−−−−−−−−−−−−
` Γ, ?A

` ?Γ, A
pe −−−−−−−−−−−
` ?Γ, !A

Figure 13: Inference rules of the exponential fragment of LL

Exponentials and Full Linear Logic. The last set of rules to add to the system
is the one dealing with exponential connectives, and as before, this is not a proper
fragment that can be used alone, but rather an extension that can be inserted into
either MLL or MALL. The set of inference rules used for exponential connectives
are shown above in Figure 13, and they can be used in the definition of two distinct
systems. When added toMALL, these rules complete it into the LL sequent calculus
for full linear logic, which provides the complete linear decomposition of classical
logic. When added to MLL, these rules yield the MELL system, where weakening
and contraction are available for formulas marked with exponentials, but where an
erasure or a duplication can never happen as a byproduct of the treatment of some
connective — as it happens in additive rules.

The exponential fragment is more complex than the others. In particular, the
promotion rule pe is unusual for the sequent calculus, because it is » non-local « in
the sense that it can only be applied if all formulas in the sequent except !A are
of the shape ?B — this is expressed by writing ?Γ in the rule. Moreover, from a
proof construction viewpoint, the other three rules can seem problematic because
they have the same conclusion, so that there is a choice to be done concerning the
formula ?A, to either erase it, linearise it or duplicate it.

Example 3.3. Below are shown two proofs in LL illustrating the use of the rules for
exponentials, showing how the modalities interact, and how the different possibilities
of applying rules can be used.

ax −−−−−−−−−−
` A, A⊥

we −−−−−−−−−−−−−−−−−
` A, A⊥, ?A⊥

de −−−−−−−−−−−−−−−−−−−
` A, ?A⊥, ?A⊥

ce −−−−−−−−−−−−−−−−−−−
` A, ?A⊥

ax −−−−−−−−−−
` A, A⊥

de −−−−−−−−−−−−
` ?A, A⊥

pe −−−−−−−−−−−−−
` ?A, !A⊥

Then, the two derivations below provide examples of how the exponentials correspond
to a bridge between the multiplicative and additive fragments, allowing here to use the
additive disjunction and conjunction as their multiplicative counterparts.

` A, B
de;⊕R

===================
` A, ?(A⊕ B)

de;⊕L
==============================
` ?(A⊕ B), ?(A⊕ B)

ce −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` ?(A⊕ B)

` A, C
we −−−−−−−−−−−−−−
` A, ?B, C

de −−−−−−−−−−−−−−−−
` ?A, ?B, C

` B, D
de −−−−−−−−−−
` ?B, D

we −−−−−−−−−−−−−−−−
` ?A, ?B, D

N −−
` ?A, ?B, C N D

114 2 — Logical Foundations for Computation114 2 — Logical Foundations for Computation114 2 — Logical Foundations for Computation

3.3 Computational Significance

Linear logic is relevant to the logical approach of computation in several ways. Its
definition was originally motivated by the fine-grained analysis of the semantics of
the λ-calculus which lead to the introduction of coherence spaces [GLT89], and it
is often described as a refinement of intuitionistic logic although it is » classical « in
the sense that it is highly symmetric and has an involutive negation. In particular,
the cut elimination procedure of the LL sequent calculus is confluent, whereas in
LK it is not confluent, as shown by Lafont’s counter-example — where a weakening
is applied on both occurrences of a cut formula. In general, the improvement of
linearity over the traditional intuitionistic and classical logics lies in the expressivity
of the formulas, which describe in more details the behaviour of the corresponding
inference rules, in particular when it comes to the handling of resources.

Proofs as programs. As a constructive logic, in the tradition of intuitionism,
linear logic was a good candidate to be the basis of a correspondence following the
Curry-Howard tradition, where linear proofs would be interpreted as programs in
some term calculus and cut elimination in LL would represent computation in this
calculus. Along these lines, there are different possible approaches, among which
the interpretation of the intuitionistic fragment of linear logic — where disjunction
in its multiplicative form O is replaced with the linear implication −◦ and sequents
are restricted accordingly — as a type system for variant of the λ-calculus, and the
interpretation of classical LL as type system for some process algebra, were studied
intensively in the hope of establishing linear logic as a foundational tool in the field
of computational logic [Abr93, BS94].

Beyond the distinction between multiplicative and additive connectives, which
allows intersting distinctions in the constructs of a language based on linear logic,
the exponentials are crucial in the definition of a » linear « variant of the λ-calculus,
where linearity is understood as a control of erasure and duplication rather than a
simple ban, which would induce a very weak calculus. The most important rule of
LL in this regard is promotion, since it enforces a restriction on the variables that
can be used in the typing context of a term typed with a formula !A. Intuitively, and
through the observation that a cut associates formulas of the shape !B and ?B, this
means that only variables attached to a duplicable term can be used in a duplicable
term — since !A is the type of a term that can be used several times.

Proof search. The sequent calculus LL for linear logic is also of great interest
in terms of proof construction, and has therefore received a lot of attention in
the studies where proof search is seen as computation [HM94, BG96]. Indeed, in
linear logic, the distinction between the multiplicative and the additive treatments
of connectives is built inside the formulas, so that the expressivity is improved by
allowing to mix these two styles. Moreover, the shape of the LL sequent calculus
has lead to the introduction of focused proofs [And92], a refinement of the notion
of uniform proofs [MNPS91]which has taken a very important role in the structural
approach to logic programming. The focusing technique has revealed to be a deep
result in proof-theory, was extended to various other logics, and impacted both the
logical approach to computation and functional interpretations.

4 — Proof Search as Logical Computation 1154 — Proof Search as Logical Computation 1154 — Proof Search as Logical Computation 115

4 Proof Search as Logical Computation

The purely logical approach to computation called logic programming is based on
the idea that programs can be encoded in the formulas of a logic, so that proving
this formula is equivalent to the computation of the program. This is the basis of
the Prolog language [MW88], and that can be supported on the theoretical level by
several approaches. The most common description of logic programming defines it
as an application of the resolution method [Rob65], which is indeed the basis for
most implementation of Prolog, but this viewpoint has drawbacks. In particular, it
makes the extension of the language difficult, if one wants to retain the purity of
the logical interpretation.

Logic programming can also be described in the terms of structural proof theory
[BG03], and this approach has been mostly based in the framework of the sequent
calculus. A benefit of this approach is that various logics can be used, possibly with
different languages of formulas that can provide for the right level of expressivity,
depending on the task. Following this methodology, the proof construction process
of a sequent calculus is seen as computation, but usually, not all possible proofs
of a system are considered as valid computation trace. In order to give a sensible
operational meaning to to a program written as a formula, only particular rules
and instances should be accepted in a system. This has lead to the definition of the
notion of uniform proofs [MNPS91], an important milestone in the proof theoretical
presentation of logic programming.

4.1 Computational Interpretations of Formulas

The basic layer of logic programming is the syntax for formulas, which is also the
syntax for programs. Intuitively, the construction of a proof for some formula in a
sequent calculus system does not produce any result, or any output, but simply says
whether this formula is provable or not. However, in a system using quantifiers,
there is one important result produced by this process: the instantiations chosen
for variables when an existential formula ∃x .A is proved, which are the witnesses of
the provability of this formula — an instantiation is also produced when treating a
universal quantification, when it is used as an hypothesis. Therefore, the program
» produce an object x satisfying the property P « can be written » is there an object x
such that the property P(x) holds ? « and such queries are the basic way of obtaining
the result of a computation in logic programming.

A logic program is a set of clauses, which are logical formulas of some particular
shape. The most common, intuititive kind of clause is:

∀x1. · · ·∀xn.(b1 ∧ · · · ∧ bk → a)

which represents the piece of program stating that under any instantiation of the
variables x1 to xn, the fact a holds if all of the facts b1 to bk hold as well. Then,
such clauses are gathered in the antecedent of a sequent to form a complete logic
program P, and the succedent of the sequent is the query that we try to answer
under the program P.

116 2 — Logical Foundations for Computation116 2 — Logical Foundations for Computation116 2 — Logical Foundations for Computation

The execution of the query under the given program is simply the search for
a proof of this sequent, and inference rules in this setting are nothing more than
the transition of some logical machine, which implements this logical language the
same way as an abstract machine can implement a λ-calculus. Once the proof has
been built, the substitution created by applying rules for quantifiers contains the
expected result — if a proof was found, because the search could fail, and failure
does not always mean that there is no result, but rather that it could not be found
by the logical engine.

In this setting, any refinement of the standard intuitionistic and classical logics
provides improvements in the language and the operational behaviour of programs.
For example, the use of linear logic allows to control the way resources can be used
in clauses, so that one can write (b⊗ b)−◦a to specify that the resource b is needed
twice to produce the fact a. The rich language of linear logic [HM94] provides a
gain in expressivity and allows to treat problems that could not be solved otherwise,
and other extensions such as the ∇ quantifier offer solutions for complex problems
— involving binders, for example [TM04].

4.2 Normal Forms and Proof Search

The standard proof systems in the sequent calculus, such as LJ, LK or LL, are not
used directly in proof search, but modified to avoid potential problems such as the
possibility to apply freely structural rules. The notion of uniform proofs [MNPS91]
is based on the study of the deductive constructs providing a reasonable framework
for executing logic programs, and this lead to the notion of focusing [And92], which
defines a particularly well-behaved normal form for linear logic proofs, and allows
for structured and efficient proof search. To illustrate this, we can consider the case
of uniformity in the intuitionistic setting.

Definition 4.1. In an intuitionistic sequent calculus, a proofP is uniform if and only
if for any sequent Γ ` A in P , if A is not an atomic formula then this sequent is the
conclusion of a right rule.

The focusing methodology is more general, and consists in the definition of a
focused variant of a given sequent calculus, where annotations are introduced to
restrict the application of inference rules, based on the permutability properties of
these rules and the notion of polarity of connectives. According to this idea, there
are two categories of connectives in linear logic:

• The negative connectives O, N and ?, and the units ⊥ and >, for which the
inference rules are invertible, and can thus be applied eagerly.

• The positive connectives ⊗, ⊕ and !, and both units 1 and 0, for which the
inference rules are not invertible, and should be applied only after other rules
have been used to prepare the context.

An intuitive idea on negative and positive connectives is that negatives are » easy «
and require no intelligence, while positives need a » clever guess « to be decomposed
the right way, but the situation is actually slightly more complicated than this.

4 — Proof Search as Logical Computation 1174 — Proof Search as Logical Computation 1174 — Proof Search as Logical Computation 117

More precisely, it is preferable to consider the permutability of inference rules
rather than the polarity of connectives. We can make the distinction between two
categories of rules, related to the notion of negative and positive but more specific
to the focusing approach:

• The asynchronous rules have full permutability, so they can be permuted with
any other rule instance, provided that the formula they decompose is present
in the sequent after permutation.

• The synchronous rules have weak permutability, they can only be permuted
with other synchronous rule instances.

The standard syntax of focused systems follows Andreoli [And92], introducing
two arrows ⇓ and ⇑ to signal the synchronous or asynchronous state of a sequent,
respectively, and it uses a stoup to store formulas that can be duplicated or erased
because they have be extracted from an exponential ? modality. There are then two
kinds of triadic sequents:

` Γ | ∆ ⇓ A and ` Γ | ∆ ⇑ Ψ

where Γ is the multiset of duplicable formulas, in the stoup on the left of | while
∆ is a multiset of linear formulas. On the right of the arrow, there is exactly one
formula if the the sequent is in a synchronous state denoted by ⇓ and a multiset of
formulas if the sequent is in an asynchronous state, denoted by the ⇑ arrow. Then,
some rules will depend on the nature of a formula in the sequent, so that we need
to use the two categories described below:

P,Q ::= a | 1 | A⊗ B | 0 | A⊕ B | !A

N , M ::= a | ⊥ | AO B | > | AN B | ?A

and we also write P◦ to denote a formula which is either a positive P or a negative
atom. The triadic focused system LLF is defined by the set of rules shown below
in Figure 14. It is separated in three fragments: the decision and reaction rules are
required to handle the state of sequents and start or end phases, which are either
synchronous or asynchronous and are performed by the rules of the corresponding
fragments.

Remark 4.2. The rules of LLF are such that negative formulas are treated only in the
asynchronous rules and positive formulas are treated in the synchronous rules, but it
is not directly similar to the basic LL system, since it uses triadic sequents where the
modality ? can be immediately treated only because the stoup allows the duplication
of formulas. This » trick « reflects to the fact that exponentials do not fit perfectly the
scheme of negative and positive formulas, and in particular that the treatment of ? is
complex, from the viewpoint of proof search.

The idea behind this focused system was originally motivated by proof search
considerations. It defines a particular strategy to build a proof, where all negative
connectives are first maximally decomposed, and then one positive is picked and
maximally decomposed. Some new negative formulas might have been added to
the sequent by this decomposition, and proof search goes on as it started, and this
is repeated until the proof is complete.

118 2 — Logical Foundations for Computation118 2 — Logical Foundations for Computation118 2 — Logical Foundations for Computation

Decision and Reaction

` Γ | ∆ ⇓ P
d −−−−−−−−−−−−−−−−−−−
` Γ | ∆, P ⇑ ·

` Γ, P | ∆ ⇓ P
d! −−−−−−−−−−−−−−−−−−−−−
` Γ, P | ∆ ⇑ ·

` Γ | ∆ ⇑ N
re −−−−−−−−−−−−−−−−−
` Γ | ∆ ⇓ N

Asynchronous Phase

> −−−−−−−−−−−−−−−−−−−−−−
` Γ | ∆ ⇑ >,Ψ

` Γ | ∆ ⇑ Ψ
⊥ −−−−−−−−−−−−−−−−−−−−−−
` Γ | ∆ ⇑ ⊥,Ψ

` Γ | ∆ ⇑ A, B,Ψ
O −−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ | ∆ ⇑ AO B,Ψ

` Γ | ∆, P◦ ⇑ Ψ
n −−−−−−−−−−−−−−−−−−−−−−−
` Γ | ∆ ⇑ P◦,Ψ

` Γ, A | ∆ ⇑ Ψ
? −−−−−−−−−−−−−−−−−−−−−−−
` Γ | ∆ ⇑ ?A,Ψ

` Γ | ∆ ⇑ A,Ψ ` Γ | ∆ ⇑ B,Ψ
N −−

` Γ | ∆ ⇑ AN B,Ψ

Synchronous Phase

ax −−−−−−−−−−−−−−−−−−
` Γ | a⊥ ⇓ a

1 −−−−−−−−−−−−−−
` Γ | · ⇓ 1

` Γ | ∆ ⇓ A ` Γ | Φ ⇓ B
⊗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` Γ | ∆,Φ ⇓ A⊗ B

` Γ | · ⇑ A
! −−−−−−−−−−−−−−−−
` Γ | · ⇓ !A

` Γ | ∆ ⇓ A
⊕L −−−−−−−−−−−−−−−−−−−−−−−` Γ | ∆ ⇓ A⊕ B

` Γ | ∆ ⇓ B
⊕R −−−−−−−−−−−−−−−−−−−−−−−` Γ | ∆ ⇓ A⊕ B

Figure 14: Inference rules for the triadic system LLF

The strategy enforced by the focused sequent calculus corresponds to a kind of
cyclic decomposition of LL proofs, where all the complex operations of search are
concentrated in the synchronous phases, while asynchronous phases correspond to
eager decomposition of connectives, which can be performed because the rules of
this fragment are all invertible. In this scheme, the stoup is used to delay the choice
of treatment for formulas of the shape ?A, which are automatically duplicated or
erased when needed, in other rules, since this part of a sequent is treated additively
in branching rules as in the axiom rules.

Remark 4.3. Here, we have defined the atoms as basically positive, and negated atoms
are negative formulas. However, one can choose freely the polarity of all atoms in a
formula, as long as this bias assignment is consistent with negation, so that a and a
have opposite polarities [MS07].

4 — Proof Search as Logical Computation 1194 — Proof Search as Logical Computation 1194 — Proof Search as Logical Computation 119

The focused normal form of proofs in LL, described by this LLF restriction, is
quite strong in the sense that many proofs are made invalid — they correspond
to the proofs that can be forgotten during proof search, because their structure is
not well-organised and they cannot be obtained by following the strategy described
above. The somewhat surprising, and important result, is the completeness of this
normal form, called the focusing result for LL.

Proposition 4.4. Given a formula A of linear logic, if there is a proof of the sequent
` A in LL, then there is a proof of ` · | · ⇑ A in the focused LLF system.

There are several different proofs of this result, using different approaches. The
original proof given by Andreoli [And92] is directly based on permutations of rule
instances, and is quite tedious. Other proofs include the one given based on the cut
elimination result [Lau04] and a modular proof based on graphs [MS07]. In all of
these proofs, the permutability properties of the inference rules of LL are crucial
to the result, since they reflect the behaviour of linear connectives and justifies the
restrictions imposed by focusing.

The focusing technique has been extended to other logics, starting with both of
the standard intuitionistic and classical sequent calculi LJ [LM07] and LK [LM09].
Notice that all these results are closely related to the studies of polarities in linear,
intuitionistic and classical logic [Lau02], and some systems using polarities have
the same underlying ideas than focused systems [Gir91].

120 2 — Logical Foundations for Computation120 2 — Logical Foundations for Computation120 2 — Logical Foundations for Computation

PART 2

Intuitionistic Logic
in Deep Inference

Chapter 3

Intuitionistic Logic
in Nested Sequents

In this chapter, we introduce a family of intuitionistic proof systems following
the principles of nested deduction, in the setting of the nested sequents formalism
where the deep inference methodology is tamed by dividing the representation of
proofs into the object logical level, and the deductive meta-level. Syntactically, this
means that we present a generalisation of the sequent calculus LJ where sequents
can appear nested inside other sequents, but where most inference rules are similar
to the standard ones. The conceptual difference with a » shallow « calculus is simply
that branching is replaced with nesting, as illustrated by the figure below.

��
��

��
??????D

∆ ` A
��

��
��

�???????
P

Γ, B ` C
→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ,∆, A→ B ` C

−→

−
P

Γ, [· ` B] ` C
D

Γ, [∆, A` B] ` C
−−−−−−−−−−−−−−−−−−−−−−−−−
Γ,∆, A→ B ` C

In order to illustrate the many possibilities offered in a nested deduction setting
regarding the design of a set of inference rules, we present various systems where
structural rules are either built inside other rules or used separately. Moreover, we
show how these systems relate to the usual sequent calculus LJ, and prove that
they are sound and complete with respect to intuitionistic logic.

Then, we study the most foundamental property of intuitionistic systems, from
the perspective of structural proof theory: the ability to transform a proof that does
not respect the subformula property into a normal proof where every rule instance
is analytic. In the sequent calculus and in the basic nested sequent presentation,
this is cut elimination and it consists in our new systems in a series of permutations
of a cut instance upwards in a proof, until it disappears. However, we also present
an extension of these systems incorporating the principles of symmetry found in
deep inference, where all the rules have a dual. This yields a proof transformation
that is completely local — this is not the case in the basic cut elimination for nested
sequents —, and prove that it allows to remove from any proof in the symmetric
system all the rules dual to the basic rules.

124 3 — Intuitionistic Logic in Nested Sequents124 3 — Intuitionistic Logic in Nested Sequents124 3 — Intuitionistic Logic in Nested Sequents

1 Intuitionistic Nested Sequent Systems

We present here a family of proof systems for the purely implicative fragment of
intuitionistic logic which are based on the traditional sequent calculus LJ [Gen34],
but incorporate the deep inference methodology [Gug07] in the sense that sequents
can be nested [Brü10] one inside another. Unlike most systems presented in a deep
inference setting, these ones are not presented as symmetric systems [Brü03] with
two fragments, called up and down, dual to each other such that the up fragment is
admissible for the down fragment. Instead, only the cut, dual to the identity rule,
is provided and can be shown admissible via the cut elimination procedure — or
simply by translation with a cut-free system. Finally, these systems are closer to the
calculus of structures than usual nested sequents systems in the sense that they use
nesting in place of branching, and thus all inference rules have only one premise,
and derivations are sequences of inference rule instances.

1.1 Basic Definitions

All the systems we will present here are variations of the basic JN system, and share
the same structure and basic definitions. First we need a countable set of atoms,
denoted by small latin letters such as a, b, c, and the connective→ for intuitionistic
implication. We will not use any unit, nor quantifiers, so that the arrow is the only
connective we need for implicative intuitionistic logic at the propositional level.

Then, the sequents we will use are an extension of usual intuitionistic sequents
where nesting is allowed, in the sense that a sequent can appear on the left-hand
side. Thus, a sequent is a pair of an antecedent and a formula, where an antecedent
is a finite, possibly empty multiset of sequents, separated by comma.

Definition 1.1. The formulas of intuitionistic logic, nested sequents of our systems
and sequent antecedents are defined by the following grammar:

A, B ::= a | A→ B δ ::= Γ ` A Γ ::= δ1, · · · ,δn

We use capital greek letters such as Γ, ∆, Ψ to denote antecedents and small
greek letters such as δ, κ, υ for nested sequents. On the notational level, we use
[·] as parentheses around nested sequents, and the short notation A for a nested
sequent ` A where the antecedent is empty, so that for example:

Γ, [∆, [` A] ` B], [` C] ` D is written as Γ, [∆, A` B], C ` D

Being in a » deep inference « setting means having the ability to apply inference
rules inside a context — that is, within another sequent, which could be itself on
the left-hand side of some other sequent, and so on. However, to simplify notations
and make it clear where inference rules can be applied, we consider only positive
contexts here, which are those located on the left-hand side of an even number of
nested sequents.

Definition 1.2. The contexts of our systems are nested sequents with a hole { }meant
to be filled by another nested sequent, and are defined by the following grammar:

ξ ::= { } | Γ, [∆,ξ ` A] ` B

1 — Intuitionistic Nested Sequent Systems 1251 — Intuitionistic Nested Sequent Systems 1251 — Intuitionistic Nested Sequent Systems 125

Remark 1.3. The important property of contexts is that they preserve polarity, so that
for example, a context plugged in a negative position has a hole in negative position.

Contexts will be denoted as ξ{ } or ζ{ }, so that for example ξ{δ} is the context
ξ where the hole has been replaced by the nested sequent δ. We can also extend
the definition of contexts to several holes, and such a context ξ is denoted by ξ{ }+.
Moreover, we can specify a family of elements located in all the holes of a context
using indices such as i, j, k, and a notation similar to the one for sums:

ξi{δi}+ = ξ{δ1} · · · {δn} for some n ∈ N (5)

and we will usually not write the annotation on the context, if there is no ambiguity
on the indices. Then, we can define inference rule instances as an instantiation of
a rule inside some context, obtained by instantiating the schematic variables in its
premise and conclusion in the hole of this context, as done in Chapter 1.

The intuitionistic proof systems that we will define in this chapter enjoy a less
complicated syntax than the classical KN system of nested sequents presented in
Chapter 1. Indeed, in the intuitionistic setting, although we need to have two-sided
sequents, the succedent of a sequent is always reduced to a formula, and we have
no need to generalise this. Such an intuitionistic nested sequent can therefore be
thought of as a normal intuitionistic sequent, where a sequent from another branch
is connected to one of the hypotheses in the antecedent, as follows, in the particular
situation where the complete proof of A is grouped above at the bottom:

−
P

Γ, [` B], C ` D
D

Γ, [[∆ ` A] ` B], C ` D

−→ ��
��

��
??????D

∆ ` A
��

��
��

�???????
P

Γ, B, C ` D
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

· · ·

1.2 A Family of Intuitionistic Proof Systems

The common basis for all systems1 we present is called JN∪ {e} and its inference
rules are shown in Figure 1. It should be noticed that the identity i and grab g rules
are exactly the same as in standard presentations of the sequent calculus [GLT89].
Then, the rules of weakening and contraction, w and c, are very similar but operate
on a whole nested sequent, and not just a formula as in a shallow system. Finally,
the rules of cut and application, called here e and a, rely on the use of nesting rather
than branching. Moreover, both of them rely on the switch rule s, a specific feature
of deep inference, to perform the context splitting required by their multiplicative
presentation, in a lazy way. One switch instance moves only one sequent from an
antecedent to the antecedent of another sequent — which is itself located in the
same antecedent as the sequent being moved.

1Although the various systems we will present have structural differences, they share a basis of
inference rules, using only variations of a small set of rules — notice that the names of some rules are
chosen to recall their computational interpretation, but the grab and application rules will also be called
right and left implication respectively, as in the sequent calculus.

126 3 — Intuitionistic Logic in Nested Sequents126 3 — Intuitionistic Logic in Nested Sequents126 3 — Intuitionistic Logic in Nested Sequents

i −−−−−−−
A` A

Γ, [A` A] ` B
e −−−−−−−−−−−−−−−−−−−−

Γ ` B

Γ, A` B
g −−−−−−−−−−−−−−−
Γ ` A→ B

Γ, [∆, A` B] ` C
a −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, [∆ ` A→ B] ` C

Γ ` A
w −−−−−−−−−−−
Γ,δ ` A

Γ,δ,δ ` A
c −−−−−−−−−−−−−−−
Γ,δ ` A

Γ, [∆, [Ψ,δ ` A] ` B] ` C
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ,δ, [∆, [Ψ ` A] ` B] ` C

Figure 1: Inference rules for the system JN∪ {e}

Example 1.4. Here are proofs in JN∪ {e} using all inference rules available. Notice
that their conclusive sequent contain sequent nesteds in the left-hand side, so that they
cannot be directly used as conclusive sequents in a usual sequent calculus system.

i −−−−−−−−
B ` B

i −−−−−−−−−−−−−−−−−−−−−−−−−−
[[A` A] ` B] ` B

s −−−−−−−−−−−−−−−−−−−−−−−−−−
[A` B], A` B

i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[[A` A], A` B], A` B

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[A, A` B], A, A` B

c −−−−−−−−−−−−−−−−−−−−−−−−−−−
[A, A` B], A` B

g −−−−−−−−−−−−−−−−−−−−−−−−−−−
[A, A` B] ` A→ B

i −−−−−−−−
B ` B

i −−−−−−−−−−−−−−−−−−−−−−−−−−
[[B ` B] ` B] ` B

i −−−
[[[[B ` B] ` B] ` B] ` B] ` B

s −−−
[[B, [B ` B] ` B] ` B] ` B

s −−
B, [[[B ` B] ` B] ` B] ` B

w −−−
B, [[[B ` B], A` B] ` B] ` B

e −−−
B, [[A` B] ` B] ` B

a −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B, [A→ B ` B] ` B

We will use the identity rule in its general form and not only in atomic form, but
it is always possible to reduce it to this particular situation, by replacing a general
instance with a derivation using atomic identities, as shown below.

Proposition 1.5. Any instance of the i rule can be replaced by a derivation in JN with
same premise and conclusion, using instances of i only in the atomic form.

Proof. We proceed by induction on the formula A affected by a general instance of
the identity rule, with premise ξ{ } and conclusion ξ{A` A}. If A is an atom a, then
this identity is already in atomic form and we are done. In the general case, A is an
implication B→ C , and we replace the initial instance by the following derivation:

ξ{ }
i −−−−−−−−−−−−−−
ξ{C ` C}

i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{[[B ` B] ` C] ` C}

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{[B ` C], B ` C}

a −−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{B→ C , B ` C}

g −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{B→ C ` B→ C}

to which we can apply the induction hypothesis.

1 — Intuitionistic Nested Sequent Systems 1271 — Intuitionistic Nested Sequent Systems 1271 — Intuitionistic Nested Sequent Systems 127

There are many possible variations of the given set of inference rules, since we
can generalise or restrict them, while retaining soundness and completeness with
respect to intuitionistic logic, and we can also merge some of them so as to restrict
the possible shapes of a proof. We list now some variants of inference rules that we
have at our disposal to build different proof systems based on JN∪ {e}:

1. The identity rule iw with built-in weakening, typical of the sequent calculus,
which allows to remove the weakening rule from the system, thus restricting
the possible shapes of proofs — it is equivalent to a derivation using several
weakenings and an identity:

iw −−−−−−−−−−−
Γ, A` A

2. The cut rule es with built-in switch, which is very close to the cut used in the
sequent calculus, and allows to remove the switch rule if it is also built in the
a rule — it is equivalent to a derivation using a cut e and several switches:

Γ, [[∆ ` A] ` A] ` B
es −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` B

3. The application rule as with built-in switch, which is a generalisation of the
usual left implication rule of the sequent calculus, and allows to remove the
switch when used together with the es rule — it is equivalent to a derivation
using an application a and several switches:

Γ, [Ψ, [∆ ` A] ` B] ` C
as −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ,∆, [Ψ ` A→ B] ` C

4. The additive switch rule sa, which performs additive context distribution,
and could also be obtained by using a general contraction on multisets of
sequents as well as a generalised switch — it is equivalent to a derivation
using several contractions and several switches:

Γ, [∆, [Ψ,Γ ` A] ` B] ` C
sa −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, [∆, [Ψ ` A] ` B] ` C

5. The cut rule esa with built-in additive switch, which resembles the additive
cut of the sequent calculus and is a generalisation of es — it is equivalent to
a derivation using a cut e and an additive switch:

Γ, [[Γ ` A] ` A] ` B
esa −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` B

6. The application rule asa with built-in additive switch, which produces a proof
system in additive style, if used together with the esa, iw and g rules — it is
equivalent to a derivation using an application a and an additive switch:

Γ, [∆, [Γ ` A] ` B] ` C
asa −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, [∆ ` A→ B] ` C

128 3 — Intuitionistic Logic in Nested Sequents128 3 — Intuitionistic Logic in Nested Sequents128 3 — Intuitionistic Logic in Nested Sequents

7. The blended cut rule ebs with built-in switch and contraction, the result of
blending a multiplicative cut and an additive cut [Hug10]— it is equivalent
to a derivation using a cut, a contraction a switch and an additive switch:

Γ,∆, [[∆,Ψ ` A] ` A] ` B
ebs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆,Ψ ` B

8. The blended application rule abs with built-in switch and contraction, which
is also a blend of multiplicative and additive style, and produces a system
without contraction rule where the weakening is only needed on parts of the
conclusive sequents that are irrelevant — it is equivalent to a derivation using
an application a, a contraction, several switches s and an additive switch:

Γ,∆, [Σ, [∆,Ψ ` A] ` B] ` C
abs −−

Γ,∆,Ψ, [Σ ` A→ B] ` C

9. The restricted weakening rule wr, which only allows to weaken formulas, and
not whole sequents, so that it corresponds to the weakening in the sequent
calculus — it is equivalent to a normal weakening applied on a sequent of
the shape ` A, with empty antecedent:

Γ ` B
wr −−−−−−−−−−−
Γ, A` B

10. The restricted contraction rule cr, which is also allowing to contract formulas
only, and thus corresponds to the contraction in the sequent calculus — it is
equivalent to a normal contraction on a sequent with empty antecedent:

Γ, A, A` B
cr −−−−−−−−−−−−−−−
Γ, A` B

11. The restricted application rule ar, which only allows to decompose a formula
on the right-hand side of a sequent with an empty antecedent, thus restricting
the shape of proofs, so that branches can easily be seen — it is equivalent to
a normal application a on a sequent with no antecedent:

Γ, [A` B] ` C
ar −−−−−−−−−−−−−−−−−−−−−
Γ, A→ B ` C

12. The cut rule ers with built-in restricted switch, which provides a splitting such
that only formulas are placed in the new sequent, and is thus closer to the
sequent calculus — it is equivalent to a derivation using a cut e and several
switches in restricted form:

Γ, [[F1, · · · , Fn ` A] ` A] ` B
ers −−

Γ, F1, · · · , Fn ` B

1 — Intuitionistic Nested Sequent Systems 1291 — Intuitionistic Nested Sequent Systems 1291 — Intuitionistic Nested Sequent Systems 129

13. The restricted application rule ars with built-in restricted switch, which splits
the antecedent so that only formulas are moved inside, and is thus closer to
the sequent calculus — it is equivalent to a derivation using an application a
and several switches in restricted form:

Γ, [[F1, · · · , Fn ` A] ` B] ` C
ars −−−

Γ, F1, · · · , Fn, A→ B ` C

14. The distant switch rule sdc with built-in contraction, allowing multiple copies
of a sequent to be moved to an arbitrary depth in a context with several holes
— it is equivalent to a derivation using several contractions and switches:

Γ,ζ{∆i ,δ ` Ai}+ ` B
sdc −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ,δ,ζ{∆i ` Ai}+ ` B

Of course, this list is not exhaustive, but it covers all the rules we will use in our
systems, and those we will mention later. It is important to notice that all of them
are derivable from rules of JN∪ {e}, or are special cases of these.

We can now pick different selections of these inference rule variations to build
our proof systems. We produce this way four new proof systems, using different
features provided by the variants of basic inference rules we listed above.

Definition 1.6. Our proof system family for intuitionistic logic is defined as follows:

JN∪ {e} = {i,e,g,a,w,c, s} (basic)
JNs∪ {es} = {i,es,g,as,w,c} (no-switch)
JNr∪ {ers} = {i,ers,g,ars,wr,cr} (restricted)
JNa∪ {esa} = {iw,esa,g,asa} (additive)
JNb∪ {ebs} = {i,ebs,g,abs,w} (blended)

These systems differ in the way they restrict the possible shapes of a proof, but
can be compared, in the sense that some variant of inference rules can be used to
simulate other variants. We can define this way a relation on proof systems.

Example 1.7. Here are variations of the proofs given in Example 1.4, in the JNa∪ {esa}
and JNb∪ {ebs} systems respectively, illustrating the way variant rules are used.

iw −−−−−−−−−−−
B, A` B

iw −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[[A` A] ` B], A` B

iw −−
[[A` A], [A` A] ` B], A` B

asa −−
[[A` A] ` A→ B], A` B

asa −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A→ A→ B, A` B

g −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A→ A→ B ` A→ B

i −−−−−−−−
B ` B

i −−−−−−−−−−−−−−−−−−−−−−−−−−
[[B ` B] ` B] ` B

i −−−
[[[[B ` B] ` B] ` B] ` B] ` B

w −−−
[[[[B ` B] ` B] ` B], A` B] ` B

ebs −−−
[[B ` B], A` B] ` B

abs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[[B ` B] ` A→ B] ` B

130 3 — Intuitionistic Logic in Nested Sequents130 3 — Intuitionistic Logic in Nested Sequents130 3 — Intuitionistic Logic in Nested Sequents

Definition 1.8. The inclusion relation ⊆ on proof systems is defined as the smallest
reflexive, transitive relation such that, given two systems R and S, R⊆ S if and only if
for any rule instance of R there is a derivation in S with same premise and conclusion.

The basic JN∪ {e} system is clearly the most general one, so that other systems
are included in it, since all rule variants we use are compositions or restriction of
its rules. The other systems are mainly organised around two branches, depending
on the design choice adopted, either restriction or compound rules.

Proposition 1.9. The inclusion relations between the various intuitionistic systems in
nested sequents are the following:

JNa∪ {esa} ⊆ JNb∪ {ebs} JNb∪ {ebs} ⊆ JNs∪ {es}
JNr∪ {ers} ⊆ JNs∪ {es} JNs∪ {es} ⊆ JN∪ {e}

Proof. The proof is straightforward, since for a relation R⊆ S to be proven, we can
provide for each rule of R an equivalent derivation of S, following the instructions
given in the list of inference rule variations above.

Remark 1.10. An illustration of the different levels of expressiveness of systems in this
hierarchy is that the sequent [A, A` B] ` A→ B for which a proof in the JN system is
given in Example 1.4 cannot be proven in the JNa system. This is the reason why the
corresponding proof in JNa given in Example 1.7 is a proof of the logically equivalent
sequent A→ A→ B ` A→ B.

With these definitions, we can discuss properties of these variations of JN∪ {e},
starting with the comparison with the sequent calculus for intuitionistic logic.

1.3 Correspondence to the Sequent Calculus

In order to show that all of our systems are suitable for intuitionistic logic, we have
to prove soundness and completeness with respect to the sequent calculus. We use
the variant shown in Figure 2, similar to standard presentations [GLT89], that we
will simply call here LJ∪ {cut}. For that we need to translate nested sequents into
formulas, since antecedents can only contain formulas in the sequent calculus.

Definition 1.11. The translation ¹·ºF from nested sequents to intuitionistic formulas
is defined recursively as follows:

¹` AºF = A and ¹δ,Γ ` AºF = ¹δºF→ ¹Γ ` AºF

Remark 1.12. We are only translating nested sequents into formulas2, and thus what
we show can be called formula-completeness [Hug10] and only ensures completeness
when it comes to sequents of the shape ` A and not sequents of any shape.

Then, we can prove soundness with respect to intuitionistic logic, starting with
the basic JN∪ {e} proof system, since this is the most generic in the family, from
the viewpoint of inference rules decomposition. For that we need to prove the three
following technical lemmas, to simplify the proof of the theorem.

2A closer translation from nested to shallow sequents is not possible since nesting corresponds to
branching, so that we would need to translate to a set of shallow sequents.

1 — Intuitionistic Nested Sequent Systems 1311 — Intuitionistic Nested Sequent Systems 1311 — Intuitionistic Nested Sequent Systems 131

ax −−−−−−−
A` A

Γ ` A ∆, A` B
cut −−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` B

Γ ` B
weak −−−−−−−−−−−

Γ, A` B

Γ, A` B
→R −−−−−−−−−−−−−−−Γ ` A→ B

Γ ` A ∆, B ` C
→L −−−−−−−−−−−−−−−−−−−−−−−−Γ,∆, A→ B ` C

Γ, A, A` B
cont −−−−−−−−−−−−−−−

Γ, A` B

Figure 2: Inference rules for system LJ∪ {cut}

Lemma 1.13. For any antecedents Γ, ∆, Ψ, and any formulas A, B, if the implication
¹∆ ` AºF → ¹Ψ ` BºF is provable in LJ, then ¹Γ,∆ ` AºF → ¹Γ,Ψ ` BºF is also
provable in LJ.

Proof. By induction on the number of elements in Γ. If Γ is empty, then the result
is trivial. In the general case, we consider one element δ in Γ, so that Γ = δ,Γ′ and
by induction hypothesis the implication ¹Γ′,∆ ` AºF → ¹Γ′,Ψ ` BºF is provable
in LJ by some proof Π. We can build the following proof LJ:

ax −−−−−−−−−−−−−−−−−−−−−
¹δºF ` ¹δºF

��
��

��
??????Π

′

¹Γ′,∆ ` AºF ` ¹Γ′,Ψ ` BºF→L −−
¹δºF→ ¹Γ′,∆ ` AºF,¹δºF ` ¹Γ′,Ψ ` BºF→R

∗ −−−
` (¹δºF→ ¹Γ′,∆ ` AºF)→ ¹δºF→ ¹Γ′,Ψ ` BºF

where the proof Π′ is obtained from Π by invertibility of the →R rule, which is a
well-known result in the sequent calculus, and this is indeed the expected proof in
LJ, by definition of the ¹·ºF translation.

Lemma 1.14. For any antecedents Γ, ∆, and any formulas A, B, C, if the implication
¹Γ ` AºF→ ¹∆ ` BºF is provable in the LJ system, then we can also prove that the
implication ¹[∆ ` B] ` CºF→ ¹[Γ ` A] ` CºF holds in LJ.

Proof. Assuming we have a proof Π of ¹Γ ` AºF→ ¹∆ ` BºF, we can easily obtain
a proof Π′ of ¹Γ ` AºF ` ¹∆ ` BºF, again by invertibility of the →R rule. We use
it to build the following proof:

��
��

��
??????Π

′

¹Γ ` AºF ` ¹∆ ` BºF
ax −−−−−−−−

C ` C
→L −−

¹∆ ` BºF→ C ,¹Γ ` AºF ` C
→R

∗ −−−
` (¹∆ ` BºF→ C)→ ¹Γ ` AºF→ C

which is the expected proof in LJ, by definition of the ¹·ºF translation.

132 3 — Intuitionistic Logic in Nested Sequents132 3 — Intuitionistic Logic in Nested Sequents132 3 — Intuitionistic Logic in Nested Sequents

In the previous lemmas, we consider that the empty nested sequent behaves as
a unit for the implication, so that for example Lemma 1.14 can be used to reduce
the provability of the formula ¹[∆ ` B] ` CºF→ C to the provability of ¹∆ ` BºF,
since C is exactly ¹` CºF by definition of the ¹·ºF translation.

Lemma 1.15. For any antecedents Γ, ∆, context ξ, sequent δ and formulas A and B,
if the implication ¹Γ,δ ` AºF→ ¹∆ ` BºF is provable in LJ, then we can also prove
the implication ¹Γ,ξ{δ} ` AºF→ ¹∆,ξ{ } ` BºF in LJ.

Proof. In any proof Π of ¹Γ,δ ` AºF→ ¹∆ ` BºF in LJ, there exists necessarily a
subproof Π1 of a sequent of the shape Ψ ` ¹δºF. Then, we can build a proof Π′1 of
the sequent Ψ,¹ξ{ }ºF ` ¹ξ{δ}ºF using a straightforward induction on ξ. We can
thus build the resulting proof by replacing Π1 with Π′1 and rewriting δ into ξ{δ}
everywhere in the proof Π.

Now, we use the standard technique for proving soundness of a deep inference
proof system, by showing that rule instances correspond to valid implications, and
using cuts to build a proof in the sequent calculus. Notice that to prove soundness
for cut-free JN using this technique, we would need the cut elimination result.

Theorem 1.16 (Soundness of JN∪ {e}). If a nested sequent κ is provable in JN∪ {e},
then the formula ¹κºF is provable in the LJ∪ {cut} sequent calculus.

Proof. We proceed by induction on the length of a proof D of κ in JN∪ {e}. In the
base case, when D is just one rule instance, it has to be an instance of i, applied on
a sequent of the form A` A, and we are done since ¹A` AºF = A→ A is provable
in LJ∪ {cut}. In the general case, we consider the bottommost instance r in D:

−

ξ{µ}
r −−−−−−−
ξ{υ}

We have to show first that the implication ¹µºF→ ¹υºF is provable in LJ, and for
this we use a case analysis on r and build a proof Π1 of this implication:

1. If r is an instance of i, we have to prove again A→ A for some formula A and
we simply use the→R rule and the axiom rule again.

2. If r is an instance of e, we can use Lemma 1.13 and then Lemma 1.14 to
reduce the provability of ¹µºF → ¹υºF to the provability of A→ A, and we
use→R and the axiom rule, as in the case of the identity.

3. If r is a w instance, we reduce by Lemma 1.13 the problem to the provability
of the formula A→ ¹δºF→ A, for which we build the following proof:

ax −−−−−−−
A` A

weak −−−−−−−−−−−−−−−−−
A,¹δºF ` A

→R
∗ −−−−−−−−−−−−−−−−−−−−−−−−−−
` A→ ¹δºF→ A

1 — Intuitionistic Nested Sequent Systems 1331 — Intuitionistic Nested Sequent Systems 1331 — Intuitionistic Nested Sequent Systems 133

4. If r is a c instance, we reduce by Lemma 1.13 the problem to the provability
of the formula (¹δºF → ¹δºF → A) → ¹δºF → A, for which we build the
following proof:

ax −−−−−−−−−−−−−−−−−−−−−
¹δºF ` ¹δºF

ax −−−−−−−−−−−−−−−−−−−−−
¹δºF ` ¹δºF

ax −−−−−−−
A` A

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
¹δºF→ A,¹δºF ` A

→L −−−
¹δºF→ ¹δºF→ A,¹δºF,¹δºF ` A

cont −−
¹δºF→ ¹δºF→ A,¹δºF ` A

→R
∗ −−−
` (¹δºF→ ¹δºF→ A)→ ¹δºF→ A

5. If r is a g instance, we reduce by Lemma 1.13 the problem to the provability
of the formula (A→ B)→ A→ B, which is trivial using the axiom rule.

6. If r is an a instance, we can use Lemma 1.13 and Lemma 1.14 to reduce the
problem to the provability of the formula (A→ B)→ A→ B, which is trivial.

7. If r is an instance of s, we can use Lemma 1.15 to reduce the problem to
the provability of ¹Γ,δ ` CºF → ¹Γ,δ ` CºF, which is trivial, since in the
switch rule the sequent [∆, [Ψ, { } ` A] ` B] is a context that is not modified.

Then, given a context ξ, we can prove by a straightforward induction on ξ, and
by invertibility of the →R rule, that there is a proof Π2 of ¹ξ{µ}ºF ` ¹ξ{υ}ºF in
LJ∪ {cut}. By induction hypothesis, we also have a proof Π3 of ¹ξ{µ}ºF, and thus
we can finally build a proof of ¹ξ{υ}ºF by using a cut as follows:

��
��

��
??????Π3

` ¹ξ{µ}ºF
��

��
��

�???????
Π2

¹ξ{µ}ºF ` ¹ξ{υ}ºF
cut −−

` ¹ξ{υ}ºF

This result can be immediately extended to all the other systems of the family,
since they are included in JN∪ {e} and thus a proof in one of these system can be
simulated by a proof in JN∪ {e}.

Corollary 1.17. The proof systems JNa∪ {esa}, JNb∪ {ebs}, JNr∪ {ers}, JNs∪ {es}
are sound with respect to the sequent calculus LJ∪ {cut} for intuitionistic logic.

Proof. For any proof D of a sequent δ in one of these systems, there is a proof D ′ of
δ in JN∪ {e}, since this system can simulate all the other systems of the family, as
shown in Proposition 1.9, and thus by Theorem 1.16 there is a proof of the formula
¹δºF in the sequent calculus LJ∪ {cut}.

In order to prove completeness for these systems with respect to intuitionistic
logic, we prove the existence of the opposite translation, and we do this for a weak
proof system, so that it can be extended to other systems.

134 3 — Intuitionistic Logic in Nested Sequents134 3 — Intuitionistic Logic in Nested Sequents134 3 — Intuitionistic Logic in Nested Sequents

Theorem 1.18 (Completeness of JNr∪ {ers}). If a shallow sequentΣ ` F is provable
in LJ∪ {cut}, then the nested sequent Σ ` F is provable in JNr∪ {ers}.

Proof. By induction on a proof Π of the sequent Σ ` F in LJ∪ {cut}, using a case
analysis on the bottommost rule instance r in Π, we build a proof D of the nested
translation of this sequent in the JNr∪ {ers} system:

1. If r is an instance of ax, we can simply use an identity rule, and we reached
the initial case of the induction, so that we are done:

ax −−−−−−−
A` A

−→ iw −−−−−−−
A` A

2. If r is an instance of cut, then we produce the proofs D1 and D2 in JNr∪ {ers}
by applying the induction hypothesis to the premises Π1 and Π2 of the cut
instance, and we can build the resulting proof using the ers rule because Γ
and∆ are shallow antecedents, which contain only formulas, since they were
obtained by translation of a shallow sequent:

��
��

��
??????Π1

Γ ` A
��

��
��

�???????
Π2

∆, A` B
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` B

−→

−
D2

Γ, [` A] ` B
D ′1

Γ, [[∆ ` A] ` A] ` B
ers −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` B

where D ′1 is obtained from D1 by plugging it into the context Γ, [{ } ` A] ` B,
which is possible because of the deep inference methodology.

3. If r is an instance of weak, we apply the induction hypothesis to the premise
Π1 of the weakening to produce a proof D1, and we can build the resulting
proof using wr since only a formula is affected:

��
��

��
??????Π1

Γ ` B
weak −−−−−−−−−−−

Γ, A` B

−→

−
D1

Γ ` B
wr −−−−−−−−−−−
Γ, A` B

4. If r is an instance of cont, we apply the induction hypothesis to the premise
Π1 of the contraction to produce a proof D1, and we can build the resulting
proof using cr since only a formula is affected:

��
��

��
??????Π1

Γ, A, A` B
cont −−−−−−−−−−−−−−−

Γ, A` B

−→

−
D1

Γ, A, A` B
cr −−−−−−−−−−−−−−−
Γ, A` B

1 — Intuitionistic Nested Sequent Systems 1351 — Intuitionistic Nested Sequent Systems 1351 — Intuitionistic Nested Sequent Systems 135

5. If r is an instance of →R, we apply the induction hypothesis to the premise
Π1 of this instance to produce a proof D1, and we build the result using g:

��
��

��
??????Π1

Γ, A` B
→R −−−−−−−−−−−−−−−Γ ` A→ B

−→

−
D1

Γ, A` B
g −−−−−−−−−−−−−−−
Γ ` A→ B

6. If r is an instance of→L, then we produce the proofs D1 and D2 by applying
the induction hypothesis to the premises Π1 and Π2 of this instance, and we
can build the resulting proof using the ars rule because Γ and ∆ are shallow
antecedents, since they come from a shallow sequent:

��
��

��
??????Π1

Γ ` A
��

��
��

�???????
Π2

∆, B ` C
→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ,∆, A→ B ` C

−→

−
D2

∆, [` B] ` C
D ′1

∆, [[Γ ` A] ` B] ` C
ars −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ,∆, [` A→ B] ` C

where again, D ′1 is obtained from D1 by plugging this proof into the context
∆, [{ } ` B] ` C , using the deep inference features of the nested sequents.

Corollary 1.19. The proof systems JNs∪ {es} and JN∪ {e} are complete with respect
to the sequent calculus LJ∪ {cut} for intuitionistic logic.

Proof. For any proof Π of a sequent Σ ` F in LJ∪ {cut} there is by Theorem 1.18 a
proof D of this sequent in JNr∪ {ers}, and thus there is also a proof of this sequent
in JNs∪ {es} and JN∪ {e}, since they can simulate any proof of JNr∪ {ers}.

Now, we have to give another proof of completeness for the additive system
and the blended system, since they cannot simulate JNr∪ {ers}. The new proof is
very similar to the previous one, but we need two technical lemmas.

Lemma 1.20. If there is a proof of ξ{Γ ` B} in JNa∪ {esa}, then for any formula A,
there is also a proof of ξ{Γ, A` B} in JNa∪ {esa}.

Proof. By induction on the length of the given proof D of ξ{Γ ` B} in JNa∪ {esa},
using a case analysis on the bottommost rule instance r in D. If r is a matching iw
instance, we replace it by an instance which also deletes A, and this is also the base
case. In all other cases, we use the induction hypothesis, and if needed replace r
by the same instance where A is added to the antecedent in the conclusion.

Lemma 1.21. If there is a proof of ξ{Γ, A, A` B} in the JNa∪ {esa} system, then
there for any formula A, there is also a proof of ξ{Γ, A` B} in JNa∪ {esa}.

Proof. We proceed the same way as in the proof of Lemma 1.20, except in the case
of a matching instance of iw, where the new instance deletes one less copy of A.

136 3 — Intuitionistic Logic in Nested Sequents136 3 — Intuitionistic Logic in Nested Sequents136 3 — Intuitionistic Logic in Nested Sequents

Theorem 1.22 (Completeness of JNa∪ {esa}). If a given shallow sequent Γ ` A is
provable in LJ∪ {cut}, then the nested sequent Γ ` A is provable in JNa∪ {esa}.

Proof. By induction on a proof Π of the sequent Γ ` A in LJ∪ {cut}, using a case
analysis on the bottommost rule instance r in Π, we build a proof D of the nested
translation of this sequent in the JNa∪ {esa} system:

1. If r is an instance of ax, then we use an identity rule in the special situation
where there is nothing to weaken, and we are done:

ax −−−−−−−
A` A

−→ iw −−−−−−−
A` A

2. If r is an instance of cut, then we produce the proofsD1 andD2 in JNa∪ {esa}
by applying the induction hypothesis to the premises Π1 and Π2 of this cut
instance, and build the result as follows:

��
��

��
??????Π1

Γ ` A
��

��
��

�???????
Π2

∆, A` B
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` B

−→

−
D′2

Γ,∆, [` A] ` B
D′1

Γ,∆, [[Γ,∆ ` A] ` A] ` B
esa −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` B

where D ′2 is obtained by repeatedly applying Lemma 1.20 to D2, and D ′1 by
applying it to D1 and plugging the result into the context Γ,∆, [{ } ` A] ` B,
using the deep inference features of nested sequents.

3. If r is an instance of weak, we apply the induction hypothesis to the premise
Π1 of the weakening and use Lemma 1.20 on the result D1, to obtain another
proof D ′1 that we use to build the resulting proof:

��
��

��
??????Π1

Γ ` B
weak −−−−−−−−−−−

Γ, A` B

−→
−

D′1

Γ, A` B

4. If r is an instance of cont, we apply the induction hypothesis to the premise
Π1 of the contraction and use Lemma 1.21 on the result D1, to obtain another
proof D ′1, that we use to build the resulting proof:

��
��

��
??????Π1

Γ, A, A` B
cont −−−−−−−−−−−−−−−

Γ, A` B

−→
−

D ′1

Γ, A` B

2 — Cut Elimination 1372 — Cut Elimination 1372 — Cut Elimination 137

5. If r is an instance of →R, we apply the induction hypothesis to the premise
Π1 of this instance to produce a proof D1, and we build the result using g:

��
��

��
??????Π1

Γ, A` B
→R −−−−−−−−−−−−−−−Γ ` A→ B

−→

−
D1

Γ, A` B
g −−−−−−−−−−−−−−−
Γ ` A→ B

6. If r is an instance of→L, then we produce the proofs D1 and D2 by applying
the induction hypothesis to its premises Π1 and Π2, and build the resulting
proof as follows:

��
��

��
??????Π1

Γ ` A
��

��
��

�???????
Π2

∆, B ` C
→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ,∆, A→ B ` C

−→

−
D′2

Γ,∆, [` B] ` C
D′1

Γ,∆, [[Γ,∆ ` A] ` B] ` C
asa −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∆, [` A→ B] ` C

where D ′2 is obtained by repeatedly applying Lemma 1.20 to D2, and D ′1 by
also applying it to D1 and plugging the result into Γ,∆, [{ } ` B] ` C .

Corollary 1.23. The proof system JNb∪ {ebs} is complete with respect to the sequent
calculus LJ∪ {cut} for intuitionistic logic.

Proof. For any proof Π of a sequent Σ ` F in LJ∪ {cut} there is by Theorem 1.22 a
proof D of this sequent in JNa∪ {esa}, and thus there is also a proof of this sequent
in JNb∪ {ebs}, since it can simulate any proof of JNa∪ {esa}.

Note that all the cut-free systems JNr, JNa, JNb, JNs and JN are obviously
complete with respect to the cut-free LJ sequent calculus, because the different cut
rules are needed only when translating the cut rule of the sequent calculus. From
this, and from the cut admissibility result in the sequent calculus, we immediately
get a cut elimination result. However, in the next section we will show several cut
elimination procedures internal to the systems.

2 Cut Elimination

In this section we will present several variations of a cut elimination procedure for
the proof systems of the family defined in the previous section. They are close to
the usual procedure used in the sequent calculus [Gal93] in the sense that cuts are
moved up in the proof until they meet a matching identity rule. They are also all
based on the same machinery, established by some important lemmas concerning
rule instances permutations and rewritings, that we will combine in different ways
to build the variations of the basic idea of the procedure. The differences might
seem unimportant from a purely logical viewpoint, but they matter when looking
for a computational account of such procedures [Her94, BG00]— if we only cared
about cut admissibility, we could have use soundness and completeness.

138 3 — Intuitionistic Logic in Nested Sequents138 3 — Intuitionistic Logic in Nested Sequents138 3 — Intuitionistic Logic in Nested Sequents

In the following, we will use generic results as much as possible, to be applied
on several of our proof systems. To denote any of the systems defined above, we
use the notation JNx∪ {ex}, and we handle all the possibilities in the case analyses
used in the proofs. All variants of JN∪ {e} are close enough to each other so that
many cases can be factorised, making proofs easier to read.

2.1 Preliminaries

Most of the techniques we will use for cut elimination are based on permutations
of rule instances, so that we will heavily rely on the definitions given in Chapter 1,
concerning not only permutations, but also the formula and sequent particles and
the flow-graph structure of a proof. As usual, we will denoted formula particles by
A or B and so on, and sequent particles in the same way, by κ or δ, and so on.

Notice that, going up in a proof, any sequent particle can either be introduced
by a cut, removed by an identity or by weakening, or duplicated by a contraction,
so that other rules only move material into the antecedent of a sequent — when
the structural rules are built inside the other rules, as done in the additive system
JNa∪ {esa} for example, the other rules have the same effect. This induces a direct
correlation between the number of structural rule instances, or of instances with a
structural feature, and the multiplicity of a particle or instance.

In the intuitionistic setting, we have two-sided sequents and we should thus be
careful in the use of flow-graphs: there are two directions depending on the side
of the sequent where a particle appears. However, we are mainly interested here
in notion such as the multiplicity, defined regardless of directions. We can thus
follow the intuition that to know a multiplicity, for example, we can put a finger
on a each active particle, in a rule instance r, and follow their flow upwards in the
derivation — if contractions are applied on the way, we need more fingers. In the
JN∪ {e} system, the connections inducing the flow-graph are the following — not
all of them are shown, the connections between modified sequents are as expected:

To simplify the picture, one can consider the negative flow-graphN (D) of some
derivation D, where only particles in negative positions are considered, since these
are the ones that can be directly affected by a contraction. Beyond the multiplicity
MD(κ) of some particle κ in D, we also need to consider the particles that appear
in the flow of another particle, and specify cases where they have been modified by
a rule instance.

2 — Cut Elimination 1392 — Cut Elimination 1392 — Cut Elimination 139

Definition 2.1. Given a particle κ in a derivation D, an ancestor δ of κ is a particle
located in the flow of κ and above it in D — it is a proper ancestor if ‖δ ‖ 6= ‖κ‖.

The notion of ancestor can be lifted to the level of the inference rule instances
used in some derivation, by simply looking at their active particles. This relation
will be oriented upwards in the proof, as the basic manipulation to be performed on
a rule instances is its permutation, which is usually done upwards — in particular,
this is the case of cuts, for which the set of rules with some related active particles
is important in the permutation process.

Definition 2.2. In a derivation D, the scope of a particle κ is the set of all the rule
instances r above κ which have an active particle in the flow of κ.

This definition can be extended immediately to say that some rule instance r1
in a derivation D is in the scope of another instance r2 if there are particles κ and
δ active in r1 and r2 respectively, such that κ is in the scope of δ. The scope of a
rule instance is thus the set of all rule instances above it in a derivation which are
not » independent « from this instance, since they operate on sequents that were
obtained by applying other rule instances to the active sequents of this instance.

Remark 2.3. In the JN∪ {e} system, only the contraction rule can create branches in
the flow of a particle, and the duplicated particle is active in this contraction instance.
Therefore, the multiplicity of a rule instance r can also be defined as the number of
contraction instances in the scope of r. In systems where the contraction is built inside
other rules, such as JNa∪ {esa}, these other rules must be counted as well.

2.2 Weak Linearisation

The complexity of the cut elimination procedure is in a large part induced by the
presence of contractions. Indeed, when the cut instances are moved up in a proof,
they can meet contractions and thus be duplicated, so that the number of cuts in a
proof is not a good measure for an induction. The weak linearisation process allows
to transform any derivation so that contractions are applied at particular positions,
making other proof transformations easier.

Definition 2.4. Given any rule instance r, a derivation D in the JNx∪ {ex} system is
said to be linear in r if it is such that we haveMD(r) = 0.

This can be immediatly extended to say that some derivation D is linear in the
particle κ when we haveMD(κ) = 0. This leads us to the definition of the partially
linearised form of proofs we are interested in.

Definition 2.5. Given a derivation D in JNx∪ {ex} and κ one of its sequent particles,
D is said to be weakly linear in κ if it is linear in all proper ancestor of κ.

We will see that it is not always possible to make a given derivation linear in a
given particle, but we can make it weakly linear in sequent particles. In other words,
we can use contraction in a derivation D on sources of N (D) only — another way
to see this is that we can make any rule instance in D linear.

140 3 — Intuitionistic Logic in Nested Sequents140 3 — Intuitionistic Logic in Nested Sequents140 3 — Intuitionistic Logic in Nested Sequents

Definition 2.6. In a derivation D in JNx∪ {ex}, a rule instance r is non-weak for a
sequent particle κ if it is in the scope of a proper ancestor of κ.

The idea is that in a given derivationD, the multiplicity of some source ofN (D)
cannot always decrease by permuting down contractions, but it can decrease for
other particles, for which there are non-weak contractions in the derivation. Notice
that this terminology of weak linearity — where linear is understood as affine, since
weakenings are not moved — corresponds to the one used in the λ-calculus [AF05].

Remark 2.7. The weak linearisation of a sequent in a derivation relies on permuting
contractions down under other instances, which cannot be done in the restricted system
JNr∪ {ers} since it would require the general form of the contraction rule.

Lemma 2.8. For any derivation D in one of the proof systems JN∪ {e}, JNs∪ {es},
JNa∪ {esa} and JNb∪ {ebs}, and a sequent particle κ in D, there is a derivation in
the same system with the same premise and conclusion which is weakly linear in κ.

Proof. We proceed by permutations of the contractions that are non-weak for κ in
the derivation D, by induction on the number of such instances. If there is no such
instance, the result is trivial. Otherwise, we consider the bottommost contraction r
non-weak for κ and use another induction, on the height of the derivation between
κ and r, that we call D1, to show that we can permute r down to κ. For that, we use
a case analysis on the instance r1 below r, at the top of the D1 derivation, where ι
is the whole sequent particle duplicated by r:

1. If ι is not a proper ancestor of a particle in the conclusion of r1, this is a
case of trivial permutation, and we can use the induction hypothesis since
the height of D1 has decreased.

2. If all active particles in the premise of r1 are also in ι then we can permute r
down. We proceed using the transformation shown below, and we can apply
the induction hypothesis since the height of D1 has decreased:

ξ{Γ, ι, ι ` A}
c −−−−−−−−−−−−−−−−−−
ξ{Γ, ι ` A}

r2 −−−−−−−−−−−−−−−−
ξ{Γ,δ ` A}

−→

ξ{Γ, ι, ι ` A}
r2 −−−−−−−−−−−−−−−−−−−
ξ{Γ,δ, ι ` A}

r2 −−−−−−−−−−−−−−−−−−−−
ξ{Γ,δ,δ ` A}

c −−−−−−−−−−−−−−−−−−−−
ξ{Γ,δ ` A}

3. If r2 is a switch moving some δ inside ι, we duplicate it, and the derivation:

ξ{Γ, [∆, [Ψ,δ ` A] ` B], [∆, [Ψ,δ ` A] ` B] ` C}
c −−−

ξ{Γ, [∆, [Ψ,δ ` A] ` B] ` C}
s −−
ξ{Γ,δ, [∆, [Ψ ` A] ` B] ` C}

is then replaced by a new derivation using two contractions, where only one
of the contractions is non-weak for κ — the bottommost one — and we can
use the induction hypothesis since the height of D1 has decreased.

2 — Cut Elimination 1412 — Cut Elimination 1412 — Cut Elimination 141

In the case where the contraction non-weak for κ is not the one used on δ,
this derivation is the following:

ξ{Γ, [∆, [Ψ,δ ` A] ` B], [∆, [Ψ,δ ` A] ` B] ` C}
s −−−
ξ{Γ,δ, [∆, [Ψ ` A] ` B], [∆, [Ψ,δ ` A] ` B] ` C}

s −−−
ξ{Γ,δ,δ, [∆, [Ψ ` A] ` B], [∆, [Ψ ` A] ` B] ` C}

c −−−
ξ{Γ,δ, [∆, [Ψ ` A] ` B], [∆, [Ψ ` A] ` B] ` C}

c −−−
ξ{Γ,δ, [∆, [Ψ ` A] ` B] ` C}

At some point, we reach the case where moving r down makes it weak for κ, and
we can use the main induction hypothesis, since there is a non-weak instance less.

Note that this is trivially extended to deal with rules with built-in switch in a
way similar to case 3. Indeed, consider the rules esa and asa, where both the switch
and the contraction are built-in, as an example:

Γ, [[Γ ` A] ` A] ` B
esa −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` B

Γ, [∆, [Γ ` A] ` B] ` C
asa −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, [∆ ` A→ B] ` C

They can be permuted down in a proof. In particular, the application rule asa
can be permuted down to the point of the proof where the involved A→ B formula
was introduced — this can be the conclusion of the whole proof, or the cut instance
which introduced this formula in the antecedent of a sequent. The cut rule esa can
also be permuted down, since apart from the antecedent duplication and splitting,
it only introduces a sequent in the antecedent of another one. Thus, it can be moved
down to introduce the sequent as soon as possible, in terms of proof construction.
From this we conclude that any derivation can be made weakly linear.

Observation 2.9. For any derivation D, the result D ′ of applying Lemma 2.8 to some
sequent in D is such thatH (D ′)≥H (D).

The process of making a derivation weakly linear in any sequent particle can be
generalised to rule instances, which can be made linear, by permuting contractions
down under this instance, and by extension some derivation D is said to be weakly
linear if it is linear in all its rule instances — equivalently, if it is weakly linear in
all its sequent particles.

Proposition 2.10. For any derivation D in the JN∪ {e}, JNs∪ {es}, JNa∪ {esa} or
JNb∪ {ebs} proof system there is a weakly linear derivation in the same system, with
the same premise and conclusion as D.

Proof. By induction on the multiset of the multiplicities of all the sequent particles
in which the given proof D is not weakly linear, under multiset ordering. At each
step, we pick such a particle κ and use Lemma 2.8 to make D weakly linear in κ.
It cannot make any rule instance in D non-weak for a sequent particle if it was not
already, since permuting down a contraction preserves weakness: if r is weak for
some κ, permuting a contraction under r cannot make it non-weak for κ. Finally,
whenever a particle is duplicated in the process, the multiplicity of its copies must
be smaller than the original multiplicity, by definition.

142 3 — Intuitionistic Logic in Nested Sequents142 3 — Intuitionistic Logic in Nested Sequents142 3 — Intuitionistic Logic in Nested Sequents

Remark 2.11. The system JNr∪ {ers} is so restricted that its derivations are almost
weakly linear. Consider for example the following derivation:

Γ, [` A], [` A] ` C
cr −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, [` A] ` C

Γ, [[B ` A] ` A] ` C
ers −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, B ` C

The contraction instance here is non-weak for [B ` A] ` A but it cannot be permuted
down to make it weak — it is located at the bottommost possible position.

2.3 Merging Proofs

Our cut elimination procedure will make crucial use of a complex technical lemma,
typical of deep inference systems, which allows to merge a subproof in the hole of a
context, inside another proof. It should normally be used to plug a subproof inside
a context with only one hole, but in the general case we need to make a stronger
statement, because the number of holes can increase during induction — so that
we have to use contexts with several holes, as described in (5).

After we give a proof of this lemma, which induces a complex transformation on
derivations, we will discuss different situations where this generic transformation is
simplified because of the shape of the given derivation — in particular, the linearity
of the initial proof in several sequent particles involved is important.

Lemma 2.12 (Merging). For any proof D of ξ{Γ, [∆,δ,ζ{Ψi ` Ai}+ ` B] ` C} in
the JNx∪ {ex} system, there is also a proof of ξ{Γ, [∆,ζ{Ψi ,δ ` Ai}+ ` B] ` C}.

Proof. We consider a particle κ corresponding to the sequent ∆,δ,ζ{Ψi ` Ai}+ ` B
in the conclusion of D, and we proceed by induction on the pair (MD(κ),H (D)),
under lexicographic order. At each step we use a case analysis on the bottommost
instance r in D, to rewrite this instance into a derivation of the desired conclusion.

1. If r affects only δ, we use the induction hypothesis on the proof D1 above
r and use the result to build a new proof, with at the bottom the instance r
used on δ once inside each copy of the sequent in ζ:

ξ{Γ, [∆,δ′,ζ{Ψi ` Ai}+ ` B] ` C}
r −−
ξ{Γ, [∆,δ,ζ{Ψi ` Ai}+ ` B] ` C}

−→
ξ{Γ, [∆,ζ{Ψi ,δ

′ ` Ai}+ ` B] ` C}
r∗ ==
ξ{Γ, [∆,ζ{Ψi ,δ ` Ai}+ ` B] ` C}

In the special case where r is an identity instance and deletes all of δ, there is
no need to use the induction hypothesis, we are done — since we start with a
proof, which is a derivation with no premise, this case must eventually occur.

2. If r does not affect δ, we can proceed by induction hypothesis — this includes
the case of a contraction or weakening inside ζ affecting some of the copies
of Ψi ` Ai , and this is the reason for the general statement of the theorem to
involve an arbitrary number of holes in ζ.

2 — Cut Elimination 1432 — Cut Elimination 1432 — Cut Elimination 143

3. If r is a switch moving another sequent υ inside δ, we can apply the induction
hypothesis to the proof D1 above r and use several contractions and switches
at the bottom of the resulting proof:

ξ{Γ, [∆,δ′,ζ{Ψi ` Ai}+ ` B] ` C}
s −−−
ξ{Γ,υ, [∆,δ,ζ{Ψi ` Ai}+ ` B] ` C}

−→
ξ{Γ, [∆,ζ{Ψi ,δ

′ ` Ai}+ ` B] ` C}
s∗ ===
ξ{Γ,υ, · · · ,υ, [∆,ζ{Ψi ,δ ` Ai}+ ` B] ` C}

c∗ ===
ξ{Γ,υ, [∆,ζ{Ψi ,δ ` Ai}+ ` B] ` C}

4. If r is a weakening which deletes the sequent ∆,δ,ζ{Ψi ` Ai}+ ` B, then we
can simply rewrite the conclusive sequent, and there is no need to apply the
induction hypothesis, we are done.

5. If r is a contraction which duplicates the sequent ∆,δ,ζ{Ψi ` Ai}+ ` B, we
can rewrite the conclusive sequent and the premise, and apply the induction
hypothesis twice — this is possible, since the multiplicity of κ has decreased.

The cases of variant rules can be treated the same way. Note that in systems where
the switch is built-in, there is no need for introducing instances as in case 3, since
no material can be moved to a sequent that already exists.

Observation 2.13. For any given proof D, the result D ′ of applying Lemma 2.12 to
D is in general such thatH (D ′)≥H (D).

The problem with Lemma 2.12 is that it might duplicate parts of the given proof
and introduce new rule instances, in particular new contractions, at various places
within the proof, which is a complicated non-local rewriting of the proof. However,
it behaves well on proofs that respect some restrictions — we use the names from
the statement of the lemma:

1. If the context ζ{ }+ has only one hole filled with Ψ ` A, and if the proof D is
linear in this sequent particle, then cases 4 and 5 are never used and case 2
never involves duplication of the hole in ζ, so that no contraction will need
to be introduced in case 3.

2. If no ancestor of δ is modified by a rule instance located above an instance
affecting ζ{Ψi ` Ai}+, and if ζ{ }+ has only one hole, then no rule instance
needs to be duplicated, and no contraction needs to be introduced.

We can therefore improve the situation here by using Lemma 2.12 only on
proofs of a particular shape, for example by applying weak linearisation, so as to
fit the first criterion described above. We could also have a situation where the
subproof to be merged into a context is completed before the context starts being
modified, which validates the second criterion. To enforce such a situation, we can
transform the given proof, before applying Lemma 2.12, as follows:

−
D

ξ{Γ, [∆,δ,ζ{Ψi ` A}+ ` B] ` C} −→

−
D2

η{Σ j , [Ξ j ,ζ{Ψi ` Ai}+ ` D j] ` E j}+
D1

ξ{Γ, [∆,δ,ζ{Ψi ` Ai}+ ` B] ` C}

where there is no ancestor of δ in D2. This process allows to extract the proof of
the positive sequent δ from D, to separe it from instances affecting ζ{ }+.

144 3 — Intuitionistic Logic in Nested Sequents144 3 — Intuitionistic Logic in Nested Sequents144 3 — Intuitionistic Logic in Nested Sequents

The idea is that, when applying Lemma 2.12 to a proof obtained this way, δ is
simply moved inside the context ζ{ }+, but there is no need to handle rule instances
modifying this context — and contractions cannot duplicate ζ{ }+ independently
from δ or its ancestors, so that there is no need to introduce new contractions. In
the case where there is only one hole in ζ, the merging procedure is straightforward
and does not require any duplication.

Lemma 2.14. Any proof D of ξ{Γ, [∆,δ,κ ` A] ` B} in the JNx∪ {ex} system can
be decomposed into a derivation D1 and a proof D2, such that in D1 no ancestor of
the particle κ is modified, and in D2 no ancestor of the particle δ appears.

Proof. The idea is to push the instances affecting κ and its ancestors upwards until
they are all located above the topmost instance affecting an ancestor of δ. For that,
we consider that D is decomposed into two derivations D1 and D3, and a proof D4,
as illustrated below: −

D4

η{υ j}+
D3

ζ{κi}+
D1

ξ{Γ, [∆,δ,κ ` A] ` B}

• In the derivation D1, the particle κ and its ancestors are not modified, they
have the same basis, but they can be duplicated or erased — the premise of
D1 is a sequent ζ{κi}+, where the κi are all the ancestors of κ at this point.

• In the derivation D3, ancestors of κ can be modified, but no ancestor of δ can
be active in a rule instance, so that in particular, ancestors of κ and δ cannot
be duplicated or erased.

• The proof D4 is arbitrary and contains rule instances that may or may not
modify, duplicate or erase any ancestor of κ or δ.

We proceed by induction onH (D4), and the base case happens when D4 is empty,
and thus the decomposition into D1 and D3 is the expected result — in this case, D3
is the proof D2 of the statement — or when D4 contains no ancestor of δ, so that
D3 cannot contain ancestors of δ as well, and D2 is the composition of D3 and D4.
Moreover, any proof of ξ{Γ, [∆,δ,κ ` A] ` B} can be decomposed into derivations
D1, D3 and D4 as described, at least with D1 and D3 empty. In the general case, we
use a case analysis on the bottommost rule instance r in D4:

1. If r is an instance where no ancestor of κ is active, we trivially permute it
down under D3 to merge it into D1, and go on by induction hypothesis:

η′{υ j}+
r −−−−−−−−−−−−
η{υ j}+
D3

ζ{κi}+
D1

ξ{Γ, [∆,δ,κ ` A] ` B}

−→

η′{υ j}+
D∗3

ζ′{κi}+
r −−−−−−−−−−−
ζ{κi}+
D1

ξ{Γ, [∆,δ,κ ` A] ` B}

2 — Cut Elimination 1452 — Cut Elimination 1452 — Cut Elimination 145

Note that in the case where r is some identity erasing the topmost ancestor
of the δ occurrence, we have reached a base case, and since we are working
on a proof, such a situation must be reached.

2. If r is a rule instance modifying the structure of an ancestor υi of κ, we merge
r inside D3 and go on by induction hypothesis — note that such an instance
cannot affect an ancestor of δ, since κ and δ are in positive position.

3. If r is a contraction which duplicates an ancestor υ j of κ into new ancestors
υk and υl , it can also duplicate an ancestor of δ, and we have to permute r
down under D3 to merge it into D1. Since the derivation D3 does not contain
any contraction duplicating ancestors of κ, we can permute r down as done
below, using Lemma 2.8 and go on by induction hypothesis:

η′{Σ,θ{υk},θ{υl} ` C}+
r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

η′{Σ,θ{υ j} ` C}+
D3

ζ{κi}+
D1

ξ{Γ, [∆,δ,κ ` A] ` B}

−→

η{υm}+
D ′3

ζ′{Ψ,θ ′{κk},θ ′{κl} ` D}+
r −−

ζ′{Ψ,θ ′{κi} ` D}+
D1

ξ{Γ, [∆,δ,κ ` A] ` B}

4. If r is a weakening erasing an ancestor υ j of κ, it can also erase an ancestor
of δ and we have to permute r down under D3 to merge it with D1. This is
done the same way as in the previous case, using weak linearisation.

The cases of variant rules can all be treated the same way. Notice in particular that
the restricted contraction of the JNr∪ {ers} system can never match the situation
of case 3, and restricted weakening can never match the situation of case 4.

Observation 2.15. For any given proof D, the result D ′ of applying Lemma 2.14 to
D is in general such thatH (D ′)≥H (D).

2.4 Eliminating Cuts

We can now present the cut elimination procedure and its variations, for any proof
system JNx∪ {ex} in the family of all variants of JN∪ {e}. We will give only one
proof of the theorem stating the admissibility of the cut rule, providing a procedure
to eliminate cuts in the JN system, but this is easily adapted to all variant systems
that we defined in the previous section. In any case, the basic idea is to push cut
instances up in the proof until they meet other rule instances to interact with, thus
disappearing or decomposing in smaller cuts, as in the sequent calculus [Gal93].

The first step here is to define the measure that will be used for the induction
when showing that all cuts can be moved upwards to be eliminated. In addition to
the general definitions already used, we need a specific measure for cut instances,
this is sometimes called the logical complexity of the cut.

Definition 2.16. In a derivation D in JNx∪ {ex}, the size of a cut instance r with a
principal sequent δ, denoted by |r|, is the number of symbols used in δ.

146 3 — Intuitionistic Logic in Nested Sequents146 3 — Intuitionistic Logic in Nested Sequents146 3 — Intuitionistic Logic in Nested Sequents

Then, we need to manipulate the shape of the derivation above a cut instance,
and thus definitions for the different subderivations we will be looking at.

Definition 2.17. In any derivation D in JNx∪ {ex} if a cut instance r has a principal
sequent of the shape ∆, A→ B ` A→ B, a rule instance is said to be matching the cut
r if and only if it affects an ancestor of one of these particles with basis A→ B.

In particular, the left and right implication instances decomposing ancestors of
the particles of A→ B are matching such a cut, as an identity on these ancestors, or
a structural rule applied on ancestor of the whole sequent introduced by the cut.

When moving a cut instance upwards in a proof, some rule instances might be
encountered that cannot be permuted down under the cut. This happens when a
matching left or right implication instance decomposes the cut formula, and some
rule instances apply on pieces of the cut formula, but also when a switch moves
material to the sequent introduced by the cut. To handle this, we define synthetic
cut rules, embedding the cut and all rule instances that should be pushed together
with the cut. In the first case, some switch instances are blocked by a cut, so that
we have to use a cut with built-in switch, as follows:

ξ{Γ, [[∆1 ` A] ` A] ` B}
es =====================================

ξ{Γ,∆1 ` B}
=

ξ{Γ, [[∆1 ` A] ` A] ` B}
D1

ξ{Γ,∆1, [A` A] ` B}
e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{Γ,∆1 ` B}

(6)

In a second possible situation, a cut is composed with a left implication instance
and a derivation D1 made of some rule instances which cannot be permuted down
because of the left implication instance, or because they are switches, as follows:

ξ{Γ, [[∆1 ` C → D],Ψ ` E] ` B}
ea ==

ξ{Γ,∆1,∆2 ` B}
=

ξ{Γ, [[∆1 ` C → D],Ψ ` E] ` B}
D1

ξ{Γ,∆1,∆2, [C → D, C ` D] ` B}
a −−−
ξ{Γ,∆1,∆2, [C → D ` C → D] ` B}

e −−−
ξ{Γ,∆1,∆2 ` B}

(7)

Finally, in the third possible situation, a cut is composed with a right implication
instance and a derivation D1 made of instances that cannot be permuted down
because of this right implication instance, or because they are switches, as follows:

ξ{Γ, [[∆1,Ψ ` E] ` C → D] ` B}
eg ==

ξ{Γ,∆1,∆2 ` B}
=

ξ{Γ, [[∆1,Ψ ` E] ` C → D] ` B}
D1

ξ{Γ,∆1,∆2, [[C ` D] ` C → D] ` B}
g −−
ξ{Γ,∆1,∆2, [C → D ` C → D] ` B}

e −−−
ξ{Γ,∆1,∆2 ` B}

(8)

Any cut instance r in a given proof D matches exactly one of these configurations,
and they will form the basis of the case analysis performed during cut elimination,
which will be structured around the interaction between the cut, the derivation D1
embedded with it, and the rule instance directly above the body.

2 — Cut Elimination 1472 — Cut Elimination 1472 — Cut Elimination 147

We will treat directly the elimination of all three cut forms in our proof, which
entails the elimination of the basic cut rule e, since it is just a particular case of es.
Notice that all definitions on cuts can be extended trivially to the synthetic rules
ea and eg, by considering the standard cut embedded into it — in particular, their
principal sequent is the principal sequent of the basic cut.

Definition 2.18. In a derivation D in JNx∪ {ex}, the body of a cut instance r is the
derivation D1 as indicated in (6), (7) and (8), and the target of the instance r is the
rest of the derivation, above the synthetic cut.

We now define the measure used on cut instances, built to decrease during cut
elimination, either because the size or multiplicity of the principal sequent of one
cut decreases, or because some unrelated rule instance is moved below a cut.

Definition 2.19. In a derivation D in JNx∪ {ex}, the rank of a cut instance r, which
is denoted by RD(r), is the pair (|r|,MD(r)) under lexicographic ordering.

Our proof of cut elimination is based on a set of rewritings of the given proof,
most of them being local to a cut, its body, and the bottommost rule instance above.
To avoid dealing with complex relationships between different cuts, we will impose
a strategy on the elimination of cuts, so that the cut involved in the rewriting will
always be the topmost one in a proof. Thus, we need no definition of a rank for a
proof, since we will consider proofs with exactly one cut, as bottommost instance.

Before we can start with the proof of the main theorem, we need to prove a few
technical lemmas. The first one is standard, and it corresponds to the well-known
invertibility result of the right implication rule in the sequent calculus. The second
one is similar3 but applies to implication in negative position, and then the last two
are almost trivial observations, due to the features of deep inference, but we make
them explicit to emphasize their simplicity in this setting.

Lemma 2.20. For any proof D of a sequent ξ{Γ ` A→ B} in the JNx∪ {ex} system
there is also a proof D ′ of ξ{Γ, A` B}.

Proof. By structural induction on D, using a case analysis on the bottommost rule
instance r in D. The base case happens when r is a right implication instance which
decomposes the implication A→ B, and we remove this instance and use the proof
above. In the general case, we can rewrite any rule instance by replacing a sequent
occurrence Ψ ` A→ B with Ψ, A` B, and use the induction hypothesis.

Lemma 2.21. For any proof D of a sequent ξ{Γ, [∆ ` A→ B] ` C} in the JNx∪ {ex}
system there is a proof D ′ of ξ{Γ, [∆, A` B] ` C}.

Proof. We proceed the same way as for Lemma 2.20, except in the base case, where
the bottommost rule instance in D should be a left application instance.

Remark 2.22. Using these two lemmas, it is always possible to move the left and right
implication instances down, so that any given cut instance matches exactly one of the
configuration depicted in (6), (7) and (8).

3A left implication rule instance cannot be moved downwards in all systems, but the particular shape
of this rule in a system where no switch is built-in allows to move it freely.

148 3 — Intuitionistic Logic in Nested Sequents148 3 — Intuitionistic Logic in Nested Sequents148 3 — Intuitionistic Logic in Nested Sequents

Lemma 2.23. For a derivation D from ζ{δ} to ξ{δ} in JNx∪ {ex}, if D is linear in
the bottommost δ, there is a derivation D ′ from ζ{ } to ξ{ }.

Proof. By structural induction on D, using a case analysis on the bottommost rule
instance r in D. In the base case, D is a sequent, and we rewrite it to remove δ.
In the general case, r cannot modify δ, since a proper ancestor of δ appears in the
premise of D, and it cannot be a structural rule instance since D is linear in this
particle. If it does not affect δ, we rewrite it to remove δ and go on by induction
hypothesis. Otherwise, it must be a switch moving δ inside another sequent κ, and
we can remove this instance and go on by induction hypothesis.

Lemma 2.24. For a derivation D from ζ{Γ,δ ` A} to ξ{∆,δ ` B} in JNx∪ {ex}, if
D is linear in the bottommost δ, there is a derivation D ′ from ζ{Γ ` A} to ξ{∆ ` B}.

Proof. The proof is exactly the same as the proof of Lemma 2.23, since it did not
rely on the fact that δ was in positive position.

Observation 2.25. For any derivation or proof D, the result D ′ of applying Lemma
2.20, Lemma 2.21, Lemma 2.23 or Lemma 2.24 to D is such thatH (D ′)≤H (D).

We can now come to the cut elimination result itself. It is obtained by induction,
using a case analysis. Each case of this analysis corresponds to a rewriting step.

Theorem 2.26 (Cut elimination). A proof D of a nested sequent Γ ` B in JNx∪ {ex}
can be transformed into a cut-free proof D ′ of Γ ` B in JNx.

Proof. If there is no cut instance in the given proof D, we are done. In the general
case, we proceed by induction on the number of cut instances in D, and consider
the topmost cut instance r in D, with a target that we name D2. Then, we proceed
by induction on the pair (RD(r),H (D2)), to show that this cut can be eliminated.
For that, we use a case analysis on the bottommost instance r1 in D2:

−
D2

ζ{υ}
r1 −−−−−−−−−−−−−−−−−
ξ{Γ,κ ` B}

r =========================
ξ{Γ,∆1,∆2 ` B}

1. If r1 is not in the scope of r, we can permute it down and proceed by induction
hypothesis, because the height of D2 has decreased.

2. If r1 is a switch moving material into the sequent κ introduced by the cut, or
affects only the inside Ψ ` E of κ, we can assimilate it into the cut es/ea/eg
instance, since r1 can be made part of the body D1 of the cut, as shown above
in (6), (7) and (8), and then we can use the induction hypothesis, since the
height of D2 has decreased.

Thus, we only need to consider the cases in which r1 affects the cut formula A or
C → D that was introduced, and is blocked above the cut. This leaves the cases of
an identity matching the cut in any way, a matching weakening or contraction, and
the main case of both matching left and right implication instances.

2 — Cut Elimination 1492 — Cut Elimination 1492 — Cut Elimination 149

3. If r1 is an identity instance matching r, it can interact with r and disappear,
and we can apply the main induction hypothesis, since a cut was eliminated
by the following transformation, in the case of a simple es cut:

ξ{Γ, A` B}
i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ, [[A` A] ` A] ` B}

es ===================================
ξ{Γ, A` B}

−→ ξ{Γ, A` B}

In the case of a cut which is an ea instance, the body D1 of the cut does not
disappear, but we use the following transformation, where D ′1 is obtained by
applying Lemma 2.23 and then Lemma 2.24 to D1, which is possible because
it is linear in both C → D particles in its conclusion:

ξ{Γ, [Ψ ` E] ` B}
i −−
ξ{Γ, [[C → D ` C → D],Ψ ` E] ` B}

ea ==
ξ{Γ, C → D,∆2 ` B}

−→

ξ{Γ, [Ψ ` E] ` B}
D ′1

ξ{Γ, [C ` D],∆2 ` B}
a −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ, C → D,∆2 ` B}

and we can use the main induction hypothesis on the resulting proof, since a
cut instance was erased.

Finally, in the case where the cut is an eg instance, it can happen that its body
D1 is actually a proof of the sequent ∆1,∆2, C ` D, so that D1 is kept and we
use the following transformation, where the proof D ′1 is again obtained by
applying Lemma 2.23 and Lemma 2.24 on D1:

ξ{ }
i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{C → D ` C → D}

eg ==============================
ξ{∆1,∆2 ` C → D}

−→

ξ{ }
D′1

ξ{∆1,∆2, C ` D}
g −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{∆1,∆2 ` C → D}

Again, in this situation, we can use the main induction hypothesis, because
one cut instance was erased from the proof.

4. If r1 is a weakening erasing the principal sequent of r, we replace the whole
body D1 by weakenings, as shown below in the case where r1 erases only the
sequent κ and not a broader sequent, and then go on by induction hypothesis,
since one cut was erased by this transformation:

ξ{Γ ` B}
w −−−−−−−−−−−−−−−−−
ξ{Γ,κ ` B}

es/ea/eg =========================
ξ{Γ,∆1,∆2 ` B}

−→
ξ{Γ ` B}

w∗ ==================
ξ{Γ,∆ ` B}

The transformation is similar in the cases where some sequent broader than
κ, which contains κ, is erased by this weakening instance, but then no new
weakening needs to be introduced.

150 3 — Intuitionistic Logic in Nested Sequents150 3 — Intuitionistic Logic in Nested Sequents150 3 — Intuitionistic Logic in Nested Sequents

5. If r1 is a contraction duplicating the principal sequent of r, we duplicate the
whole body D1 and compose the two copies, one above the other, as shown
below in the case where r1 duplicates only the sequent κ and not a broader
sequent in which κ is contained:

ξ{Γ,κ,κ ` B}
c −−−−−−−−−−−−−−−−−−−−
ξ{Γ,κ ` B}

es/ea/eg =========================
ξ{Γ,∆1,∆2 ` B}

−→

ξ{Γ,κ,κ ` B}
es/ea/eg =============================

ξ{Γ,κ,∆1,∆2 ` B}
es/ea/eg =====================================

ξ{Γ,∆1,∆2,∆1,∆2 ` B}
c∗ =====================================

ξ{Γ,∆1,∆2 ` B}

We can use the induction hypothesis on the topmost copy of the cut, because
its multiplicity is smaller than the multiplicity of the original one. Then, it is
also possible to apply the induction hypothesis on the resulting proof glued
above the bottommost copy, although the multiplicity of this cut might have
increased after the elimination of the topmost one — through the use of the
merging lemma, as shown in the following cases. Indeed, each contraction
affecting this cut introduced by merging was introduced for one contraction
affecting the topmost copy, so that the multiplicity of the bottommost copy is
at most one less than the original multiplicity. Finally, we can use the main
induction hypothesis, since one cut was eliminated.

The transformation is similar in the cases where a sequent broader than κ,
which contains κ, is duplicated by the contraction, but no new contraction
needs to be introduced in this case.

6. If r1 is a left implication instance and r is an instance of eg, then we have the
situation described below:

ξ{Γ, [[∆1,Ψ ` E], C ` D] ` B}
a −−
ξ{Γ, [[∆1,Ψ ` E] ` C → D] ` B}

eg ==
ξ{Γ,∆1,∆2 ` B}

and we use Lemma 2.21 on the body D1 of this cut, to produce a new proof
where the basic cut and the left and right implication instances are grouped
one above the other, as shown below on the left.

Then, we can rewrite the cut r into two smaller cuts, as shown below on the
right, where the proof D3 above the new cuts is obtained from the body and
the target of the original cut.

−
D ′2

ξ{Γ, [[∆1,Ψ ` E], C ` D] ` B}
D ′1

ξ{Γ,∆1,∆2, [[C ` D], C ` D] ` B}
g −−−
ξ{Γ,∆1,∆2, [C → D, C ` D] ` B}

a −−−
ξ{Γ,∆1,∆2, [C → D ` C → D] ` B}

e −−−
ξ{Γ,∆1,∆2 ` B}

−→

−
D3

ξ{Γ,∆1,∆2, [[[C ` C] ` D] ` D] ` B}
e −−

ξ{Γ,∆1,∆2, [D ` D] ` B}
e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{Γ,∆1,∆2 ` B}

2 — Cut Elimination 1512 — Cut Elimination 1512 — Cut Elimination 151

However, this rewriting of the cut into two cuts changes the premise of the
cut, so that we need to adapt the proof above these new cuts to glue all the
parts together. This is done using Lemma 2.12, which applies merging to the
proof above the right implication instance, and produces the proof D3. We
can then use the induction hypothesis on the topmost copy of the cut and D3,
since this copy has a smaller size than the original, and we can apply it again
on the bottommost copy for the same reason. Finally, we can apply the main
induction hypothesis, since one cut was eliminated.

7. If r1 is a right implication instance and r is an instance of ea, then we are in
the situation described below:

ξ{Γ, [[∆1, C ` D],Ψ ` E] ` B}
g −−
ξ{Γ, [[∆1 ` C → D],Ψ ` E] ` B}

ea ==
ξ{Γ,∆1,∆2 ` B}

and we proceed as in the previous case, applying Lemma 2.20 to produce a
proof where the cut and the left and right implication instances are grouped,
and rewrite the cut r into two smaller cuts, as shown below:

−
D ′2

ξ{Γ, [[∆1, C ` D],Ψ ` E] ` B}
D ′1

ξ{Γ,∆1,∆2, [[C ` D], C ` D] ` B}
a −−
ξ{Γ,∆1,∆2, [[C ` D] ` C → D] ` B}

g −−
ξ{Γ,∆1,∆2, [C → D ` C → D] ` B}

e −−−
ξ{Γ,∆1,∆2 ` B}

−→

−
D3

ξ{Γ,∆1,∆2, [[[C ` C] ` D] ` D] ` B}
e −−

ξ{Γ,∆1,∆2, [D ` D] ` B}
e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{Γ,∆1,∆2 ` B}

As before, this rewriting of the cut changes the premise of the cut, so that we
need to adapt the proof above the new cuts to glue the parts together. This
is done using Lemma 2.12, which applies merging to the proof above the left
implication instance, producing D3. We can use the induction hypothesis on
the topmost copy of the cut and D3, since this copy has a smaller size than
the original, and we can apply it again on the bottommost copy for the same
reason. Finally, we apply the main induction hypothesis, which is possible
because one cut was eliminated.

The cases of all variants of the basic rules can be dealt with the same way. Indeed,
systems where the switch rule is built inside the rules of cut and left implication are
even simpler to handle because proofs have a more constrained shape — and the
synthetic cut es is already in the system. When structural rules are built-in, cases
4 and 5 happen only when a cut encounters an application, and the treatment is
the same. Moreover, the merging procedure which is implemented by Lemma 2.12
and crucially used in the principal cases 6 and 7 can be applied on any given proof
in any of the variant system we defined.

152 3 — Intuitionistic Logic in Nested Sequents152 3 — Intuitionistic Logic in Nested Sequents152 3 — Intuitionistic Logic in Nested Sequents

Remark 2.27. One should notice that in this cut elimination procedure, there is only
one configuration where a cut instance interacts with a an identity instance, described
in case 3. We could define, and prove sound, an extension is of the basic identity rule
similar to the extension es of the basic cut rule, as follows:

Γ, [∆,Ψ ` B] ` C
is −−
Γ, [∆, [[Ψ ` A] ` A] ` B] ` C

and this would induce a another interaction configuration, where the right-hand side
of the principal sequent in the cut instance would thus match the right-hand side of
the identity instance:

ξ{Γ, [∆, [Ψ ` A] ` B] ` C}
is −−
ξ{Γ, [∆, [[[Ψ ` A] ` A] ` A] ` B] ` C}

es ==
ξ{Γ, [∆, [Ψ ` A] ` B] ` C}

−→ ξ{Γ, [∆, [Ψ ` A] ` B] ` C}

This cut elimination procedure can be considered in different situations, each
one inducing a variation on the general scheme where cuts are pushed upwards
in the proof to interact with identities. This includes situations where the proof is
weakly linear in some particles, where the invertibility result of Lemma 2.20 and
Lemma 2.21 is used or not, or where merging is performed by Lemma 2.12 together
with Lemma 2.14 or with partial weak linearisation. We can give a quick overview
of these situations by listing various possibilities:

1. If we use Proposition 2.10 on a proof before we start cut elimination to make
it weakly linear, there is no need to handle contractions in case 5, because no
such instance can affect the principal sequent of a cut. Moreover, this reduces
the use of the merging lemma to the case where no contraction needs to be
introduced because the sequent moved around is never duplicated.

2. If we directly use the invertibility result from Lemma 2.20 and Lemma 2.21,
we can reduce immediately a cut to the atomic shape, using merging. Then,
if there are matching left and right implication instances for all cuts — which
means that all identity instances are also atomic, which can be done as shown
in Proposition 1.5 — we only need to deal with atomic cuts.

3. If we always use Lemma 2.14 to extract subproofs before using Lemma 2.12,
no contraction is introduced during merging, but some might be needed to
perform the extraction. To avoid dealing with such contractions, we can use
weak linearisation by applying Lemma 2.8 on the principal sequent of the
considered cut instance.

4. If we use the weak linearisation transformation, by using Lemma 2.8 on the
principal sequent of the considered cut and on the sequent used as a context
during merging, then the use of the merging lemma in cases 6 and 7 requires
the introduction of contractions, but all these new contractions are located
at the bottom of the proof produced.

3 — Local Normalisation 1533 — Local Normalisation 1533 — Local Normalisation 153

Although all variations of the proof of Theorem 2.26 provide the same result
that all variants of the cut rule are admissible in their respective systems, the details
of the cut elimination procedure are crucial when it comes to the exploration the
computational contents of proofs. Indeed, different manipulations on proofs are
reflected as different rewriting rules on the terms which represent the proof objects.

3 Local Normalisation

Although the procedure we devised to eliminate cuts from a given proof in one of
our nested sequents system for intuitionistic logic is quite close to the one used in
the standard sequent calculus, it is not based only on local rewritings. Indeed, the
main case relies on the use of the merging lemma, which implements a complicated
non-local rewriting of the whole proof located above the chosen cut. In order to
solve this problem, we would like to find a derivation, or simply an inference rule,
that would be composed with the two new cuts and restore the original form of the
premise, as done by the rule r below:

ξ{Γ,∆, [[C ` D], C ` D] ` B}
a −−−
ξ{Γ,∆, [[C ` D] ` C → D] ` B}

g −−−
ξ{Γ,∆, [C → D ` C → D] ` B}

e −−−
ξ{Γ,∆ ` B}

−→

ξ{Γ,∆, [[C ` D], C ` D] ` B}
r ===
ξ{Γ,∆, [[[C ` C] ` D] ` D] ` B}

e −−−
ξ{Γ,∆, [D ` D] ` B}

e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ,∆ ` B}

Here, the rule r embodies exactly the merging operation stated by Lemma 2.12,
moving a positive sequent deeper inside another positive sequent. This means that
the merging lemma is actually a proof of admissibility of the rule r, so that we can
simply use this rule in one of the JNx∪ {ex} proof systems.

More interestingly, this rule r happens to be the dual of the switch rule s, which
moves a negative sequent deeper inside another negative sequent — it is the dual
in the same sense as the cut e rule being dual of the identity i rule, as usual in a
deep inference setting [Gug07]. Moreover, if we introduce this rule in the system,
we would like to be able to eliminate it, as we eliminate cuts, since its dual is
already present in the system. This is also the standard expectation for a deep
inference system, where all dual rules are considered as part of what the cut rule
embodies in the sequent calculus [Brü06a, Str03b]. As we will see, eliminating this
rule requires the use of other dual rules, so that we get closer to the usual design
of proof systems in the calculus of structures, where the basic system, the down
fragment, is enriched with the set of corresponding dual rules, the up fragment,
which are all admissible for the down fragment — the dual of a rule is obtained
by reversing premise and conclusion and inverting all polarities, so that positive
sequents become negative, and negative ones become positive.

We present now a symmetric variant of the basic JN system, called SJN, and
for which the inference rules are given in Figure 3. The first subsystem, where all
rules have names of the shape r↓, is the down fragment, and the second one, where
names are of the shape r↑, is the up fragment. The down fragment corresponds to
the cut-free system JN, and the up fragment consists in the duals of all rules in JN.

154 3 — Intuitionistic Logic in Nested Sequents154 3 — Intuitionistic Logic in Nested Sequents154 3 — Intuitionistic Logic in Nested Sequents

i↓ −−−−−−−
A` A

Γ,δ,δ ` A
c↓ −−−−−−−−−−−−−−−
Γ,δ ` A

Γ, A` B
g↓ −−−−−−−−−−−−−−−
Γ ` A→ B

Γ, [∆, A` B] ` C
a↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, [∆ ` A→ B] ` C

Γ ` A
w↓ −−−−−−−−−−−
Γ,δ ` A

Γ, [∆, [Ψ,δ ` A] ` B] ` C
s↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ,δ, [∆, [Ψ ` A] ` B] ` C

Γ, [A` A] ` B
i↑ −−−−−−−−−−−−−−−−−−−−

Γ ` B

∆, [Γ,δ ` A] ` B
w↑ −−−−−−−−−−−−−−−−−−−−−−−−−
∆, [Γ ` A] ` B

Σ, [Γ,δ, [∆, [Ψ ` A] ` B] ` C] ` D
s↑ −−−
Σ, [Γ, [∆, [Ψ,δ ` A] ` B] ` C] ` D

∆, [Γ,δ ` A] ` B
c↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∆, [Γ,δ,δ ` A] ` B

∆, [Γ ` A→ B] ` C
g↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∆, [Γ, A` B] ` C

∆ ` A→ B
a↑ −−−−−−−−−−−−−−−−
∆, A` B

Figure 3: Inference rules for the system SJN

Remark 3.1. Notice that the rule g↑ is really the opposite of a↓, and a↑ the opposite
of g↓, in the sense that they just have their premise and conclusion exchanged. This is
normal since the a and g rules in JN are performing the same action of decomposition
of an implication, but in contexts of different polarities.

The SJN system is obviously complete, since it contains the JN∪ {e} system, for
which we have proved completeness, stated in Corollary 1.19. Soundness is easy to
prove, since we just have to show that the rules of the up fragment correspond to
valid implications in intuitionistic logic. This is clear, since they correspond to the
implications of the down fragment, reversed and used in a negative context, and if
a formula A→ B is provable in LJ using a proof Π1, then for any C , the formula
(B→ C)→ A→ C is also provable, as follows:

��
��

��
�???????

Π1

A` B
ax −−−−−−−−

C ` C
→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−B→ C , A` C
→L −−−−−−−−−−−−−−−−−−−−−−−B→ C ` A→ C

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−` (B→ C)→ A→ C

Now, we are interested in proving a property stronger than cut elimination, that
we call normalisation: the whole up fragment is admissible for the down fragment
of SJN. It is anyway required to show that we can deal with other up rules, if we
want to eliminate cuts in a local way, since we introduce instances of s↑ during
cut elimination. For this, we need to define an appropriate measure, taking all the
up rules into account. We only consider the SJN system defined above, and no
generalisation of variants of JN — they would be treated the same way.

3 — Local Normalisation 1553 — Local Normalisation 1553 — Local Normalisation 155

First, we need to reconsider the definitions used in the previous section, possi-
bly updating them to fit the generalised setting of the symmetric SJN system. The
base for the tools developped to define a suitable measure for the cut elimination
proof was the notion of flow-graph, which is built from the connections defined for
each inference rule in the system. We can extend this definition to all up rules, to
obtain the generalisation of flow-graphs for SJN.

On these extended grounds, all the definitions given in Section 2 can be trivially
transfered to the symmetric setting of SJN, up to the definition of the rank of a cut
instance — in particular, we define the synthetic cut rules es, ea and eg the same
way, but we name them is↑, ia↑ and ig↑ to have consistent notations. At this point,
we have to consider the new dynamics introduced by the up rules, which have to
move upwards in the proof, and potentially create instances of other up rules along
their way. Instances of these new rules thus need to have a rank, to be used in the
induction performed to prove normalisation. The first step is to extend the notion
of size of a rule instance, and we need a particular treatment for the dual switch.

Definition 3.2. The context weight of a s↑ instance r moving some sequent δ is the
number of atoms used in the antecedent where δ appears in the premise of r.

In the scheme of the s↑ rule shown in Figure 3, this would associate a context
weight calculated as the number of atoms in Γ,δ, [∆, [Ψ ` A] ` B].

Definition 3.3. In a derivation D in SJN, the size of a cut instance r with a principal
sequent δ, denoted by |r|, is the number of atoms used in δ, the size |r| of a s↑ instance
is the context weight of r, and the size |r| of an instance r of any other rule is 0.

Then, we can generalise the notion of rank to all the up rules.

Definition 3.4. In a derivation D in SJN, the rank of some instance r of any up rule,
denoted by RD(r), is the pair (MD(r), |r|), under lexicographic ordering.

In order to prove the local normalisation result, we will not need such complex
lemmas as weak linearisation or merging. However, we need to extend the identity
rule, by building the s↑ rule inside, as described in Remark 2.27, to accomodate the
interaction between a standard identity i↓ rule and the s↑ rule.

Remark 3.5. The extended form of identity is↓, shown below:

Γ, [∆,Ψ ` B] ` C
is↓ −−
Γ, [∆, [[Ψ ` A] ` A] ` B] ` C

156 3 — Intuitionistic Logic in Nested Sequents156 3 — Intuitionistic Logic in Nested Sequents156 3 — Intuitionistic Logic in Nested Sequents

is precisely the dual of the synthetic is↑ rule. Therefore, it contains both a down part,
which is the standard i↓ rule, and an up part, the s↑ rule. This is not regarded as a
problem, even if such instances remain after normalisation, because this rule has the
subformula property. In fact, the equivalent of this rule was proposed for the sequent
calculus [SH11], but it appears here naturally in the normalisation argument.

We can now turn to the proof of local normalisation. As in the previous section,
we will pick the topmost up rule instance to be moved upwards in the proof, and
eliminate it, to show that from an arbitrary proof in SJN we can build an equivalent
proof in JN, which is the normalised version of the original proof.

The normalisation procedure treats cut instances exactly the same way as the
cut elimination procedure, except for the rewriting involved in the main cases,
where a cut is reduced into two smaller cuts. In this case, the s↑ rule comes into
play, and must be eliminated as well. Then, moving such an instance up is simpler
than moving a cut instance — in particular, no rule instance gets blocked on this
one — but it requires to use dual contractions and weakenings, to be eliminated.

Remark 3.6. We could restrict normalisation to the elimination of cuts is↑, ia↑ and
ig↑, dual contractions c↑ and weakenings w↑, and dual switches s↑ — that is, avoid
dealing with the dual left and right implication rules g↑ and a↑. Indeed, the rules g↑
and a↑ are not introduced during the elimination process of other up rules.

Theorem 3.7 (Local normalisation). Any proof D of a nested sequent Γ ` B in SJN

can be transformed into a proof D ′ of Γ ` B in JN.

Proof. If there is no up rule instance in the given proof D, we are done, since D is a
valid proof in the down fragment JN. In the general case, we proceed by induction
on the number of up rule instances in D, and consider the topmost such instance
r in D with a target that we name D2. Then, we proceed by induction on the pair
(RD(r),H (D2)), to show that this up instance can be eliminated. For that, we use
a case analysis on the bottommost instance r1 in D2:

−
D2

ζ{υ}
r1 −−−−−−−−−−−−−−−−−
ξ{Γ,κ ` B}

is↑/ ia↑/ ig↑ =========================
ξ{Γ,∆1,∆2 ` B}

or

−
D2

ζ{υ}
r1 −−−−−−−
ξ{κ}

r↑ −−−−−−−
ξ{µ}

1. If r1 is not in the scope of r, we permute it down and proceed by induction
hypothesis, because the height of D2 has decreased.

2. If r is a cut instance, and r1 is a switch moving material into the sequent κ
introduced by the cut, or affects only the inside of κ, we can proceed as in
the basic cut elimination procedure, and assimilate r1 into the cut, so that we
can use the induction hypothesis, since the height of D2 has decreased.

Thus, we only need to consider cases in which r1 is blocked above the up rule
instance r, and cannot be assimilated inside r if it is a cut. There are many cases to
consider, and we start with the situation where r is a cut instance, which is treated
the same way as in the basic cut elimination procedure.

3 — Local Normalisation 1573 — Local Normalisation 1573 — Local Normalisation 157

3. If r1 is an identity is↓ instance matching r, it can interact with r and disappear,
and we can use the main induction hypothesis, since one cut was eliminated
— the transformation we use is the same as before if the identity is applied
on the positive sequent introduced by an is↑ cut:

ξ{Γ,∆1, A` B}
is↓ −−−
ξ{Γ, [[∆1, A` A] ` A] ` B}

is↑ ===
ξ{Γ,∆1, A` B}

−→ ξ{Γ,∆1, A` B}

but different if it is applied to the negative occurrence of such a cut:

ξ{Σ, [Ψ, [∆1 ` A] ` D] ` E}
is↓ −−
ξ{Σ, [Ψ, [[[∆1 ` A] ` A] ` A] ` D] ` E}

is↑ ==
ξ{Σ, [Ψ, [∆1 ` A] ` D] ` E}

−→ ξ{Σ, [Ψ, [∆1 ` A] ` D] ` E}

In the case of an ia↑ instance, the body of the cut does not disappear, and as
in the basic cut elimination proof we can rewrite it into a derivation D ′1:

ξ{Γ, [Σ,Ψ ` E] ` B}
is↓ −−
ξ{Γ, [[[Σ ` C → D] ` C → D],Ψ ` E] ` B}

ia↑ ==
ξ{Γ, [Σ ` C → D],∆2 ` B}

−→

ξ{Γ, [Σ,Ψ ` E] ` B}
D′1

ξ{Γ, [Σ, C ` D],∆2 ` B}
a↓ −−−
ξ{Γ, [Σ ` C → D],∆2 ` B}

and then we can apply the main induction hypothesis on the resulting proof,
since one cut instance was erased. In the case of an ig↑ instance, we proceed
in a similar way:

ξ{Ψ}
is↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{[Ψ ` C → D] ` C → D}

ig↑ =======================================
ξ{∆1,∆2 ` C → D}

−→

ξ{Ψ}
D ′1

ξ{∆1,∆2, C ` D}
g↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{∆1,∆2 ` C → D}

4. If r1 is a w↓ instance erasing the principal sequent of the cut r or a c↓ instance
duplicating it, we have to introduce weakenings or contractions respectively,
and erase or duplicate the cut, as shown below in one case of weakening:

ξ{Γ ` B}
w↓ −−−−−−−−−−−−−−−−−
ξ{Γ,µ ` B}

is↑/ ia↑/ ig↑ =========================
ξ{Γ,∆1,∆2 ` B}

−→
ξ{Γ ` B}

w↓∗ ==================
ξ{Γ,∆ ` B}

and similarly in one case of contraction:

ξ{Γ,κ,κ ` B}
c↓ −−−−−−−−−−−−−−−−−−−−

ξ{Γ,κ ` B}
is↑/ ia↑/ ig↑ =========================

ξ{Γ,∆1,∆2 ` B}
−→

ξ{Γ,κ,κ ` B}
is↑/ ia↑/ ig↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{Γ,κ,∆1,∆2 ` B}
is↑/ ia↑/ ig↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{Γ,∆1,∆2,∆1,∆2 ` B}
c↓∗ =====================================

ξ{Γ,∆1,∆2 ` B}

158 3 — Intuitionistic Logic in Nested Sequents158 3 — Intuitionistic Logic in Nested Sequents158 3 — Intuitionistic Logic in Nested Sequents

Notice that we can apply the main induction hypothesis because one cut was
erased, in the first case. In the second case, we can use the other induction
hypothesis on the topmost copy of the cut, because its multiplicity is smaller
than the multiplicity of the original cut, and do the same with the bottommost
copy, for the same reason as in the basic cut elimination procedure — finally,
we use the main induction hypothesis since one cut was erased.

5. If r1 is an a↓ instance and r is an instance of ig↑, or if r1 is a g↓ instance and
r is an instance ia↑, we have one of the situations described below:

ξ{Γ, [[∆1,Ψ ` E], C ` D] ` B}
a↓ −−
ξ{Γ, [[∆1,Ψ ` E] ` C → D] ` B}

ig↑ ==
ξ{Γ,∆1,∆2 ` B}

ξ{Γ, [[∆1, C ` D],Ψ ` E] ` B}
g↓ −−
ξ{Γ, [[∆1 ` C → D],Ψ ` E] ` B}

ia↑ ==
ξ{Γ,∆1,∆2 ` B}

and we can permute r1 down to the bottom of the body of the cut, so that we
obtain the proofs shown below, on the left in the first case and on the right
in the second case, where D ′1 is in both case obtained by the permutation of
the instance r1 through D1, and D ′2 is the topmost part of D2:

−
D ′2

ξ{Γ, [[∆1,Ψ ` E], C ` D] ` B}
D ′1

ξ{Γ,∆1,∆2, [[C ` D], C ` D] ` B}
g↓ −−−
ξ{Γ,∆1,∆2, [C → D, C ` D] ` B}

a↓ −−−
ξ{Γ,∆1,∆2, [C → D ` C → D] ` B}

i↑ −−−
ξ{Γ,∆1,∆2 ` B}

−
D′2

ξ{Γ, [[∆1, C ` D],Ψ ` E] ` B}
D′1

ξ{Γ,∆1,∆2, [[C ` D], C ` D] ` B}
a↓ −−
ξ{Γ,∆1,∆2, [[C ` D] ` C → D] ` B}

g↓ −−
ξ{Γ,∆1,∆2, [C → D ` C → D] ` B}

i↑ −−−
ξ{Γ,∆1,∆2 ` B}

Then, we can rewrite each of these proofs into another proof where the cut
has been splitted into to cuts of smaller size, as in the basic cut elimination
procedure. However, because of the available up rules, there is no need for a
merging lemma, and we can glue the parts together using an instance of s↑,
so that above the new cuts we can use D3, the composition of D ′1 and D ′2:

−
D3

ξ{Γ,∆1,∆2, [[C ` D], C ` D] ` B}
s↑ −−
ξ{Γ,∆1,∆2, [[[C ` C] ` D] ` D] ` B}

i↑ −−
ξ{Γ,∆1,∆2, [D ` D] ` B}

i↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ,∆1,∆2 ` B}

We can then use the induction hypothesis on the dual switch s↑ instance,
because its size is necessarily smaller than the size of the original cut. Finally,
we use the induction hypothesis on the two cuts below as well, since they are
of smaller size than the original, and we use the main induction hypothesis
in the end, because one cut was eliminated.

3 — Local Normalisation 1593 — Local Normalisation 1593 — Local Normalisation 159

The remaining cases are the new cases introduced by the use of the symmetric
system, with a dual up fragment. Because of the previous case of reduction of one
cut into two smaller ones, we have to show how to eliminate all s↑ instances in a
given proof — what the elimination of this glueing s↑ instance basically does is the
implementation of the merging lemma within the syntactic dynamics of the logic.

Given any up rule instance r, the transformation to perform, when the instance
r1 above is a weakening or a contraction erasing or duplicating the whole sequent
that was change by r, is always the same. In such a case, we treat r the same way
as we treated the situation of a cut used below a structural rule:

6. If r1 is a weakening w↓ instance erasing the whole sequent affected by r, we
just have to erase r, and we can go on using the main induction hypothesis,
since one up rule instance was eliminated:

ξ{Γ ` B}
w↓ −−−−−−−−−−−−−−−−−
ξ{Γ,κ ` B}

r −−−−−−−−−−−−−−−−−
ξ{Γ,µ ` B}

−→
ξ{Γ ` B}

w↓ −−−−−−−−−−−−−−−−−
ξ{Γ,µ ` B}

7. If r1 is a contraction c↓ instance duplicating the sequent affected by r, we can
duplicate r and go on by induction hypothesis, which is possible since after
this transformation, r has a smaller multiplicity than the original:

ξ{Γ,κ,κ ` B}
c↓ −−−−−−−−−−−−−−−−−−−−

ξ{Γ,κ ` B}
r −−−−−−−−−−−−−−−−−
ξ{Γ,µ ` B}

−→

ξ{Γ,κ,κ ` B}
r −−−−−−−−−−−−−−−−−−−−−
ξ{Γ,κ,µ ` B}

r −−−−−−−−−−−−−−−−−−−−−
ξ{Γ,µ,µ,` B}

c↓ −−−−−−−−−−−−−−−−−−−−−
ξ{Γ,µ ` B}

In other cases, either the permutation is a trivial one, or we provide a rewriting
to apply in this situation. We start with the rewritings devoted to the elimination
of all the dual switch s↑ instances, which requires the introduction of the other up
rules w↑ and c↑:

8. If r1 is an identity is↓ instance matching the s↑ instance r, we integrate the
dual switch inside the identity, and go on using the main induction hypothesis
since we have removed one up rule instance:

ξ{Γ, [∆,δ,Ψ ` B] ` C}
i↓ −−−
ξ{Γ, [∆,δ, [[Ψ ` A] ` A] ` B] ` C}

s↑ −−−
ξ{Γ, [∆, [[δ,Ψ ` A] ` A] ` B] ` C}

−→
ξ{Γ, [∆,δ,Ψ ` B] ` C}

is↓ −−−
ξ{Γ, [∆, [[δ,Ψ ` A] ` A] ` B] ` C}

160 3 — Intuitionistic Logic in Nested Sequents160 3 — Intuitionistic Logic in Nested Sequents160 3 — Intuitionistic Logic in Nested Sequents

9. If r1 is a weakening w↓ instance matching the dual switch, we have to turn the
s↑ instance into a dual weakening w↑ instance, shown below, and we can go
on by induction hypothesis, since the new w↑ instance has exactly the same
multiplicity as the original r instance, but the height of D2 has decreased:

ξ{Γ, [∆,δ, [Σ ` B] ` C] ` D}
w↓ −−
ξ{Γ, [∆,δ, [Σ, [Ψ ` A] ` B] ` C] ` D}

s↑ −−
ξ{Γ, [∆, [Σ, [Ψ,δ ` A] ` B] ` C] ` D}

−→
ξ{Γ, [∆,δ, [Σ ` B] ` C] ` D}

w↑ −−−
ξ{Γ, [∆, [Σ ` B] ` C] ` D}

w↓ −−
ξ{Γ, [∆, [Σ, [Ψ,δ ` A] ` B] ` C] ` D}

10. If r1 is a contraction c↓ instance matching the dual switch, the s↑ instance is
duplicated when it permutes with the contraction, so that from:

ξ{Γ, [∆,δ, [Σ, [Ψ ` A], [Ψ ` A] ` B] ` C] ` D}
c↓ −−−

ξ{Γ, [∆,δ, [Σ, [Ψ ` A] ` B] ` C] ` D}
s↑ −−
ξ{Γ, [∆, [Σ, [Ψ,δ ` A] ` B] ` C] ` D}

we obtain the new situation shown below, where a dual contraction instance
c↑ has been created to glue the proof above r1 to the premise of the two dual
switches, by collapsing the two copies of δ created:

ξ{Γ, [∆,δ, [Σ, [Ψ ` A], [Ψ ` A] ` B] ` C] ` D}
c↑ −−−
ξ{Γ, [∆,δ,δ, [Σ, [Ψ ` A], [Ψ ` A] ` B] ` C] ` D}

s↑ −−−
ξ{Γ, [∆,δ, [Σ, [Ψ ` A], [Ψ,δ ` A] ` B] ` C] ` D}

s↑ −−−
ξ{Γ, [∆, [Σ, [Ψ,δ ` A], [Ψ,δ ` A] ` B] ` C] ` D}

c↓ −−−
ξ{Γ, [∆, [Σ, [Ψ,δ ` A] ` B] ` C] ` D}

We can use the induction hypothesis on the dual contraction c↑ introduced,
since its multiplicity is at most the same as the multiplicity of r — because δ
is in positive position. Then, we can also use the induction hypothesis on the
two copies of the s↑ instance, since they have a smaller multiplicity than r,
and we use the main induction hypothesis, as one up rule was eliminated.

11. If r1 is a switch s↓ instance, there are two possible configurations in which
the s↑ instance can interact, the first one happening when r1 moves material
inside the material moved out by the s↑ instance, so that:

ξ{Γ, [∆, [Φ,δ ` A], [Σ, [Ψ ` B] ` C] ` D] ` E}
s↓ −−−
ξ{Γ,δ, [∆, [Φ ` A], [Σ, [Ψ ` B] ` C] ` D] ` E}

s↑ −−−
ξ{Γ,δ, [∆, [Σ, [Ψ, [Φ ` A] ` B] ` C] ` D] ` E}

is rewritten into the derivation:

ξ{Γ, [∆, [Φ,δ ` A], [Σ, [Ψ ` B] ` C] ` D] ` E}
s↑ −−−
ξ{Γ, [∆, [Σ, [Ψ, [Φ,δ ` A] ` B] ` C] ` D] ` E}

s↓ −−−
ξ{Γ, [∆, [Σ,δ, [Ψ, [Φ ` A] ` B] ` C] ` D] ` E}

s↓ −−−
ξ{Γ,δ, [∆, [Σ, [Ψ, [Φ ` A] ` B] ` C] ` D] ` E}

3 — Local Normalisation 1613 — Local Normalisation 1613 — Local Normalisation 161

and we can conclude by induction hypothesis, since the size of the s↑ instance
has decreased. The other configuration is symmetric to the first one, where
the s↑ instance moves material out of a sequent before r1 moves this sequent
inside another, so that from:

ξ{Γ, [∆,δ, [Σ, [Ψ, [Ξ, [Φ ` A] ` B] ` C] ` D] ` E] ` F}
s↓ −−−
ξ{Γ, [∆,δ, [Σ, [Φ ` A], [Ψ, [Ξ ` B] ` C] ` D] ` E] ` F}

s↑ −−−
ξ{Γ, [∆, [Σ, [Φ,δ ` A], [Ψ, [Ξ ` B] ` C] ` D] ` E] ` F}

we obtain the new derivation:

ξ{Γ, [∆,δ, [Σ, [Ψ, [Ξ, [Φ ` A] ` B] ` C] ` D] ` E] ` F}
s↑ −−−
ξ{Γ, [∆, [Σ, [Ψ,δ, [Ξ, [Φ ` A] ` B] ` C] ` D] ` E] ` F}

s↑ −−−
ξ{Γ, [∆, [Σ, [Ψ, [Ξ, [Φ,δ ` A] ` B] ` C] ` D] ` E] ` F}

s↓ −−−
ξ{Γ, [∆, [Σ, [Φ,δ ` A], [Ψ, [Ξ ` B] ` C] ` D] ` E] ` F}

and we can use the induction hypothesis on the topmost s↑ instance since it
has the same size of the original and the height of D2 has decreased. We can
then use the induction hypothesis again, on the other switch, because its size
is smaller than that of the original.

All other cases involving s↑ instances are trivial permutations. Then, we show
how to treat the instances of the dual weakening w↑ rule, and this will never require
to introduce instances of other rules than w↑ itself — similarly to the treatment of
weakening in the down fragment, moving the dual weakening rule is mostly about
erasing the rule instances that are encountered.

12. If r1 only affects a sequent contained inside the sequent introduced by r, it
can simply be erased — this is dual to the situation where an up rule instance
is erased by a weakening — and we can go on by induction hypothesis since
the height of D2 has decreased.

13. If r1 is an is↓ instance applied exactly on the sequent introduced by r, both
rule instances can be erased, and we can go on by induction hypothesis, since
one up rule instance was eliminated:

ξ{Γ, [∆ ` B] ` C}
is↓ −−−
ξ{Γ, [∆, [[Ψ ` A] ` A] ` B] ` C}

w↑ −−−
ξ{Γ, [∆ ` B] ` C}

−→ ξ{Γ, [∆ ` B] ` C}

14. If r1 is an instance of s↓ moving material inside the sequent introduced by r,
we can erased this material and introduce it directly using a dual weakening,
and then use the induction hypothesis, which is of course possible since the
height of D2 has decreased:

ξ{Γ, [∆, [Ψ,δ ` A] ` B] ` C}
s↓ −−
ξ{Γ,δ, [∆, [Ψ ` A] ` B] ` C}

w↑ −−
ξ{Γ,δ, [∆ ` B] ` C}

−→
ξ{Γ, [∆, [Ψ,δ ` A] ` B] ` C}

w↑ −−
ξ{Γ, [∆,` B] ` C}

w↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ,δ, [∆ ` B] ` C}

162 3 — Intuitionistic Logic in Nested Sequents162 3 — Intuitionistic Logic in Nested Sequents162 3 — Intuitionistic Logic in Nested Sequents

All other cases involving w↑ instances are trivial permutations. Then, we show
how to eliminate instances of the dual contraction c↑ rule, and this is similar to
the situation described for dual weakenings — when the dual contraction is moved
upwards, it forces the duplication of other rule instances.

15. If r1 only affects a sequent inside the sequent resulting from the collapse of
the two δ sequents operated by the r, it can be duplicated — this is dual to
the situation where an up instance is duplicated by a contraction — and we
can use the induction hypothesis since the height of D2 has decreased.

16. If r1 is an instance of s↓moving material inside the sequent resulting from the
collapse operated by r, we can use a contraction to duplicate the sequent δ
and then use two copies of r1 before we collapse the resulting sequents with
the dual contraction — and we can use the induction hypothesis, because the
height of D2 has decreased — so that:

ξ{Γ, [∆, [Ψ,δ ` A] ` B] ` C}
s↓ −−
ξ{Γ,δ, [∆, [Ψ ` A] ` B] ` C}

c↑ −−
ξ{Γ,δ, [∆, [Ψ ` A], [Ψ ` A] ` B] ` C}

is rewritten into the derivation:

ξ{Γ, [∆, [Ψ,δ ` A] ` B] ` C}
c↑ −−−
ξ{Γ, [∆, [Ψ,δ ` A], [Ψ,δ ` A] ` B] ` C}

s↓ −−−
ξ{Γ,δ, [∆, [Ψ ` A], [Ψ,δ ` A] ` B] ` C}

s↓ −−−
ξ{Γ,δ,δ, [∆, [Ψ ` A], [Ψ ` A] ` B] ` C}

c↓ −−−
ξ{Γ,δ, [∆, [Ψ ` A], [Ψ ` A] ` B] ` C}

All other cases involving c↑ instances are trivial permutations. Then, we show
how to eliminate instances of the g↑ rule, which is quite easy and never requires to
introduce other up rule instances:

17. If r1 is an is↓ instance involving the implication formed by r, we can apply
the g↓ rule on the other implication and use the following transformation to
remove r — and we go on using the main induction hypothesis, since one up
rule instance was eliminated — so that the derivation:

ξ{Γ, [∆,Ψ ` C] ` D}
is↓ −−−
ξ{Γ, [∆, [[Ψ ` A→ B] ` A→ B] ` C] ` D}

g↑ −−−
ξ{Γ, [∆, [[Ψ, A` B] ` A→ B] ` C] ` D}

is rewritten into:

ξ{Γ, [∆,Ψ ` B] ` C}
is↓ −−
ξ{Γ, [∆, [[Ψ ` B] ` B] ` C] ` D}

i↓ −−−
ξ{Γ, [∆, [[Ψ, [A` A] ` B] ` B] ` C] ` D}

s↓ −−−
ξ{Γ, [∆, [[Ψ, A` B], A` B] ` C] ` D}

g↓ −−−
ξ{Γ, [∆, [[Ψ, A` B] ` A→ B] ` C] ` D}

3 — Local Normalisation 1633 — Local Normalisation 1633 — Local Normalisation 163

18. If r1 is an a↓ instance decomposing the implication formed by r, then both
instances can be removed, and we use the main induction hypothesis, since
one up rule instance was eliminated:

ξ{Γ, [∆, A` B] ` C}
a↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ, [∆ ` A→ B] ` C}

g↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ, [∆, A` B] ` C}

−→ ξ{Γ, [∆, A` B] ` C}

All other cases involving g↑ instances are trivial permutations. Then, we show
how to eliminate instances of the dual application a↑ rule, which is almost the same
as for the g↑ rule, since these rules are performing the same action, in contexts of
different polarities.

19. If r1 is an is↓ instance involving the implication formed by r, we can apply
the a↓ rule on the other implication and use the following transformation to
remove r — and we go on using the main induction hypothesis, since one up
rule instance was eliminated — so that:

ξ{Γ, [∆,Ψ ` C] ` D}
is↓ −−−
ξ{Γ, [∆, [[Ψ ` A→ B] ` A→ B] ` C] ` D}

a↑ −−−
ξ{Γ, [∆, [[Ψ ` A→ B], A` B] ` C] ` D}

is rewritten into the following derivation:

ξ{Γ, [∆,Ψ ` B] ` C}
is↓ −−
ξ{Γ, [∆, [[Ψ ` B] ` B] ` C] ` D}

i↓ −−−
ξ{Γ, [∆, [[Ψ, [A` A] ` B] ` B] ` C] ` D}

s↓ −−−
ξ{Γ, [∆, [[Ψ, A` B], A` B] ` C] ` D}

a↓ −−−
ξ{Γ, [∆, [[Ψ ` A→ B], A` B] ` C] ` D}

20. If r1 is an g↓ instance decomposing the implication formed by r, then both
instances can be removed, and we use the main induction hypothesis, since
one up rule instance was eliminated:

ξ{Γ, A` B}
g↓ −−−−−−−−−−−−−−−−−−−−
ξ{Γ ` A→ B}

a↑ −−−−−−−−−−−−−−−−−−−−
ξ{Γ, A` B}

−→ ξ{Γ, A` B}

All other cases involving a↑ instances are trivial permutations. This case analysis
describes the rewritings to be applied to remove all up rule instances, and when the
inductions come to an end, the resulting proof does not contain any such instance
anymore, so that it is a valid proof in JN.

164 3 — Intuitionistic Logic in Nested Sequents164 3 — Intuitionistic Logic in Nested Sequents164 3 — Intuitionistic Logic in Nested Sequents

Chapter 4

Intuitionistic Logic in the
Calculus of Structures

This chapter elaborates on the systems previously introduced for intuitionistic
logic in nested sequents, by describing two presentations of intuitionistic logic in
the plain formalism of the calculus of structures, where all deduction is collapsed
into one level and the proof construction process is reduced to the rewriting of
formulas. In both cases, the emphasis is put on the impact of the system design on
the proof normalisation transformation.

The first presentation follows the style of the sequent calculus, but implements
the collapse of the logical level and the meta-level by retaining only the implication
connective inside structures that can be interpreted either as sequents or formulas.
In such a system, there are less inference rules, since for example, the curryfication
operation relating Γ ` A→ B to Γ, A` B is implicit. In the cut elimination process,
this simplifies the situation by eliminating the need to have instances of both left
and right implication rules above a cut to decompose it. In particular, it allows to
obtain a common property of many systems in the calculus of structures: the ability
to reduce the cut to its atomic form by a direct decomposition rather than through
the permutative procedure for cut elimination. However, this leaves the problem
found in the procedure defined for nested sequents, as its equivalent in the calculus
of structures also relies on a non-local rewriting of proofs. The generalisation into
a symmetric system is also presented, following the same principles as in nested
sequents, and the local normalisation procedure is adapted to this setting.

The second presentation follows the style of natural deduction, where a system
is designed by pairs of introduction and elimination rules. This is quite unusual for
the setting of the calculus of structures, but it allows for a simpler treatment of the
normalisation of proofs. Indeed, the elimination of detours, formed by sequences
of introduction and elimination instances on the same connective, is performed in
such a system the same way as in natural deduction, using a cut and a permutative
procedure — the substitutive procedure would be difficult to implement here, since
branches are interleaved into the flat structure of proofs. In particular, we present
a completely local rewriting procedure to transform an intuitionistic proof into a
normal one, directly inspired from the standard permutative procedure.

166 4 — Intuitionistic Logic in the Calculus of Structures166 4 — Intuitionistic Logic in the Calculus of Structures166 4 — Intuitionistic Logic in the Calculus of Structures

1 A System in Sequent Style

We present a proof system for the purely implicative fragment of intuitionistic logic
in the calculus of structures, which uses the standard way of representing proofs in
the setting of deep inference [Gug07] by defining only one level for reasoning: the
level of formulas — by opposition to the traditional representation of proofs in the
sequent calculus, using in addition a meta-level where the sequents are informally
equivalent to logical formula. However, this system is in sequent style in the sense
that it comes with a cut rule that can be eliminated to produce from any proof a
normal proof where all formulas are built with atoms that are, informally speaking,
already present in its conclusion — this corresponds to the subformula property.

This system is almost identical to the system JN∪ {e} presented in the previous
chapter, but it removes the need for the rules relating the logical implication→ and
the meta-level implication represented by the ` symbol in sequents, and handles
logical equivalences through a congruence relation on formulas, as usually done in
the calculus of structures. Therefore, establishing its properties will be easy, since
the techniques developped for JN∪ {e} can be adapted in this new setting.

1.1 Basic Definitions

As in the systems we defined in nested sequents, we assume given a countable set
of atoms, denoted by small latin letters such as a, b, c, and the connective → for
intuitionistic implication. We will here use a unit, denoted by >, which represents
truth and will therefore be the left unit of the implication1.

Definition 1.1. The formulas of intuitionistic logic are defined by the grammar:

A, B ::= a | > | A→ B

Then, as usual in the calculus of structures, we consider logical formulas through
a set of equations forming a congruence, which defines equivalence classes that are
the objects we will actually deal with. The purpose of this congruence is to simplify
notations: because some rewritings are incorporated in the congruence, we need
less inference rules, and when writing proofs, the reading is made easier by the
absence of such tedious steps, which usually do not convey the idea of the proof.

Definition 1.2. The structures of our system are defined as the equivalence classes of
formulas generated by the congruence described by the equations shown in Figure 1.

The first of these equations makes > the left unit of the implication, and the
second one allows to exchange two formulas on the left, which would correspond to
the ability of exchanging formulas in the antecedent of a sequent — an antecedent
being a multiset. In the following, we sometimes make explicit the rewriting steps
corresponding to the congruence, by using a general inference rule ≡ which can be
applied in an instance with premise A and conclusion B whenever A ≡ B. Notice
that the implication connective is right associative, so that we can write a structure
A→ (B→ C) in the simpler form A→ B→ C without ambiguity.

1This unit is useful to deal with the equivalent of sequent of the shape ` A, with an empty antecedent.

1 — A System in Sequent Style 1671 — A System in Sequent Style 1671 — A System in Sequent Style 167

>
x −−−−−−−−

A→ A

((A→ B)→ C)→ D
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A→ (B→ C)→ D

B
w −−−−−−−−−

A→ B

A→ A→ B
c −−−−−−−−−−−−−−−−

A→ B

(A→ A)→ B
u −−−−−−−−−−−−−−−−−−−

B

>→ A ≡ A
A→ (B→ C) ≡ B→ (A→ C)

Figure 1: Inference rules and congruence for the system JS∪ {u}

As usual in a deep inference setting, we have the ability to apply inference rules
inside a context, and here this means rewriting a structure deep inside another
structure. As in the nested sequents systems, we simplify notations by considering
only the positive contexts, which are those located on the left-hand side of an even
number of implications.

Definition 1.3. The contexts of our system are structures with a hole { } meant to be
filled by another structure, and are defined by the following grammar:

ξ ::= { } | (ξ→ A)→ B

Remark 1.4. As in the nested sequent systems, everything is considered here from the
viewpoint of positive contexts, which preserve polarity, so that a context plugged in a
negative position has a hole in negative position.

Contexts will be denoted as ξ{ } or ζ{ }, so that for example ξ{A} is the context
ξ where the hole has been replaced by the structure A. The definition of contexts
can be extended to several holes easily, such a context being denoted by ξ{ }+ and
allowing notations such as the following:

ξi{Ai}+ = ξ{A1} · · · {An} for some n ∈ N (9)

Inference rule instances are, also here, defined through two structures schemes that
can be instantiated and can always be plugged inside a context.

Notice that in the approach of the calculus of structures, where the meta-level
has been completely absorbed into the definition of structures, and thus collapsed
with with logical level, inferences rules can be applied anywhere inside structures
at any point in a derivation, even in the conclusive structure. This is different from
the situation of nested sequents, where a subformula is made accessible only after
the formula around it has been decomposed into the meta-level.

The specific set of inference rules used in our sequent style system, that we call
here JS∪ {u}, is given in Figure 1. The cut-free system JS is obtained by removing
the rule u from this set — this is the rule corresponding to the usual cut rule.

168 4 — Intuitionistic Logic in the Calculus of Structures168 4 — Intuitionistic Logic in the Calculus of Structures168 4 — Intuitionistic Logic in the Calculus of Structures

The presentation of the system JS differs, at first sight, from the usual sequent
calculus LJ, because of the collapse of the logical level and the meta-level, and due
to the decomposition allowed in a deep inference setting. But the weakening and
contraction rules w and c are standard, as well as the axiom rule x, and the cut rule
u corresponds to the traditional cut rule when considering the inner occurrence of
A as the conclusion of the branch proving the cut formula.

As in the case of nested sequents, one of the key features of this deep inference
system is the switch rule s, which allows to perform the equivalent of the context
splitting operation from the sequent calculus, in a lazy way. For example, in the cut
rule u, no structures are given as hypothesis to prove the cut structure A, because
they can be moved inside later in the proof construction, using a switch. Notice that
there is no equivalent of the left/right implication rules→L and→R here, because
they are only required to deal with the decomposition of a logical implication into
a meta-level implication, but the switch rule is also required to perform the task of
the→L rule.

Example 1.5. Consider the two following simple derivations, which illustrate the use
of the axiom and cut rules, as well as the switch and the equations on formulas:

(>→ A)→ A
x −−−
((((A→ A)→ A)→ A)→ A)→ A

s −−−
((A→ (A→ A)→ A)→ A)→ A

s −−
A→ (((A→ A)→ A)→ A)→ A

u −−
A→ (A→ A)→ A

u −−−−−−−−−−−−−−−−−−−−−−−−−−
A→ A

>
x −−−−−−−−

A→ A
≡ −−−−−−−−−−−−−−−−−−−
(>→ A)→ A

x −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
((A→ A)→ A)→ A

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A→ (A→ A)→ A

u −−−−−−−−−−−−−−−−−−−−−−−−−−
A→ A

where we see how the switch is responsible for moving material to the location where
it is needed. On the right, one switch is needed to place the A where it can be used by
the axiom rule, but on the left A must be pushed twice. Notice that the shape of the x
rule imposes a certain order on the application of its instances: we must apply it inside
first. In some systems [BM08], a variant axiome rule can be used:

B
−−−−−−−−−−−−−−−−−−−
(B→ A)→ A

where the structure B to be proved to validate the assumption A is carried over to the
premise, as it needs to be proved, for validating the whole deduction. The equivalent
of this rule has also been suggested in the sequent calculus [SH11].

It appears now that the differences between the JS∪ {u} system and the nested
sequents system JN∪ {e} are minimal, and mostly related to the notations rather
than to the intrisic representation of intuitionistic proofs. For instance, a proof of
JS∪ {u} starting by rewriting a substructure deep inside the complete conclusion
can be simulated in JN∪ {e} by first decomposing the formula into the meta-level,
until the target subformula is made accessible. These additional steps correspond
to invisible steps in JS∪ {u}, because of the logical equivalence of the connectives
and the meta-level structures. In systems with built-in structural rules, the situation
is slightly more complicated.

1 — A System in Sequent Style 1691 — A System in Sequent Style 1691 — A System in Sequent Style 169

Example 1.6. Here are the translations of the proofs given as examples for the nested
sequents system JN∪ {e} in the system JS∪ {u}. Written as below, without the explicit
congruence steps, they are a little simpler than their nested sequents counterparts.

>
x −−−−−−−−−

B→ B
x −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
((A→ A)→ B)→ B

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(A→ B)→ A→ B

x −−
((A→ A)→ A→ B)→ A→ B

s −−
(A→ A→ B)→ A→ A→ B

c −−−
(A→ A→ B)→ A→ B

>
x −−−−−−−−−

B→ B
x −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
((B→ B)→ B)→ B

x −−−
((((B→ B)→ B)→ B)→ B)→ B

s −−−
((B→ (B→ B)→ B)→ B)→ B

s −−
B→ (((B→ B)→ B)→ B)→ B

w −−−
B→ (((B→ B)→ A→ B)→ B)→ B

u −−−
B→ ((A→ B)→ B)→ B

We can of course show that it is always possible to reduce the axiom rule to the
atomic form, by replacing a general instance with a derivation using atomic axioms
and switch instances to dispatch the different atoms to the right places.

Proposition 1.7. Any instance of the x rule can be replaced by a derivation in JS

with same premise and conclusion, using instances of x only in the atomic form.

Proof. By induction on the structure A affected by a general instance of the axiom
rule, with premise ξ{>} and conclusion ξ{A → A}. If A is an atom a, then this
axiom is already in atomic form and we are done. In the general case, A is an
implication B→ C , and we replace the initial instance by the following derivation:

ξ{>}
x −−−−−−−−−−−−−−−
ξ{C → C}

x −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{((B→ B)→ C)→ C}

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→ C)→ B→ C}

to which we can apply the induction hypothesis.

1.2 Correspondence to the Sequent Calculus

The simplest way to prove that our system is suitable for intuitionistic logic is to
prove soundness and completeness with respect to the sequent calculus. We use
the variant LJ> ∪ {cut} shown below in Figure 2, similar to the one we have used
in the previous chapter, but incorporating the truth unit. This requires translations
between the structures and sequents, which relies on the correspondence between
sequents and formulas. Translating some structure into a sequent is easy, since we
simply have to pick one formula in the equivalence class that defines the structure,
and use it in a sequent. The other way around, we translate the same way nested
sequents were translated into formulas.

Remark 1.8. To make the translation from structures to sequents deterministic, we
assume given a total order on atoms, allowing us to choose a formula accordingly.

170 4 — Intuitionistic Logic in the Calculus of Structures170 4 — Intuitionistic Logic in the Calculus of Structures170 4 — Intuitionistic Logic in the Calculus of Structures

ax −−−−−−−
A` A

Γ ` A ∆, A` B
cut −−−−−−−−−−−−−−−−−−−−−−−

Γ,∆ ` B

Γ ` B
weak −−−−−−−−−−−

Γ, A` B

Γ, A` B
→R −−−−−−−−−−−−−−−Γ ` A→ B

Γ ` A ∆, B ` C
→L −−−−−−−−−−−−−−−−−−−−−−−−Γ,∆, A→ B ` C

Γ, A, A` B
cont −−−−−−−−−−−−−−−

Γ, A` B

>R −−−−−` >
Γ ` A

>L −−−−−−−−−−−−Γ,> ` A

Figure 2: Inference rules for system LJ> ∪ {cut}

The correspondence between formulas of the intuitionistic sequent calculus and
formulas and structures defined in our setting is immediate, we can define it as the
identity transformation.

The translation from sequents to structures is performed by a simple induction
on the shape of the sequent, so that any given sequent is turned into the logical
formula it is equivalent to, and this formula is expressed as a structure to be used
in the JS∪ {u} system.

Definition 1.9. The translation ¹·ºS from intuitionistic sequents into intuitionistic
structures is defined recursively as follows:

¹` AºS = A and ¹A,Γ ` BºS = A→ ¹Γ ` BºS

Now, we can prove soundness of the JS∪ {u} system with respect to the sequent
calculus for intuitionistic logic, and the proof is similar to the one used in the nested
sequents systems of the previous chapter, so that we will not give all the details.

Remark 1.10. Since the JS∪ {u} system uses a congruence when building structures
from formulas, we need to be sure that when the congruence rule ≡ is used to rewrite
the formula used to represent a structure into another formula, representing the same
structure, this step can be performed in LJ> ∪ {cut}. However, this is trivial, since the
equations given in Figure 1 correspond to equivalences in intuitionistic logic.

Theorem 1.11 (Soundness of JS∪ {u}). If some structure A is provable in JS∪ {u},
then the sequent ` A is provable in the LJ> ∪ {cut} sequent calculus.

Proof. We proceed by induction on the length of a proof D of A in JS∪ {u}. In the
base case, when D is just a structure, it has to be the unit >, and we are done since
its translation > is provable in LJ> ∪ {cut} by using the >R rule. In the general
case, we consider the bottommost instance r in D:

−

ξ{C}
r −−−−−−−
ξ{B}

1 — A System in Sequent Style 1711 — A System in Sequent Style 1711 — A System in Sequent Style 171

We have to show first that the implication C → B is provable in LJ> ∪ {cut}, and
for this we use a case analysis on r and build a proof Π1 of this implication. In each
case, we can exhibit a proof of this implication. Then, given some context ξ, we
can prove by a straightforward induction on ξ, and by invertibility of the→R rule,
that there is a proof Π2 of ξ{C} ` ξ{B} in LJ> ∪ {cut}. By induction hypothesis, we
also have a proof Π3 of ξ{C}, and therefore we can build a proof of ξ{B} by using
a cut as follows:

��
��

��
??????Π3

` ξ{C}
��

��
��

�???????
Π2

ξ{C} ` ξ{B}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` ξ{B}
Then, the proof of completeness provides a translation in the other direction,

and is also similar to the one used in the nested sequents.

Theorem 1.12 (Completeness of JS∪ {u}). If some sequent Γ ` A is provable in the
LJ> ∪ {cut} sequent calculus, then the structure ¹Γ ` AºS is provable in JS∪ {u}.

Proof. By induction on a proof Π of the sequent Γ ` A in LJ> ∪ {cut}, and by using
a case analysis on the bottommost rule instance r in Π, we build a proof D of
the translation of this sequent in the JS∪ {u} system. This is straightforward in
every cases, and it can require to compose the proofs obtained by induction on
different branches, as in the case of the cut — where the derivation D ′1 is obtained
by plugging D1 inside a context, and for a Σ = C1, · · · , Cn we denote by Σ→ D the
structure C1→ ·· · → Cn→ D here:

��
��

��
??????Π1

∆ ` B
��

��
��

�???????
Π2

Ψ, B ` A
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∆,Ψ ` A

−→

−
D2

Ψ→ B→ A
D ′1

Ψ→ ((∆→ B)→ B)→ A
s∗ ======================================
∆→Ψ→ (B→ B)→ A

u −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∆→Ψ→ A

which is possible because of the deep inference methodology. Notice that the rule
→R and the two unit rules >L and >R are transparent in this translation, and the
rule→L is handled by simply composing the proofs corresponding to the branches,
without adding any rule instance.

Now that we know that this calculus of structures is a valid proof system for
intuitionistic logic, we can turn to the dynamics of the proofs, and we shall adapt
the procedure used to eliminate cuts in nested sequents to this setting.

1.3 Cut Elimination and Normalisation

The system JS∪ {u} contains the cut rule u, which allows to introduce new atoms in
a structure, and it should be eliminated to get a normal form. Although this system
behaves in many ways like the nested sequents systems of the previous chapter, the
cut elimination argument is a little simpler, due to the absence of equivalent of the
left and right implication rules — it is however almost the same proof.

172 4 — Intuitionistic Logic in the Calculus of Structures172 4 — Intuitionistic Logic in the Calculus of Structures172 4 — Intuitionistic Logic in the Calculus of Structures

Because of the similarity between the JS∪ {u} system and the nested sequents
systems defined in the previous chapters, we can transfer the concepts defined in
this setting into the calculus of structures. This includes of course the definition of
the multiplicity, but also the notions of ancestor and the scope of a rule instance. In
the rules of the JS∪ {u} system, the connections inducing the flow-graph are the
following — where the connections not shown in the switch rule are as expected:

Our goal here is to adapt the technique of cut permutations, in order to translate
any proof in JS∪ {u} into a proof of the same structure in the cut-free system JS,
where the u rule is not available. The main difference with the setting of nested
sequents is that formulas introduced by a cut can be immediately used, while with
sequents they must be orderly decomposed into the meta-level first. An immediate
consequence is that given a proof in JS∪ {u}, its cut instances can be decomposed
into atomic cuts without looking for the matching left or right implication rules, so
that we can assume that given a proof in JS∪ {u}, any cut instance is of the shape:

ξ{(a→ a)→ B}
u −−−−−−−−−−−−−−−−−−−−−−−−

ξ{B}

The proof of this property relies on the adaptation of the merging lemma to this
setting, allowing to rewrite a proof according to the result of the cut decomposition.

Lemma 1.13 (Merging). For any proof D of ξ{(A→ ζ{>}+→ B)→ C} in JS∪ {u},
there is also a proof of ξ{(ζ{A}+→ B)→ C} in this system.

Proof. We consider the particle κ of the structure (A→ ζ{>}+ → B) used in the
conclusion of the proof D, and proceed by induction on the pair (MD(κ),H (D)),
under lexicographic order. At each step we use a case analysis on the bottommost
instance r in D, to rewrite this instance into a derivation of the desired conclusion.

1. If r affects only A, we use the induction hypothesis on the proof D1 above r
and then use the result to build a new proof, with at the bottom the instance
r used on A once inside each copy in ζ:

ξ{(A′→ ζ{>}+→ B)→ C}
r −−−
ξ{(A→ ζ{>}+→ B)→ C}

−→
ξ{(ζ{A′}+→ B)→ C}

r∗ =================================
ξ{(ζ{A}+→ B)→ C}

In the special case where r is an axiom instance and deletes all of A, there is
no need to use the induction hypothesis, we are done — since we start with a
proof, which is a derivation with premise >, this case must eventually occur.

1 — A System in Sequent Style 1731 — A System in Sequent Style 1731 — A System in Sequent Style 173

2. If r does not affect A, we can proceed by induction hypothesis — this includes
the case of a contraction or weakening inside ζ affecting some of the copies of
>, and this is the reason for the general statement of the theorem to involve
an arbitrary number of holes in ζ.

3. If r is a switch moving another structure D to the left of A, we can apply the
induction hypothesis to the proof D1 above r and use several contractions
and switches at the bottom of the resulting proof:

ξ{((D→ A)→ ζ{>}+→ B)→ C}
s −−−
ξ{D→ (A→ ζ{>}+→ B)→ C}

−→
ξ{(ζ{D→ A}+→ B)→ C}

s∗ ===
ξ{D→ ·· · → D→ (ζ{A}+→ B)→ C}

c∗ ===
ξ{D→ (ζ{A}+→ B)→ C}

4. If r is a weakening which deletes the structure (A→ ζ{>}+ → B), then we
can simply rewrite the conclusive structure, and there is no need to apply the
induction hypothesis, we are done.

5. If r is a contraction which duplicates the structure (A→ ζ{>}+→ B), we can
rewrite the conclusive structure and also the premise, and apply the induction
hypothesis twice — this is possible, since the multiplicity of κ has decreased.

In any case, we have rewritten the proof so that in its conclusion, the structure A
appears inside the holes of ζ{ } rather than outside of this context, so that we have
exactly the expected proof, obtained by transformation of the original one.

Now, we can show how to reduce a cut instance to the atomic form in a given
proof in JS∪ {u}, using a global rewriting of the whole part of the proof located
above this cut — notice that this cannot work in general for derivations.

Proposition 1.14. Given a proof in JS∪ {u} using non-atomic cuts, there is a proof
of the same conclusion in JS∪ {u} using only u instances in the atomic form.

Proof. By induction on the number of non-atomic cut instances in the given proof
D, we show that they can be decomposed into atomic instances. In the base case,
there are only atomic cuts in D and we are done. In the general case, we pick some
non-atomic cut instance r, introducing a non-atomic structure that must be of the
shape C → D, as follows:

−
D1

ξ{((C → D)→ (C → D))→ B}
u −−−

ξ{B}

and we can use an induction on the size of the structure C → D, decomposing at
each step the cut into two cuts on the smaller structures C and D, as follows:

−
D′1

ξ{((((C → C)→ D)→ D))→ B}
u −−

ξ{(D→ D)→ B}
u −−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{B}

174 4 — Intuitionistic Logic in the Calculus of Structures174 4 — Intuitionistic Logic in the Calculus of Structures174 4 — Intuitionistic Logic in the Calculus of Structures

where the proof D ′1 is obtained by applying Lemma 1.13 to the proof D1, to move
the structure C inside the negative structure C → D and thus make it match the
result of using twice the cut rule. When we reach the base case of this induction,
we have replaced the initial cut with several atomic cuts, and we can go on with
the main induction hypothesis, to decompose the other cut instances.

This result will greatly simplify the proof of cut elimination, since we can thus
restrict permutations to atomic cut instances, which have only limited interaction
with other instances. Indeed, the only matching instances are those affecting one of
the atoms introduced by such a cut. However, there is still the problem that switch
instances might be blocked above a cut that we need to permute upwards. To solve
this problem, we define one synthetic cut rule, which associates several switches to
the cut, as follows — where ∆→ F is a short notation for a structure of the shape
C1→ ·· · → Cn→ F , here:

((∆→ A)→ A)→ B
us ==============================

∆→ B

and we can simply eliminate atomic instances of this rule, which is reduced to the
standard cut in the case where ∆ is actually only the > unit.

Theorem 1.15 (Cut elimination). Any proof D of a structure A in JS∪ {u} can be
transformed into a cut-free proof D ′ of A in JS.

Proof. If there is no cut instance in the given proof D, we are done. In the general
case, we proceed by induction on the number of cut instances in D, and consider
the topmost cut instance r in D, with the proof D2 above it. Moreover, because of
Proposition 1.14, we can assume without loss of generality that this cut is atomic.
Then, we proceed by induction on the pair (MD(r),H (D2)) to show that it can be
eliminated, using a case analysis on the bottommost instance r1 in D2:

−
D2

ξ{D}
r1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{((∆→ a)→ a)→ B}

r ====================================
ξ{∆→ B}

1. If r1 is not in the scope of r, we can permute it down and proceed by induction
hypothesis, because the height of D2 has decreased.

2. If r1 is a switch moving a structure to the left of the positive a introduced by
the cut, we can assimilate it into the cut us instance, and then we can use the
induction hypothesis, since the height of D2 has decreased.

3. If r1 is an axiom instance matching r, it can interact with r and disappear, and
we apply the main induction hypothesis, since one cut was eliminated by the
following transformation:

ξ{a→ B}
x −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{((a→ a)→ a)→ B}

us ===================================
ξ{a→ B}

−→ ξ{a→ B}

1 — A System in Sequent Style 1751 — A System in Sequent Style 1751 — A System in Sequent Style 175

4. If r1 is a weakening erasing the principal structure of r, we simply remove the
cut and keep the weakening, and then go on by induction hypothesis, since
one cut was erased by this transformation:

ξ{B}
w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{((∆→ a)→ a)→ B}

us ====================================
ξ{∆→ B}

−→
ξ{B}

w∗ ===============
ξ{∆→ B}

5. If r1 is a contraction duplicating the principal structure of r, we duplicate the
cut and compose the two copies, so that from the configuration:

ξ{((∆→ a)→ a)→ ((∆→ a)→ a)→ B}
c −−

ξ{((∆→ a)→ a)→ B}
us ====================================

ξ{∆→ B}

we obtain the following replacement derivation:

ξ{((∆→ a)→ a)→ ((∆→ a)→ a)→ B}
us ==

ξ{((∆→ a)→ a)→∆→ B}
us ==

ξ{∆→∆→ B}
c∗ =======================

ξ{∆→ B}

We can use the induction hypothesis on the topmost copy of the cut, because
its multiplicity is smaller than the multiplicity of the original instance. Then,
it is also possible to apply the induction hypothesis on the resulting proof
glued above the bottommost copy, because the cut elimination process cannot
increase the multiplicity of the bottommost copy, so that it is at most one less
than the original multiplicity. Finally, we use the main induction hypothesis,
since one cut was eliminated.

This means that to eliminate all cut instances in the given proof, we simply have to
repeatedly apply the reduction steps described above, and we will reach the point
where no cut is left — as mentioned, if the given proof uses non-atomic cut, we
have to rewrite the proof into a new, similar one, where all cuts are atomic.

This cut elimination procedure suffers from the same problem as the procedure
devised in the setting of nested sequents, in the sense that given any arbitrary proof,
which possibly uses non-atomic cut instances, it requires some global rewriting of
the proof to produce a result, because of the merging lemma, which is necessary
to decompose cuts to the atomic form. As in the previous chapter, a solution is to
introduce the dual of the switch rule, and to perform a normalisation on the whole
dual up fragment — that is, to eliminate all instances of the rules dual to the basic
rules of the JS system — which will be local. Indeed, the rewriting described in
the merging lemma is essentially the same in JS as in JN, and the solution based
on the dual of the switch is also valid here.

176 4 — Intuitionistic Logic in the Calculus of Structures176 4 — Intuitionistic Logic in the Calculus of Structures176 4 — Intuitionistic Logic in the Calculus of Structures

>
x↓ −−−−−−−−

A→ A

A→ A→ B
c↓ −−−−−−−−−−−−−−−−

A→ B

((A→ B)→ C)→ D
s↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A→ (B→ C)→ D

B
w↓ −−−−−−−−−

A→ B

(A→ (B→ C)→ D)→ E
s↑ −−−
(((A→ B)→ C)→ D)→ E

(A→ B)→ C
w↑ −−−−−−−−−−−−−−−−−−−

B→ C

(A→ A)→ B
x↑ −−−−−−−−−−−−−−−−−−−

>→ B

(A→ B)→ C
c↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−
(A→ A→ B)→ C

Figure 3: Inference rules for the system SJS

Symmetric normalisation. The set of inference rules for the symmetric system
SJS is given in Figure 3, and it is defined for structures using the same grammar
and the same equations as in JS∪ {u}. The down fragment, where rules have
names of the form r↓, corresponds to the cut-free system JS, and the cut rule u has
been renamed x↑ to remain consistent with its duality to the axiom rule x↓. The up
fragment is composed of the dual of the inference rules in the down fragment, and
the first step is again to specify which connexions are induced by the new inference
rules in the flow-graph of a proof in SJS.

Notice that once again, not all connections are shown, but the connections not
written, in the switch rules, follow as expected the indexes on structures, and thus
connect in particular the implications where A appears on the left. This yields the
notion of flow-graph for proofs in the SJS system, and we can therefore transpose
all definitions concerning JS∪ {u} into this extended setting. Then, once again, we
can restrict our study to the cases where all instances of x↑ are atomic.

Proposition 1.16. Given a proof in SJS using non-atomic instances of the x↑ rule,
there is a proof of the same conclusion in SJS using only atomic x↑ instances.

Proof. By induction on the number of non-atomic cut instances in the given proof
D, we show that they can be replaced with a derivation of SJS using cuts only in
the atomic form. In the base case, there are only atomic cuts in D and we are done.

1 — A System in Sequent Style 1771 — A System in Sequent Style 1771 — A System in Sequent Style 177

In the general case, we pick a non-atomic cut in D, introducing a non-atomic
structure which must be of the shape C → D, and we use an induction on the size
of the structure C → D, decomposing at each step the cut in two cuts on the smaller
structures C and D, by replacing it with the derivation shown on the right below:

ξ{((C → D)→ (C → D))→ B}
x↑ −−−

ξ{B}
−→

ξ{(C → (C → D)→ D)→ B}
s↑ −−−
ξ{(((C → C)→ D)→ D)→ B}

x↑ −−−
ξ{(D→ D)→ B}

x↑ −−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{B}

As in the case of nested sequents, for the local normalisation proof we need to
use a synthetic form of the identity and cut and rules, incorporating switches. From
the basic versions, we generalise the x↓ and x↑ rules into the following rules:

∆
xs↓ −−−−−−−−−−−−−−−−−−−−
(∆→ A)→ A

((∆→ A)→ A)→ B
xs↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∆→ B

where ∆→ F denotes as usual a structure of the shape C1→ ·· · → Cn→ F . Notice
that the xs↓ rule cannot be applied at toplevel — outside of any context — if ∆ is
not reduced to one structure C . We now define the measure we need in the proof,
based on the one from the nested sequents setting. Note that the definition for the
context weight of a s↑ instance can be imported immediately in this setting.

Definition 1.17. In a derivation D in SJS, the rank of an instance r of any up rule,
denoted by RD(r), is the pair (MD(r), |r|), under lexicographic ordering, where |r| is
0 for any rule except for s↑, for which it is the context weight of the instance.

Finally, we can prove the normalisation result, which defines the local rewriting
procedure to eliminate all up rule instances from a given proof in SJS.

Theorem 1.18 (Local normalisation). Any proof D of a structure A in SJS can be
transformed into a proof D ′ of A in JS.

Proof. If there is no up rule instance in the given proof D, we are done, since D is a
valid proof in the down fragment JN. In the general case, we proceed by induction
on the number of up rule instances in D, and consider the topmost such instance
r in D, with the proof D2 above it. Moreover, because of Proposition 1.16, we can
assume without loss of generality that all x↑ instances in D are atomic. Then, we
proceed by induction on the pair (RD(r),H (D2)) to show that such an up instance
can be eliminated, using a case analysis on the bottommost instance r1 in D2:

−
D2

ξ{D}
r1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{((C → a)→ a)→ B}

r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{C → B}

or

−
D2

ξ{G}
r1 −−−−−−−
ξ{F}

r↑ −−−−−−−
ξ{E}

1. If r1 is not in the scope of r, we can permute it down and proceed by induction
hypothesis, because the height of D2 has decreased.

178 4 — Intuitionistic Logic in the Calculus of Structures178 4 — Intuitionistic Logic in the Calculus of Structures178 4 — Intuitionistic Logic in the Calculus of Structures

2. If r1 is a switch moving a structure to the left of the positive a introduced by
the cut, we can assimilate it into the cut x↑ instance, and then we can use the
induction hypothesis, since the height of D2 has decreased.

3. If r1 is an axiom instance matching r, it can interact with r and disappear, and
we apply the main induction hypothesis, since one cut was eliminated by the
following transformation, in the case of an axiom on the positive a:

ξ{a→ B}
x↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{((a→ a)→ a)→ B}

x↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{a→ B}

−→ ξ{a→ B}

and the following transformation, in the other case:

ξ{C → a}
x↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{((C → a)→ a)→ a}

x↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{C → a}

−→ ξ{C → a}

4. If r1 is a weakening erasing the principal structure of r, we simply remove the
cut and keep the weakening, and then go on by induction hypothesis, since
one cut was erased by this transformation:

ξ{B}
w↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{((C → a)→ a)→ B}

x↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{C → B}

−→
ξ{B}

w↓ −−−−−−−−−−−−−−−
ξ{C → B}

5. If r1 is a contraction duplicating the principal structure of r, we duplicate the
cut and compose the two copies, so that from the configuration:

ξ{((C → a)→ a)→ ((C → a)→ a)→ B}
c↓ −−−

ξ{((C → a)→ a)→ B}
x↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{C → B}

we obtain the following replacement derivation:

ξ{((C → a)→ a)→ ((C → a)→ a)→ B}
x↑ −−−

ξ{((C → a)→ a)→ C → B}
x↑ −−−

ξ{C → C → B}
c↓ −−−−−−−−−−−−−−−−−−−−−−−

ξ{C → B}

We can use the induction hypothesis on the topmost copy of the cut, because
its multiplicity is smaller than the multiplicity of the original instance. Then,
it is also possible to apply the induction hypothesis on the resulting proof
glued above the bottommost copy, because the cut elimination process cannot
increase the multiplicity of the bottommost copy, so that it is at most one less
than the original multiplicity. Finally, we use the main induction hypothesis,
since one cut was eliminated.

1 — A System in Sequent Style 1791 — A System in Sequent Style 1791 — A System in Sequent Style 179

The remaining cases are the new cases introduced by the use of the symmetric
system, with a dual up fragment, and in particular the dual switch rule s which is
used to decompose cuts to the atomic form.

Given any up rule instance r, the transformation to perform, when the instance
r1 above is a weakening or a contraction erasing or duplicating the whole structure
that was changed by r, is always the same. In such a case, we treat r the same way
as we treated the situation of a cut used below a structural rule:

6. If r1 is a weakening w↓ instance erasing the whole structure affected by r, we
just have to erase r, and we can go on using the main induction hypothesis,
since one up rule instance was eliminated:

ξ{G}
w↓ −−−−−−−−−−−−−−−
ξ{F → G}

r −−−−−−−−−−−−−−−
ξ{E→ G}

−→
ξ{G}

w↓ −−−−−−−−−−−−−−−
ξ{E→ G}

7. If r1 is a contraction c↓ instance duplicating the structure affected by r, then
we can duplicate r and go on by induction hypothesis, which is possible since
after this transformation, r has a smaller multiplicity than the original:

ξ{F → F → G}
c↓ −−−−−−−−−−−−−−−−−−−−−−

ξ{F → G}
r −−−−−−−−−−−−−−−
ξ{E→ G}

−→

ξ{F → F → G}
r −−−−−−−−−−−−−−−−−−−−−−
ξ{E→ F → G}

r −−−−−−−−−−−−−−−−−−−−−−
ξ{E→ E→ G}

c↓ −−−−−−−−−−−−−−−−−−−−−−
ξ{E→ G}

In other cases, either the permutation is a trivial one, or we provide a rewriting
to apply in this situation. We start with the elimination of dual switch s↑ instances,
which requires the introduction of the other up rules w↑ and c↑:

8. If r1 is an axiom x↓ instance matching the s↑ instance r, we integrate the dual
switch inside the axiom, and go on using the main induction hypothesis since
we have removed one up rule instance:

ξ{(B→ D)→ E}
x↓ −−
ξ{(B→ (C → C)→ D)→ E}

s↑ −−−
ξ{(((B→ C)→ C)→ D)→ E}

−→
ξ{(B→ D)→ E}

x↓ −−−
ξ{(((B→ C)→ C)→ D)→ E}

9. If r1 is a weakening w↓ instance matching the dual switch, we have to turn the
s↑ instance into a dual weakening w↑ instance, shown below, and we can go
on by induction hypothesis, since the new w↑ instance has exactly the same
multiplicity as the original r instance, but the height of D2 has decreased:

ξ{(B→ D→ E)→ F}
w↓ −−
ξ{(B→ (C → D)→ E)→ F}

s↑ −−
ξ{(((B→ C)→ D)→ E)→ F}

−→
ξ{(B→ D→ E)→ F}

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(D→ E)→ F}

w↓ −−
ξ{(((B→ C)→ D)→ E)→ F}

180 4 — Intuitionistic Logic in the Calculus of Structures180 4 — Intuitionistic Logic in the Calculus of Structures180 4 — Intuitionistic Logic in the Calculus of Structures

10. If r1 is a contraction c↓ instance matching the dual switch, the s↑ instance
is duplicated when it permutes with the contraction, so that from the initial
situation shown below:

ξ{(B→ (C → C → D)→ E)→ F}
c↓ −−−

ξ{(B→ (C → D)→ E)→ F}
s↑ −−
ξ{(((B→ C)→ D)→ E)→ F}

we obtain the new situation shown below, where a dual contraction instance
c↑ has been created for glueing the proof above r1 to the premise of the two
dual switches, by collapsing the two copies of B created, after they have been
moved outside of their immediate context by dual switches:

ξ{(B→ (C → C → D)→ E)→ F}
c↑ −−−
ξ{(B→ B→ (C → C → D)→ E)→ F}

s↑ −−
ξ{(B→ (C → (B→ C)→ D)→ E)→ F}

s↑ −−−
ξ{(((B→ C)→ (B→ C)→ D)→ E)→ F}

c↓ −−−
ξ{(((B→ C)→ D)→ E)→ F}

We can use the induction hypothesis on the dual contraction c↑ introduced,
since its multiplicity is at most the same as the multiplicity of r — because B
is in positive position. Then, we can also use the induction hypothesis on the
two copies of the s↑ instance, since they have a smaller multiplicity than r as
well, and finally we use the main induction hypothesis, because one up rule
was eliminated.

11. If r1 is a switch s↓ instance, there are two possible configurations in which
the s↑ instance can interact with it, the first one happening when r1 move a
structure inside the structure moved by the s↑ instance, so that we have:

ξ{((A→ B)→ (C → D)→ E)→ F}
s↓ −−
ξ{A→ (B→ (C → D)→ E)→ F}

s↑ −−
ξ{(A→ ((B→ C)→ D)→ E)→ F}

−→

ξ{((A→ B)→ (C → D)→ E)→ F}
s↑ −−−
ξ{((((A→ B)→ C)→ D)→ E)→ F}

s↓ −−−
ξ{((A→ (B→ C)→ D)→ E)→ F}

s↓ −−
ξ{(A→ ((B→ C)→ D)→ E)→ F}

and we can use the induction hypothesis, since the height of D2 has decrased.
The second situation is symmetric to the first one, so that we use the same
rewriting but considered symmetrically, and then we can use the induction
hypothesis on the topmost copy of s↑, since the height of D2 has decreased,
and also on the copy below, since it has a smaller size than the original.

All other cases involving s↑ instances are trivial permutations. Then, we show
how to treat the instances of the dual weakening w↑ rule, and this will never require
to introduce instances of other rules than w↑ itself — as usual, permuting up a dual
weakening erases some other rule instances.

1 — A System in Sequent Style 1811 — A System in Sequent Style 1811 — A System in Sequent Style 181

12. If r1 only affects a structure contained inside the structure introduced by r, it
can simply be erased — this is dual to the situation where an up rule instance
is erased by a weakening — and we can go on by induction hypothesis since
the height of D2 has decreased.

13. If r1 is an x↓ instance applied exactly on the structure introduced by r, the
axiom can be erased, and we can go on by induction hypothesis, since one
up rule instance was eliminated:

ξ{(C → D)→ E}
x↓ −−
ξ{(((C → B)→ B)→ D)→ E}

w↑ −−
ξ{D→ E}

−→
ξ{(C → D)→ E}

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{D→ E}

14. If r1 is an instance of s↓ moving material inside the structure introduced by r,
we can erased this material and introduce it directly using a dual weakening,
and then use the induction hypothesis, which is of course possible since the
height of D2 has decreased:

ξ{((C → B)→ D)→ E}
s↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{C → (B→ D)→ E}

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{C → D→ E}

−→
ξ{((C → B)→ D)→ E}

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{D→ E}

w↓ −−−−−−−−−−−−−−−−−−−−−−−
ξ{C → D→ E}

All other cases involving w↑ instances are trivial permutations. Then, we show
how to eliminate instances of the dual contraction c↑ rule, and this is similar to the
situation described for dual weakenings:

15. If r1 only affects a structure inside the structure resulting from the collapse of
the two structures operated by the r instance, it can be duplicated — this is
dual to the situation where an up instance is duplicated by a contraction —
and we can use the induction hypothesis since the height ofD2 has decreased.

16. If r1 is an instance of s↓ moving material inside the structure resulting from
the collapse operated by r, we use a contraction to duplicate the structure B
and then use two copies of r1 before we collapse the resulting structures with
the dual contraction — and we can use the induction hypothesis, because the
height of D2 has decreased:

ξ{((B→ C)→ D)→ E}
s↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{B→ (C → D)→ E}

c↑ −−−
ξ{B→ (C → C → D)→ E}

−→

ξ{((B→ C)→ D)→ E}
c↑ −−
ξ{((B→ C)→ (B→ C)→ D)→ E}

s↓ −−
ξ{B→ (C → (B→ C)→ D)→ E}

s↓ −−−
ξ{B→ B→ (C → C → D)→ E}

c↓ −−−
ξ{B→ (C → C → D)→ E}

All other cases involving c↑ instances are trivial permutations.

182 4 — Intuitionistic Logic in the Calculus of Structures182 4 — Intuitionistic Logic in the Calculus of Structures182 4 — Intuitionistic Logic in the Calculus of Structures

2 A System in Natural Deduction Style

The calculus of structures is naturally similar, in its design, to the sequent calculus,
in the sense that it relies on dualities, and in particular on the duality between the
identity rule and the cut rule. In almost all the systems that were designed in this
setting, for intuitionistic as well as classical or linear logic, and other logics, there
is some cut rule which can be shown admissible, one way or another. However, this
is not the approach of natural deduction, which was introduced together with the
sequent calculus [Gen34], as a formalism allowing to write formal proofs in a way
that would reflect the way mathematicians write proofs in practice.

In such a proof system, logical connectives are not decomposed by left and right
rules depending on their position in the initial formula, but rather introduced and
eliminated. As a result, the left/right symmetry of the sequent calculus is lost, and
the induced shape of proofs as well — for example, to prove some formula B under
the hypothesis A→ B, it is impossible to decompose the implication on the left. In
the setting of intuitionistic logic, one calculus of structures [BM08] was designed
following this style, in order to extract an algorithmic interpretation, but the theory
for this system remains largely undevelopped. We will present here another system
based on the style of natural deduction, with the goal of establishing an adequate
normalisation theory that can serve as basis for a computational interpretation.

We consider only the implication fragment of intuitionistic logic here, and we
use the switch rule, which is an important and distinctive feature introduced by the
deep inference methodology. Therefore, our system is significantly different from
the existing calculus [BM08], which completely relies on a conjunction connective
and has no switch rule. Our system could be considered as similar to the JS∪ {u}
system defined previously, but it uses the natural deduction style in the sense that
it reintroduces a distinction between two levels in formulas, and it relies on rules
for the introduction and elimination of the implication — these rules establish the
meaning of the implication connective with respect to the meta-level implication,
for which equations are used.

2.1 Basic Definitions

Once again, we assume given a countable set of atoms, which are denoted by small
latin letters such as a, b, c, and the connective→ for intuitionistic implication. We
also use another implication connective⇒which represents meta-level implication.
Moreover, we need a unit, denoted by >, which represents truth and will be the
left unit of the meta-level implication.

Definition 2.1. The formulas of intuitionistic logic are defined by the grammar:

A, B ::= a | > | A→ B | A⇒ B

Then, the same equations as in JS are introduced on the meta-level implication,
to keep the proof system simple to use. This forms the basis for the structures that
will be manipulated — notice that there is no equation defined to manipulate the
basic→ implication connective, which cannot be directly handled.

2 — A System in Natural Deduction Style 1832 — A System in Natural Deduction Style 1832 — A System in Natural Deduction Style 183

>
x −−−−−−−−

A⇒ A

A⇒ B
i −−−−−−−−−
A→ B

(A⇒ A)→ B
e −−−−−−−−−−−−−−−−−−−

B

B
w −−−−−−−−−

A⇒ B

((A⇒ B)⇒ C)⇒ D
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A⇒ (B⇒ C)⇒ D

A⇒ A⇒ B
c −−−−−−−−−−−−−−−−

A⇒ B

((A⇒ B)⇒ C)→ D
si −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A⇒ (B⇒ C)→ D

>⇒ A ≡ A
A⇒ (B⇒ C) ≡ B⇒ (A⇒ C)

Figure 4: Inference rules and congruence for the system JD

Definition 2.2. The structures of our system are defined as the equivalence classes of
formulas generated by the congruence described by the equations shown in Figure 4.

The idea is that the ⇒ connective takes the role of the traditional ` symbol in
natural deduction, separating hypotheses from the goal formula, for which a proof
should be built. Then, the definition of contexts is similar to the one used in JS,
but a hole can be located only on the left of a meta-level implication⇒, so that we
cannot manipulate the inside of structures at the basic level of the → connective,
except under a meta-level implication inside it.

Definition 2.3. The contexts of our system are structures with a hole { } meant to be
filled by another structure, and are defined by the following grammar:

ξ ::= { } | (ξ⇒ A)⇒ B | (ξ⇒ A)→ B

Contexts will be denoted as ξ{ } or ζ{ }, so that for example ξ{A} is the context
ξ where the hole has been replaced by the structure A.

Inference rule instances are defined as usual, and the set of inference rules used
in our natural deduction style system, that we will call JD, is given in Figure 4. The
main difference with the JS∪ {u} system presented previously is embodied in the
introduction and elimination rules for→ which are named i and e respectively. We
have no proper cut rule in this setting, but the composition of an e instance and an
i instance decomposing the implication involved in e is equivalent to the standard
cut rule, so that we can define such a cut rule u as follows:

(A⇒ A)⇒ B
u ===================

B
=

(A⇒ A)⇒ B
i −−−−−−−−−−−−−−−−−−−
(A⇒ A)→ B

e −−−−−−−−−−−−−−−−−−−
B

184 4 — Intuitionistic Logic in the Calculus of Structures184 4 — Intuitionistic Logic in the Calculus of Structures184 4 — Intuitionistic Logic in the Calculus of Structures

Notice that the elimination rule e used in this system does not follow in any way
the so-called subformula property, since it requires to choose a formula A, during
proof construction, that should ideally help proving the goal formula B. Indeed, the
process of proving a formula is different in this context, and in particular requires
to expand the goal formula when the required hypothesis is not available.

Moreover, there are in this system two switch rules, namely s and si, because
the decomposition of the cut into an introduction and an elimination rule creates
the possibility to move material to the left of an implication before it is turned into
a meta-level implication. We could choose to use only the si rule, while retaining
completeness of the system, since this would simply force a certain organisation of
switches in the proof — in particular, having a built-in switch in the elimination rule
follows the idea of building the switch into the cut, and this would correspond to
using only si instances right above an e instance. Without the si rule, the structure
A→ (A→ B)→ B would for example not be provable.

Example 2.4. Because of the distinction kept between the basic level of formulas and
the meta-level, there are less possibilities in the proof construction process in JD than
in JS. Here is a proof of A→ A based on the use of an elimination on A:

>
x −−−−−−−−

A⇒ A
x −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
((A⇒ A)⇒ A)⇒ A

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(A⇒ A)⇒ A⇒ A

i2 =============================
(A⇒ A)→ (A→ A)

e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A→ A

As in any other proof system in the calculus of structures, we handle in a similar
way proofs and open derivations, proofs being defined as derivations with the unit
> for premise — and we will use the standard notations for derivations and proofs.
There is however one important difference with standard calculi of structures: the
axiom rule cannot easily be reduced to its atomic form. Indeed, it is not possible
here to use a switch to move a structure to the left of a basic→ implication, so that
we cannot rewrite axiom instances on a structure of the shape (A→ B)⇒ (A→ B)
into a proof using two axioms on A and B.

2.2 Correspondence to Natural Deduction

As usual, we will prove soundness and completeness for our system with respect to
the corresponding traditional system, which is here the standard natural deduction
system NJ> for intuitionistic logic. Its inference rules are shown in Figure 5, and it
uses the truth unit denoted by >. The translations between structures and sequents
required to do this are straightforward, as the ones used in sequent style. Between
structures and formulas, we use a simple translation in both directions.

Definition 2.5. The intuitionistic formula/structure translation ·∗ from formulas to
structures and from structures to formulas is defined as:

a ∗ = a >∗ = > (A→ B)∗ = A∗→ B ∗ (A⇒ B)∗ = A∗→ B ∗

2 — A System in Natural Deduction Style 1852 — A System in Natural Deduction Style 1852 — A System in Natural Deduction Style 185

ax −−−−−−−
A` A

Γ ` A ∆ ` A→ B
→e −−−−−−−−−−−−−−−−−−−−−−−−−−−Γ,∆ ` B

Γ ` B
weak −−−−−−−−−−−

Γ, A` B

> −−−−−
` >

Γ, A` B
→i −−−−−−−−−−−−−−−Γ ` A→ B

Γ, A, A` B
cont −−−−−−−−−−−−−−−

Γ, A` B

Figure 5: Inference rules for system NJ>

Definition 2.6. The translation ¹·ºS from intuitionistic sequents into intuitionistic
structures in natural deduction style is defined recursively as follows:

¹` AºS = A∗ and ¹A,Γ ` BºS = A∗⇒ ¹Γ ` BºS

Then, we can proof soundness of the JD proof system by translating any given
proof of this system into a proof in the natural deduction system NJ>. This relies on
the use of many new instances of the→e elimination rule, which correspond to one
part of the cuts introduced in the sequent calculus. Except for this decomposition
of the cut rule, the proof of soundness of JD is the same as the one used to prove
soundness of the JS∪ {u} sequent calculus.

Theorem 2.7 (Soundness of JD). If some structure A is provable in the JD system,
then the sequent ` A∗ is provable in the NJ> natural deduction system.

Proof. We proceed by induction on the height of a proof D of A in JD. In the base
case, when D is just a structure, it has to be the unit >, and we are done since
its translation > is provable in NJ> by using the > rule. In the general case, we
consider the bottommost instance r in D:

−

ξ{C}
r −−−−−−−
ξ{B}

We have to show first that the implication C ∗ → B ∗ is provable in NJ>, and for
this we use a case analysis on r and build a proof Π1 of this implication. In each
case, we can exhibit a proof of this implication. Then, given some context ξ, we can
prove by a straightforward induction on ξ that there is a proofΠ2 of the implication
ξ{C}∗→ ξ{B}∗ in NJ>. By induction hypothesis, we also have a proofΠ3 of ξ{C}∗,
and therefore we can build a proof of ξ{B}∗ by using an elimination rule:

��
��

��
??????Π3

` ξ{C}∗
��

��
��

�???????
Π2

` ξ{C}∗→ ξ{B}∗
→e −−` ξ{B}∗

186 4 — Intuitionistic Logic in the Calculus of Structures186 4 — Intuitionistic Logic in the Calculus of Structures186 4 — Intuitionistic Logic in the Calculus of Structures

Then, the proof of completeness provides a translation in the other direction,
and is also similar to the one used in the nested sequents systems.

Theorem 2.8 (Completeness of JD). If some sequent Γ ` A is provable in the NJ>
natural deduction system, then the structure ¹Γ ` AºS is provable in JD.

Proof. By induction on a proof Π of the sequent Γ ` A in NJ>, and by using a case
analysis on the bottommost rule instance r in Π, we build another proof D of the
translation of this sequent in the JD system. This is straightforward in every cases,
and can require to compose the proofs obtained by induction on different branches,
as in the case of the elimination rule.

As an example, we show the case of the elimination rule, where the derivation
D ′1 is obtained by plugging D1 inside a context, and for a Σ = C1, · · · , Cn we denote
by Σ⇒ D ∗ the structure C ∗1 ⇒ ·· · ⇒ C ∗n → D ∗ here:

��
��

��
??????Π1

∆ ` B
��

��
��

�???????
Π2

Ψ ` B→ A
→e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∆,Ψ ` A

−→

−
D2

Ψ⇒ B→ A
D ′1

Ψ⇒ ((∆⇒ B)⇒ B)→ A
si∗ ======================================
∆⇒Ψ⇒ (B⇒ B)→ A

e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∆⇒Ψ⇒ A

which is possible because of the deep inference methodology used here, allowing to
plug a derivation inside another one without fundamentally changing any of them.
Notice that the translation of the > rule is transparent here, since the truth unit is
the premise of a proof.

3 Detour Elimination

In natural deduction as well as in the JD proof system we have presented, there is
no way of defining a normal form for proofs which would imply the completeness of
a subsystem respecting the subformula property. There is however a phenomenon
called detour, appearing when an introduction rule instance appears immediately
above the corresponding elimination rule instance, as follows:

��
��

�?????Π1

Γ ` A

��
��

��
??????Π2

∆, A` B
→i −−−−−−−−−−−−−−−−∆ ` A→ B

→e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Γ,∆ ` B

or

−
D

ξ{(A⇒ A)⇒ B}
i −−−−−−−−−−−−−−−−−−−−−−−−
ξ{(A⇒ A)→ B}

e −−−−−−−−−−−−−−−−−−−−−−−−
ξ{B}

This situation corresponds to the use of a lemma A in the proof of the formula B,
and can be reduced, in the natural deduction system NJ>, by inlining the proof of
this lemma: in the proof Π2, all axioms using the A added to the goal formula on
the right are replaced with the actual proof Π1 of the formula A. In this standard
setting, it is called normalisation [GLT89]. This can also be done in a decomposed
way, by turning the detour →e/→i into a cut instance, and then moving this cut
upwards in the proof until it disappears — in the style of the sequent calculus.

3 — Detour Elimination 1873 — Detour Elimination 1873 — Detour Elimination 187

This procedure, producing a proof in normal form, where no detour appears,
from any given proof, can be adapted to the JD proof system. But in the calculus of
structures, it is not easy to extract the branch Π1 proving the formula A, so that the
decomposed process, where a detour takes the form of a cut and is moved upwards
one step at a time, is more natural. The proof of this ability to eliminate all detours
in a given proof in JD thus follows the same scheme as the proof of cut elimination
given in the setting of nested sequents, and for the JS∪ {u} system. Once again, it
is based on the definition of a toolset allowing to reason about the flow of particles
in a derivation, adapted from the definitions given in Chapter 1. In this system, the
connections inducing the flow-graph are similar to the ones of other systems:

Although the proof we are about to give is similar in principle to the one given
for JS∪ {u}, there is a major technical difference, since the implication elimination
rule, and thus also the cut rule u, cannot be reduced to its atomic form. Therefore,
permutations are more complicated in this setting than it was in the sequent style
system, because the use of complex cut structures implies that many inference rule
instances might involve this structure and thus be blocked over the cut, so that we
have to move all these rule instances along with a cut.

We will use a synthetic form of cut, corresponding to the use of a cut instance
— which is itself the compound of an elimination e instance and an introduction
i instance — below a number of other instances blocked above this cut. This new
cut rule uc is defined below, where we use the antecedent notation Γ for a series of
structures on the left of an implication, and the derivation D1 was plugged on top
of the basic cut, all of its instances being in the scope of this u instance:

C ⇒ B
uc =========
Γ⇒ B

=

C ⇒ B
D1

Γ⇒ (A⇒ A)⇒ B
u ==========================

Γ⇒ B

For the sake of simplicity, we always consider all the elimination and introduction
instances inside the cut as part of the proof — so that the cut is not really a proper
inference rule, but rather a presentation. This allows us to consider the multiplicity
MD(r) of some e instance r in a proof D even if it is seen inside some compound cut
instance r′, since we haveMD(r) =MD(r′) anyway. We also name the derivation
D1 in a compound cut the body of this cut, and C is its principal structure.

188 4 — Intuitionistic Logic in the Calculus of Structures188 4 — Intuitionistic Logic in the Calculus of Structures188 4 — Intuitionistic Logic in the Calculus of Structures

There is however an intermediate step between the elimination of detours and
the elimination of cut instances. Because of the interleaving of rule instances in a
proof in the calculus of structures, the introduction instance of the i rule matching
an elimination e instance — that is, introducing the implication eliminated by this
i instance, or rather, the ancestor of the eliminated particle — is not necessarily
located directly above this e instance in a given proof, so that elimination instances
should be moved upwards as well, until they can be turned into a cut.

The first step of this process is to detect which e instances in a given proof D are
involved in a detour, and these are exactly those that reach a matching introduction
when moving upwards: if an e instance r eliminates some particle κ such that an
ancestor υ of κ is introduced by an i instance in D, then r is said to be involved in a
detour. This instance must then be permuted above other rule instances, and until
it meets a matching introduction, it agglomerates instances blocked above, which
is done through the definition of another synthetic rule, formed by an elimination
and a derivation D1 of instances in the scope of this e instance:

D→ B
ec =========
Γ⇒ B

=

D→ B
D1

Γ⇒ (A⇒ A)→ B
e −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇒ B

Again, D1 is called the body of the rule, and D its principal structure. By considering
rule instances appearing in a synthetic instance, we extend to the ec and uc rules
the definitions given for other rules. In particular, the connexions they induce in
the flow-graph of a proof are given by the connexions established through all the
instances contained in such a synthetic instance.

We now have the tools to prove the result, stating that given an arbitrary proof
in JD, we can build a proof D ′ with no detour in JD. This is done by introducing the
synthetic rules ec and uc, into the system, as a notational artefact used to hide the
interaction between elimination instances and the other instances blocked above.

Theorem 3.1 (Detour elimination). Any given proof D of a structure A in JD can be
transformed into a proof D ′ of A with no detour in JD.

Proof. If there is no detour in the proof D, we are done. In the general case, we
proceed by induction on the number of e instances involved in a detour in D, and
consider the topmost one in D, that we see as a compound ec instance r, with the
proof D2 above it. Then, we proceed by induction on the pair (MD(r),H (D2)) to
show that it can be eliminated, using a case analysis on the bottommost instance
r1 in D2, as described below:

−
D2

ξ{E}
r1 −−−−−−−−−−−−−−−
ξ{D→ B}

r ===============
ξ{Γ⇒ B}

1. If r1 is not in the scope of r, we can permute it down and proceed by induction
hypothesis, because the height of D2 has decreased.

3 — Detour Elimination 1893 — Detour Elimination 1893 — Detour Elimination 189

2. If r1 affects only the principal structure of r, or if it is an si instance moving
material from the context ξ{·} into D, we can assimilate it into the ec instance
and go on by induction hypothesis, sinceH (D2) has decreased.

3. If r1 is a matching introduction i instance, then we can assimilate it into r1
to produce a cut u instance, which is seen as a compound uc instance, where
D ′1 is D1 with all instances of si replaced by s instances:

ξ{D⇒ B}
i −−−−−−−−−−−−−−−
ξ{D→ B}
D1

ξ{Γ⇒ (A⇒ A)→ B}
e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{Γ⇒ B}

−→

ξ{D⇒ B}
D′1

ξ{Γ⇒ (A⇒ A)⇒ B}
u ================================

ξ{Γ⇒ B}

Notice that because of the implication connective eliminated by this e instance,
no weakening or contraction instance can erase or duplicate the whole principal
structure of r. If we reach the case where an i instance was encountered above
the e instance to form a cut, we have to go on permuting this e instance up in the
proof by moving the corresponding cut upwards. We also use a case analysis on the
instance r1 above the cut r, considered as a uc instance, in the following situation:

−
D2

ξ{E}
r1 −−−−−−−−−−−−−−−
ξ{C ⇒ B}

r ===============
ξ{Γ⇒ B}

4. If r1 is not in the scope of r, we can permute it down and proceed by induction
hypothesis, because the height of D2 has decreased.

5. If r1 is a switch s instance moving a structure inside C , we can assimilate it
into the cut uc instance, and then we can use the induction hypothesis, since
the height of D2 has decreased.

6. If r1 is an axiom instance matching r, it can interact with r and disappear, and
we apply the main induction hypothesis, since one cut was eliminated by the
following transformation, in the case of an axiom on the positive A:

ξ{A⇒ B}
x −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{((A⇒ A)⇒ A)⇒ B}

uc ==================================
ξ{A⇒ B}

−→ ξ{A⇒ B}

and by the following transformation, in the other case, where the body D1 of
the cut is kept, since only the basic cut and axiom were unnecessary:

ξ{C}
x −−−−−−−−−−−−−−−−−−−−−−−−
ξ{(C ⇒ A)⇒ A}

uc ========================
ξ{Γ⇒ A}

−→
ξ{C}
D1

ξ{Γ⇒ A}

190 4 — Intuitionistic Logic in the Calculus of Structures190 4 — Intuitionistic Logic in the Calculus of Structures190 4 — Intuitionistic Logic in the Calculus of Structures

7. If r1 is a weakening erasing the principal structure of r, we simply remove
the cut and replace the weakening with several weakenings, and then go on
by induction hypothesis, since one cut was erased by this transformation:

ξ{B}
w −−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(C ⇒ A)⇒ B}

uc =========================
ξ{Γ⇒ B}

−→
ξ{B}

w∗ ==============
ξ{Γ⇒ B}

8. If r1 is a contraction duplicating the principal structure of r, we duplicate the
cut and compose the two copies, so that from the configuration:

ξ{(C ⇒ A)⇒ (C ⇒ A)⇒ B}
c −−−

ξ{(C ⇒ A)⇒ B}
uc =========================

ξ{Γ⇒ B}

we obtain the following replacement derivation:

ξ{(C ⇒ A)⇒ (C ⇒ A)⇒ B}
uc ===

ξ{(C ⇒ A)⇒ Γ⇒ B}
uc ================================

ξ{Γ⇒ Γ⇒ B}
c∗ ======================

ξ{Γ⇒ B}

We can use the induction hypothesis on the topmost copy of the cut, because
its multiplicity is smaller than the multiplicity of the original instance. Then,
it is possible to apply the induction hypothesis on the resulting proof glued
above the bottommost copy, because the detour elimination process cannot
increase the multiplicity of the bottommost copy, so that it is at most one less
than the original multiplicity. Finally, we use the main induction hypothesis,
since one cut was eliminated.

Variant systems. Just as is done in the nested sequents setting described in the
previous chapter, different variants of the JD system can be defined based on other
treatment of structural rules. The fully additive variant system JDa can be defined
by building contraction and weakening, and the switch rules, inside other rules:

>
xw −−−−−−−−−−−−−−−−−
∆⇒ A⇒ A

A⇒ B
i −−−−−−−−−
A→ B

∆⇒ ((∆⇒ A)⇒ A)→ B
ea −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

∆⇒ B

where ∆⇒ F is a short notation for a structure C1 ⇒ · · · ⇒ Cn ⇒ F , and here the
rules should always be applied on a maximal substructure — in the sense that it is
either at toplevel or directly on the left of another structure. Many other variants
are possible, in particular using different versions of the elimination rule e, and of
the switch rules. As in the nested sequents setting, all rewriting transformations
defined on proofs in JD can be adapted, so that the detour elimination result can
be proved, by a minimal adaptation of the proof given above, for JDa and the
other variant systems. The interaction of a cut instance moving upwards with one
of the » compound « rules can indeed be defined as a composition of the different
interactions of a cut with the components of the rule.

3 — Detour Elimination 1913 — Detour Elimination 1913 — Detour Elimination 191

Among other variants of JD, the one where only the switch rules are removed
and si is built inside the e rule, that we call JDs, is interesting because it is rather
close to the multiplicative presentation of intuitionistic logic in natural deduction.
Also note that many variations are possible around the mechanism for contraction,
as mentioned in Chapter 3. For example, one can use the rule:

(Γ⇒ A)⇒ (∆⇒ A)⇒ B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(Γ⇒∆⇒ A)⇒ B

where A is a plain intuitionistic formula — that is, a structure containing only basic
implications→ and no meta-level implications⇒. This rule performs a contraction
but avoids the duplication of the whole substructure contained inside the structure
being duplicated. One can simply add this rule to JDs to obtain JDr, where both
kinds of contractions are available, and the detour elimination result can be proved
in this mixed setting by following the scheme of the procedure that was described
for JD above.

192 4 — Intuitionistic Logic in the Calculus of Structures192 4 — Intuitionistic Logic in the Calculus of Structures192 4 — Intuitionistic Logic in the Calculus of Structures

PART 3

Nested Proofs as Programs

194 4 — Intuitionistic Logic in the Calculus of Structures194 4 — Intuitionistic Logic in the Calculus of Structures194 4 — Intuitionistic Logic in the Calculus of Structures

Chapter 5

Nested Typing for
Explicit Substitutions

This chapter presents an adaptation to the nested deduction setting of the basic
principles of the typing methodology, as used for the Curry-Howard correspondence
to provide a computational interpretation of proof systems in natural deduction and
in the sequent calculus. In order to establish a connection to standard, well-known
computational models, we explore here using this methodology the contents of the
intuitionistic systems defined in Chapter 3 and Chapter 4. The result obtained is a
variation of the standard type systems for λ-calculi with explicit substitutions and
type systems for pure explicit substitutions, as presented in Chapter 2.

Although it might seem surprising that the computational contents of proofs in
the deep inference setting can be described as λ-calculi, one should notice that this
is not the only interpration that can be given for such proofs, and in particular this
does not yield a perfect correspondence, as observed in NJ and the pure λ-calculus.
The purpose of such a correspondence is to exhibit similarities between the shallow
and the nested settings, so that particular features of nested deduction can be later
pinpointed and incorporated into a well-understood framework. Indeed, in order
to build an exact correspondence between proofs in nested deduction and a form
of functional programs, these programs should be sequences of instructions, just as
proofs are sequences of rule instances. But the sequence would not be » executed «
one step after the other, but rather reduced with rewriting and interaction between
instructions. This would induce a complex computational device — for this reason,
we start here with the more familiar framework of functional programming.

There are two levels of variation on the standard, branching type systems. First,
the systems in nested sequents are used as a new form of type system where typing
judgements can appear within typing judgements, allowing to type λ-calculi with
pure explicit substitutions. We study the properties of such type systems and show
how cut elimination on the logical side is reflected as the transformation of typing
derivation induced by reduction of terms in the calculus. Then, systems in natural
deduction style in the calculus of structures are shown to yield a similar form of
type systems, where typing judgements can also appear within types — not in types
as obtained in the end for a given term, but during the typing process.

196 5 — Nested Typing for Explicit Substitutions196 5 — Nested Typing for Explicit Substitutions196 5 — Nested Typing for Explicit Substitutions

1 Typing with Nested Sequents

The standard way of exploring the computational contents of proofs in some given
logical system, in the Curry-Howard tradition, is to use it as a type system for some
computational language, such as the λ-calculus, or one of its variants [Gal93]. We
show in this section how the nested sequents systems defined for intuitionistic logic
in Chapter 3 can be viewed as type systems for λ-calculi described in Chapter 2, by
establishing a correspondence between inference rules and typing rules. Because in
this section, we are in the setting of nested sequents, we will be using only λ-calculi
with pure explicit substitutions on the computational side.

1.1 Nested Typing Judgements

The starting point for the definition of a type system based on the nested sequents
setting is the traditional notion of typing judgements, which expresses through the
following syntax, similar to the syntax of sequents:

x1 : B1, · · · , xn : Bn ` t : A

that some given term t can be assigned type A under the assumption that each
one of the x i variables is assigned type Bi — the left part of the judgement, which
holds these typing assumptions, is called the typing environment of the term t. But
we are here in a nested setting, where a sequent can contain other sequents, and
we need to change the notion of judgement accordingly. The benefit of keeping a
sequent structure, with a meta-level in addition to the level of types, is that there is
a clear distinction between the types assigned to different parts of a term, and the
structure required to build the typing derivation. In this section, types are directly
defined as intuitionistic formulas, without the truth unit, so that they can be a type
variable a or a function type A→ B, for some types A and B.

Definition 1.1. A nested typing sequent δ is a triple formed of a typing environment,
a term and a type, generated through the following grammar:

δ ::= Γ ` t : A Γ ::= V1, · · · , Vn V ::= x : {κ } . B κ ::= δ1 ‖ · · · ‖ δn

As we can see, a typing environment Γ is a set of typing hypotheses, where each
hypothesis Vi is stating that some variable x has type B, under the condition that
a set κ of other nested typing sequents can be validated. If κ is empty, we use the
traditional writing x : B to denote x : { } . B and thus keep notations readable.

The typing process in this setting will follow the traditional scheme. Given some
term t, we will build a typing derivation of the sequent ` t : A, for some type A. As
done in the logical system, typing rules can be applied deeply inside nested typing
sequents, and this requires to manipulate typing sequents with a hole.

Definition 1.2. A typing context is a nested typing sequent with a hole { } meant to
be filled by another nested typing sequent, as defined by the following grammar:

ξ ::= { } | Γ, x : {κ ‖ ξ } . B ` t : A

1 — Typing with Nested Sequents 1971 — Typing with Nested Sequents 1971 — Typing with Nested Sequents 197

var −−−−−−−−−−−−−−−−−−−−
Γ, x : A ` x : A

Γ, x : {Γ ` u : A} . A ` t : B
sub −−

Γ ` t[x ← u] : B

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

Γ, z : {κ ‖ Γ ` t : A} . B ` u : C
let −−
Γ 3 x : {κ } . A→ B ` let z = x t in u : C

Figure 1: Nested type system Nx for the λx-calculus

1.2 Nested Typing for Pure Explicit Substitutions

The kind of terms that can be typed using a system based on nested typing sequents
depends on its typing rules. We start our study with limited sets of rules, providing
systems which can only work for basic λ-calculi of pure explicit substitutions. The
use of more complicated rules for advanced operators is left to the next section.

The set of typing rules defining the nested type system Nx for the λx-calculus is
shown above in Figure 1, and these rules1 can be applied inside any valid context.
This is quite similar to standard typing rules for calculi of pure explicit substitutions,
with the significant difference that we are using nesting instead of branching. The
system has one typing rule for each construct of the language, and typing is there
completely syntax-directed. These rules can be described as follows:

• the var rule says that some variable x has type A in any context Γ where the
name x appears with this type.

• the lam rule says that an abstraction λx .t has type A→ B in a context Γ if t
has type B in the context Γ extended with the hypothesis that x has type A.

• the let rule says that the application of x to t in a term u is well-typed if we
can type u with the additional hypothesis that the result z of the application
has type B, under the condition that t has type A in the same context Γ used
to type u — so that u is well-typed in a context where x has type A→ B.

• the sub rule says that a term t under a substitution [x ← u] is well-typed if
we can type t with the additional hypothesis that the variable x has type A,
under the condition that u has type A in the same context used to type t.

Example 1.3. Below is shown a simple typing derivation in the Nx system for some
λx-term let z = x y in z under a context Γ containing typing assumptions on both
of the free variables y and x in the term. Note that the last application of var cannot
be moved down.

var −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, z : {;} . B ` z : B

var −−
Γ, z : {Γ 3 y : A ` y : A} . B ` z : B

let −−−
Γ 3 x : A→ B, y : A ` let z = x y in z : B

1Here we will write Γ 3 V to denote that some typing assumption V appears in Γ.

198 5 — Nested Typing for Explicit Substitutions198 5 — Nested Typing for Explicit Substitutions198 5 — Nested Typing for Explicit Substitutions

var −−−−−−−−−−−−−−−−−
x : A ` x : A

Γ,∆, x : {∆,Ψ ` u : A} . A ` t : B
sub −−

Γ,∆,Ψ ` t[x ← u] : B

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

Γ ` t : B
rem −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, x : {κ } . A ` t : B

Γ,∆, z : {κ ‖∆,Ψ ` t : A} . B ` u : C
let −−−
(Γ,∆,Ψ) 3 x : {κ } . A→ B ` let z = x t in u : C

Figure 2: Nested type system Ne for the λe-calculus

This system can be refined to handle more complicated reduction behaviours, as
can be found for example in the λe-calculus. The fact that erasure and duplication
of explicit substitutions are handled in a more subtle way is reflected by the use of a
typing rule removing an hypothesis from a typing sequent, and in the modification
of the let and sub typing rules to include both copying and splitting of hypotheses,
which corresponds to the different cases of use of a variable in one or two subterms
of an application or a substitution. Notice that at this point the language of terms
remains the same as in λx, but typing rules are no longer syntax-direct, since there
is no explicit syntax in the λe-calculus for the erasure of explicit substitutions.

The typing rules defining the Ne system for λe are shown in Figure 2. The rule
rem is introduced to handle erasure of hypotheses, and the var rule is modified,
since there is no need anymore to erase the context — this can be done by using the
rem rule, although erasure need not be done only below an axiom. Then, the sub
and let rules are also modified to handle the distribution of hypotheses among
typing sequents.

Example 1.4. Below is shown an example of a typing derivation in the Ne system,
similar to the example given for Nx but where the more refined distribution of typing
hypotheses is illustrated.

var −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, z : {;} . B ` z : B

rem −−−
w : {Γ ` u : A} . B, z : {;} . B ` z : B

var −−−
w : {Γ ` u : A} . B, z : { y : A ` y : A} . B ` z : B

rem −−
x : A→ B, w : {Γ ` u : A} . B, z : { y : A ` y : A} . B ` z : B

let −−
x : A→ B, y : A, w : {Γ ` u : A} . B ` let z = x y in z : B

let −−
Γ, x : A→ B, y : A ` let w = x u in let z = x y in z : B

It also shows how unused assumptions are erased: the hypothesis on the type of x is
no longer used after the treatment of the two applications, and it has be erased with
the rem rule. Notice that the erasure of the assumption on w implies the erasure of
the whole condition attached to it, with its own set Γ of assumptions.

1 — Typing with Nested Sequents 1991 — Typing with Nested Sequents 1991 — Typing with Nested Sequents 199

var −−−−−−−−−−−−−−−−−
x : A ` x : A

Γ, x : {∆ ` u : A} . A ` t : B
sub −−−

Γ,∆ ` t[x ← u] : B

Γ ` t : B
rem −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, x : {κ } . A ` t : B

Γ, x : {κ } . A, y : {κ } . A ` t[y/x] : B
dup −−

Γ, x : {κ } . A ` t : B

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

Γ, z : {κ ‖∆ ` t : A} . B ` u : C
let −−
Γ,∆, x : {κ } . A→ B ` let z = x t in u : C

Figure 3: Nested type system Ns for the λs-calculus

This type system suffers from the same problem as the λe-calculus itself, having
an easy treatment of erasure, but a complicated shape for rules including potential
duplication. This is fixed by introducing a rule for duplication, which simplifies the
sub and let rules, with the price that this rule is not syntax-directed, since there is
also no explicit syntax for duplication in the corresponding calculus λs. The typing
rule dup and the other modified rules are shown below in Figure 3. The fact that
duplication of hypotheses is handled separatly simplifies the scheme of the sub and
let rules. This type system for λs is called Ns, by the same scheme as above.

Remark 1.5. In the dup rule, there must be at least two occurrences of the variable
x in the term t. Otherwise, its renamed version t[y/x] would be exactly the same as t,
modulo renaming, and the rule could induce infinite loops during typing.

Example 1.6. Below is shown an example of a typing derivation in the Ns system, for
a λs-term corresponding to the application of a function x to twice the same argument
a, that would be written x a a in the standard λ-calculus.

var −−−−−−−−−−−−−−−−−−−−−−−−−−−−
w : {;} . B ` w : B

var −−−
w : { b : A ` b : A} . B ` w : B

var −−
w : { a : A ` a : A ‖ b : A ` b : A} . B ` w : B

let −−
a : A, z : { b : A ` b : A} . A→ B ` let w = z a in w : B

let −−−
x : A→ A→ B, a : A, b : A ` let z = x b in let w = z a in w : B

dup −−−
x : A→ A→ B, a : A ` let z = x a in let w = z a in w : B

This illustrates the use of a separate rule for duplication, that must be used whenever
a typing assumption, such as the one on a here, is required to type two different parts
of a term. The renaming involved leads us to replace an occurrence of a by the fresh
variable b in this example, so that one variable in the initial term will match the copy
of the assumption created by applying this rule.

200 5 — Nested Typing for Explicit Substitutions200 5 — Nested Typing for Explicit Substitutions200 5 — Nested Typing for Explicit Substitutions

1.3 Properties of Nested Typing with Sequents

Although it is a variant of the standard typing mechanism used for λ-calculi, nested
typing has particular properties, due to the structure of the rules it uses. Indeed, we
cannot establish a perfect correspondence between the tree-based syntactic shape
of λ-terms and the sequential structure of nested typing derivations. Therefore, we
have a mismatch, which causes a term, in λx and other pure explicit substitutions
calculi, to have several typing derivations2.

However, we can prove that nested type systems have enough good properties
to be used on the pure explicit substitutions calculi presented in Chapter 2. We now
concentrate on the properties of the Nx system for the λx-calculus, which is the
basis for other, more refined calculi, and show how results extend to these. First, a
crucial result is that the computation of the type to be assigned to a given λx-term
is a terminating process, so that given a term, the typing procedure either returns
a type, or it fails if no rule can be applied while the derivation is not complete. We
achieve this through a measure, defined at first on terms.

Definition 1.7. The weight of a λx-term t is defined recursively as:

W(x) = 1 W(let z = x v in u) = 1+ 2× W(u) + W(u)× W(v)
W(λx .u) = 2× W(u) + 1 W(u[x ← v]) = 1+ W(u) + W(u)× W(v)

Then, the notion of weight is extended to handle nested typing judgements, by
assigning a value to a λx-term under a certain typing environment. Because of the
recursive nature of nested typing judgements, this measure is defined on different
kind of objects, involved in the definition, and we overload notations for simplicity.

Definition 1.8. Given a λx-term t and a typing environment Γ, the weight of t under
the environment Γ is denoted by W(Γ, t) and defined as W(Γ)×W(t), where the weight
W(Γ) of the environment Γ is defined recursively as:

W(;) = 1 W(x : {κ } . A) = W(κ) W(x : {κ } . A,∆) = W(κ) + W(∆)

and the weight W(κ) of a sequence κ of typing judgements as:

W(;) = 1 W(∆ ` u : A) = W(∆, u) W(∆ ` u : A ‖ κ) = W(∆, u) + W(κ)

This is all we need to prove that typing in the Nx system is terminating, which
means that this computation will always provide a result, disregarding the choices
made of which typing rule to apply at any point during the process.

Theorem 1.9. The typing process in Nx is terminating.

Proof. For some λx-term t under a typing environment Γ, we proceed by induction
on W(Γ, t). In the base case, we can only apply the var rule on t, which is a variable
x , and typing immediately terminates. In the general case, we consider any term
u under an environment ∆ to which we can apply a typing rule — if there is none,
then typing fails and thus terminates immediately. Notice that this u can be either
t, or any other term to be typed inside a condition in Γ.

2This is not the case in the traditional sequent calculus setting, as we have seen in Chapter 2, since
exchange of left implication instances corresponds to the exchange of applications, but the branching
structure is here flattened into a sequence.

1 — Typing with Nested Sequents 2011 — Typing with Nested Sequents 2011 — Typing with Nested Sequents 201

Once this term u is chosen, we use a case analysis on all the typing rules that can
be applied to it, most of them providing as premise a term v under an environment
Φ, such that v is either t or a subterm of t, and Φ is a modification of Γ. Therefore,
from t under Γ we obtain r under an environment Σ, by replacing u by v and ∆ by
Φ in t and Γ. In each case, we show that we have W(Σ, r)< W(Γ, t), as follows:

1. If u is a variable x , we apply the var rule which has no premise, so that this
term x appearing in a condition is removed from Γ and thus W(Σ)< W(Γ).

2. If u of the shape λx .p, then we have W(Φ) = W(∆)+1 but W(u)< 2×W(v)+1,
so that after application of the lam rule and replacement we obtain a term r
of less weight under its environment Σ than W(Γ, t), because W(∆)≥ 1.

3. If u is of the shape let z = x q in p, then ∆ has the shape Ω, x :{κ }.A→ B,
so that W(∆, u) = (W(Ω)+W(κ))×(1+2×W(p)+W(p)×W(q)) and by the let
rule we obtain W(Φ, v) = (W(Ω)+W(κ)+W(κ)+(W(Ω)+W(κ))×W(q))×W(p),
which is less.

4. If u is of the shape p[x ← q], then W(∆, u) = W(∆)× (1+W(p)+W(p)×W(q)),
and by the sub rule, we obtain less, W(Φ, v) = (W(∆)+ W(∆)× W(q))× W(p).

We conclude that, whatever typing rule we use, and term u we pick, the measure
W(Γ, t) decreases by application of this rule.

Remark 1.10. At each step in the typing process, for a term and a typing environment,
there is only finitely many possibilities of applying a typing rule. The typing procedure
being terminating, there are finitely many typing derivations that can be built for some
term t under an environment Γ, but in general more than one.

It can also be shown that typing in Nx is consistent, in the sense that to a given
λx-term it can only assign one unique type — up to renaming. This holds for the
same reasons as in standard systems3.

Proposition 1.11. For any typing environment Γ and any λx-term t, there is at most
one type A such that Γ ` t : A in Nx, up to renaming of base types in A.

The extension of these properties to other calculi is simply a matter of ensuring
that the new typing rules, as well as the modifications of basic rules, cannot break
the given proofs in an essential way. The case of the Ne type system for λe is easy,
we can use the same measure as for Nx — the rem rule is never a problem. But
the case of the Ns system for λs is slightly more complex, because of the dup rule,
which is not completely syntax-directed. The only modification of the term t is the
renaming of some x into y , and thus we need to extend the induction measure for
termination, with the multiset of the number of occurrences of each variable in t
— either free or bound, this is stable under α-conversion. Notice that termination
is easy to obtain in such basic systems, but it does not hold in general, for any type
system closer to the actual implementations of function programming languages.

3The nested type systems we provided here are all described through the same kind of inductive
rules as standard systems: termination might have been a question because of nested, and the possible
duplication of typing obligation, but consistency is not a problem.

202 5 — Nested Typing for Explicit Substitutions202 5 — Nested Typing for Explicit Substitutions202 5 — Nested Typing for Explicit Substitutions

2 Cut Elimination as Reduction

Now that we have established the static properties of nested typing, when used on
λ-calculi with pure explicit substitutions, we can turn to the dynamic properties of
such systems. Indeed, the main purpose of typing is to ensure the good behaviour
of chosen terms during reduction, since a type system implicitly defines a subset of
terms for which we usually have properties such as normalisation.

The logical foundation for the operational behaviour of typed terms is formed
by the cut elimination result that was obtained on the side of logic, within the proof
system — in an internal way, as done in Chapter 3 on systems for intuitionistic logic.
The crucial observation is the correspondence between the reduction rules of the
calculus and the steps used in the cut elimination procedure, each of them pushing
a cut upwards in the proof. We conclude that the properties of the cut elimination
procedure can be adapted as properties of typed terms, through the corresponding
typing derivations.

We will now show the correspondence between the reduction rules of the basic
λx-calculus and cut elimination in the JNa∪ {esa} proof system, and then discuss
the properties we deduce from this. After this, we will see how this correspondence
extends to other, more refined λ-calculi and proof systems. As we have seen, there
is no exact correspondence between terms and typing derivations in systems based
on nested sequents, — all systems shown previously suffer from this mismatch. But
the relation between cut elimination steps and reduction rules is enough to prove
that reduction can be safely performed in typed terms.

2.1 Reduction in the λx-calculus

The λx-calculus is the most basic calculus with pure explicit substitutions we have
presented. Its reduction system −→λx is quite reduced and treats duplications and
erasures of substitutions in the naïve way. This behaviour corresponds to a purely
additive treatment of rules, as can be observed in the JNa∪ {esa} proof system for
intuitionistic logic. We establish the correspondence between the two by unfolding
all cases and showing how they relate.

The reduction cases are mostly just local transformations, and we show how to
rewrite a part of the typing derivation the same way a subderivation was rewritten
in the cut elimination procedure. In the complicated cases, that involve a non-local
rewriting, we explain the effect of the transformation on the term typed.

1. The reduction rule t[x ← y] −→ren t{y/x} corresponds to the interaction
between a cut and an identity instance:

ξ{Γ, x : A ` t : B}
var −−

ξ{Γ, x : {Γ ` y : A} . A ` t : B}
sub −−

ξ{Γ 3 y : A ` t[x ← y] : B}
−→ ξ{Γ 3 y : A ` t{y/x} : B}

in this simple situation, in most cases. This transformation is local concerning
typing rules, but it requires to rename x into y in the rest of the derivation,
above this part, to match the judgement using y : A as hypothesis.

2 — Cut Elimination as Reduction 2032 — Cut Elimination as Reduction 2032 — Cut Elimination as Reduction 203

In another situation, the ren reduction rule corresponds to a more complex
rewriting, because the cut and the identity instance are not located one above
the other, so that the derivation:

ξ{∆, w : {κ } . E ` v : B}
var −−

ξ{∆, w : {Γ ` y : C → D ‖ κ } . E ` v : B}
D

ξ{Γ, z : {Γ ` y : C → D ‖ Γ, x : {Γ ` y : C → D } . C → D ` u : C } . D ` t : B}
let −−

ξ{Γ, x : {Γ ` y : C → D } . C → D ` let z = x u in t : B}
sub −−−

ξ{Γ 3 y : C → D ` (let z = x u in t)[x ← y] : B}

is turned into a simpler derivation, where D ′ is obtained from D by removal
of a structure inside a deep context, that was not modified by D, as follows:

ξ{∆, w : {κ′ } . E ` v{y/x} : B}
D′

ξ{Γ, z : {Γ ` u{y/x} : C } . D ` t{y/x} : B}
let −−

ξ{Γ 3 y : C → D ` let z = y u{y/x} in t{y/x} : B}

2. The reduction rule x[x ← u]−→var u corresponds to the other possible form
of interaction between a cut instance and an identity instance, where these
instances are removed, and D ′ is obtained by extracting D from its context:

ξ{ }
var −−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{Γ, x : A ` x : A}
D

ξ{Γ, x : {Γ ` u : A} . A ` x : A}
sub −−

ξ{Γ ` x[x ← u] : A}

−→
ξ{ }
D ′

ξ{Γ ` u : A}

3. The reduction rule z[x ← u]−→nov z corresponds to the erasure of the whole
cut when it encounters an implicit weakening, as follows:

ξ{ }
var −−−

ξ{Γ, x : {∆ ` v : C } . A ` z : B}
D

ξ{Γ, x : {Γ ` u : A} . A ` z : B}
sub −−

ξ{Γ 3 z : B ` z[x ← u] : B}

−→
ξ{ }

var −−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ 3 z : B ` z : B}

4. The reduction rule (λy.t)[x ← u] −→lam λy.t[x ← u] corresponds to the
permutation of a cut over an introduction rule, so that from the derivation:

ξ{Γ, x : {Γ ` u : A} . A, y : B ` t : C}
lam −−−

ξ{Γ, x : {Γ ` u : A} . A ` λy.t : B→ C}
sub −−−

ξ{Γ ` (λy.t)[x ← u] : B→ C}

204 5 — Nested Typing for Explicit Substitutions204 5 — Nested Typing for Explicit Substitutions204 5 — Nested Typing for Explicit Substitutions

we obtain the following new derivation:

ξ{Γ, y : B, x : {Γ, y : C ` u : A} . A ` t : C}
sub −−−

ξ{Γ, y : B ` t[x ← u] : C}
lam −−

ξ{Γ ` λy.t[x ← u] : B→ C}

5. The rule (let y = z v in t)[x ← u] −→let let y = z v[x ← u] in t[x ← u]
corresponds to the permutation of a cut over an application when it does not
involve the main formula of the cut, so that from the derivation:

ξ{Γ, x : {Γ ` u : A} . A, y : {κ ‖ Γ, x : {Γ ` u : A} . A ` v : B } . C ` t : D}
let −−

ξ{Γ, x : {Γ ` u : A} . A ` let y = z v in t : D}
sub −−−

ξ{Γ 3 z : {κ } . B→ C ` (let y = z v in t)[x ← u] : D}

we obtain the following new derivation:

ξ{Γ, y : { ι } . C , x : {Γ, y : { ι } . C ` u : A} . A ` t : D}
sub −−

ξ{Γ, y : {κ ‖ Γ, x : {Γ ` u : A} . A ` v : B } . C ` t[x ← u] : D}
sub −−

ξ{Γ, y : {κ ‖ Γ ` v[x ← u] : B } . C ` t[x ← u] : D}
let −−−

ξ{Γ 3 z : {κ } . B→ C ` let y = z v[x ← u] in t[x ← u] : D}

where ι = κ ‖ Γ, x : {Γ ` u : A} . A ` v : B.

6. The rule (let y = x v in t)[x ← λz.u] −→apd t[y ← u[z ← v]][x ← λz.u]
corresponds to the interaction between the cut and an application when the
main formula of the cut is the one involved in the application, so that from
the following derivation:

ξ{Σ, y : {Γ, z : A ` u : B ‖ Σ ` v : A} . B ` t : C}
lam −−

ξ{Σ, y : {Γ ` λz.u : A→ B ‖ Σ ` v : A} . B ` t : C}
let −−−

ξ{Γ, x : {Γ ` λz.u : A→ B } . A→ B ` let y = x v in t : C}
sub −−−

ξ{Γ ` (let y = x v in t)[x ← λz.u] : C}

where Σ = Γ, x : {Γ ` λz.u : A→ B } . A→ B, we obtain the derivation:

ξ{Σ, y : {Σ, z : {Σ ` v : A} . A ` u : B } . B ` t : C}
sub −−

ξ{Σ, y : {Σ ` u[z← v] : B } . B ` t : C}
sub −−−

ξ{Γ, x : {Γ ` λz.u : A→ B } . A→ B ` t[y ← u[z← v]] : C}
sub −−−

ξ{Γ ` t[y ← u[z← v]][x ← λz.u] : C}

This rewriting of the typing derivation is slightly more complicated than the
others, since it is non-local, and this requires to adapt the derivation above
the part transformed in order to move the instances used to type the term v
inside the context where u is typed. However, there is no need here to deal
with the distribution of typing assumptions, because of the additive setting,
so that this rewriting does not require the introduction of new instances.

2 — Cut Elimination as Reduction 2052 — Cut Elimination as Reduction 2052 — Cut Elimination as Reduction 205

7. The reduction rule t[x ← let y = z v in u]−→out let y = z v in t[x ← u]
corresponds to the permutation of a cut over an application when it affects
the inside of the cut formula, so that from the derivation:

ξ{Γ, x : {Γ, y : {κ ‖ Γ ` v : B } . C ` u : A} . A ` t : D}
let −−−

ξ{Γ, x : {Γ ` let y = z v in u : A} . A ` t : D}
sub −−

ξ{Γ 3 z : {κ } . B→ C ` t[x ← let y = z v in u] : D}

we obtain the following new derivation:

ξ{Γ, y : {κ ‖ Γ ` v : B } . C , x : {Γ, y : {κ ‖ Γ ` v : B } . C ` u : A} . A ` t : D}
sub −−

ξ{Γ, y : {κ ‖ Γ ` v : B } . C ` t[x ← u] : D}
let −−

ξ{Γ 3 z : {κ } . B→ C ` let y = z v in t[x ← u] : D}

Notice that the correspondence between steps of cut elimination and reduction
rules of λx is highly similar to the correspondence between cut elimination in the
shallow setting of the sequent calculus, and reduction rules of λx, apart from the
replacement of branching with nesting. In this set of reductions, the out rule is
a little different from the others: the reduction shown on the typing derivation is
valid in general, but this rewriting is applied only in the particular case where the
term t under the substitution on x is an application on x . This restriction is needed
to preserve confluence, as explained in Chapter 2, and the fact that a more general
reduction preserves typing guarantees that this rule is logically valid. All the cases
listed above lead to the following expected result.

Proposition 2.1 (Subject reduction in λx). If Γ ` t : A and t −→λx u then Γ ` u : A.

The observation that the typing of a term is preserved by reduction is the crucial
step in the correspondence between cut elimination and reduction in the calculus,
and intuitively states that all reduction rules in λx are logically valid. One can then
prove the progress property, stating that a well-typed term is either a normal form,
or can be reduced. This is a consequence of the correspondence between the typing
derivations of Nx and proofs in JNa∪ {esa}, as explicit substitutions are typed by
cuts. These properties are the reason why the following theorem holds, extracting
from typing the existence of a normalising strategy for a given term.

Theorem 2.2. Given a λx-term t well-typed in Nx, there exists a terminating strategy
that allows to compute the strong normal form of t for −→λx.

Proof. By detour elimination in JNa∪ {esa}, since it was proved that all cuts can be
eliminated from a given proof in this system. Through the correspondence shown
above, all redexes can be eliminated from the term t.

2.2 Reduction in Other Calculi

In more refined λ-calculi, the correspondence between cut elimination in a logical
system and reduction rules is established the same way as in λx, by refining some
of the cases described above. We now consider the refinement to the λe-calculus:

206 5 — Nested Typing for Explicit Substitutions206 5 — Nested Typing for Explicit Substitutions206 5 — Nested Typing for Explicit Substitutions

1. The reduction rule t[x ← y] −→ren t{y/x} corresponds to the interaction
between a cut and an identity instance, in the simple case:

ξ{Γ, x : A ` t : B}
var −−−

ξ{Γ, x : { y : A ` y : A} . A ` t : B}
sub −−−

ξ{Γ, y : A ` t[x ← y] : B}
−→ ξ{Γ, y : A ` t{y/x} : B}

and in the more complex case where the variable being renamed is applied
to an argument through the let construct:

ξ{Γ′,∆′, w : {κ } . E ` v : B}
var −−−

ξ{Γ′,∆′, w : { y : C → D ` y : C → D ‖ κ } . E ` v : B}
D

ξ{Γ′,∆′, z : { y : C → D ` y : C → D ‖∆′,Ψ′ ` u : C } . D ` t : B}
let −−−

ξ{Γ,∆,Ψ, x : { y : C → D ` y : C → D } . C → D ` let z = x u in t : B}
sub −−−

ξ{(Γ,∆,Ψ) 3 y : C → D ` (let z = x u in t)[x ← y] : B}

where the assumption on x appears either in Γ′, in ∆′ or in Ψ′ — which are
other identical to Γ, ∆ and Ψ —, or in none of them, and the derivation is
turned into:

ξ{Γ,∆, w : {κ′ } . E ` v{y/x} : B}
D ′

ξ{Γ,∆, z : {∆,Ψ ` u{y/x} : C } . D ` t{y/x} : B}
let −−

ξ{(Γ,∆,Ψ) 3 y : C → D ` let z = y u{y/x} in t{y/x} : B}

2. The reduction rule x[x ← u] −→var u corresponds to the other interaction
between a cut and an identity instance, and is seen on typing derivations in
the following rewriting:

ξ{ }
var −−−−−−−−−−−−−−−−−−−−−−

ξ{x : A ` x : A}
D

ξ{x : {Ψ ` u : A} . A ` x : A}
sub −−−

ξ{Ψ ` x[x ← u] : A}

−→
ξ{ }
D′

ξ{Ψ ` u : A}

3. The reduction rule t[x ← u]−→not t corresponds to the erasure of the whole
cut when it encounters a weakening, as follows:

ξ{Γ,∆ ` t : B}
rem −−−

ξ{Γ,∆, x : {Σ ` v : C } . A ` t : B}
D

ξ{Γ,∆, x : {∆,Ψ ` u : A} . A ` t : B}
sub −−−

ξ{Γ,∆,Ψ ` t[x ← u] : B}

−→
ξ{Γ,∆ ` t : B}

rem∗ ==========================
ξ{Γ,∆,Ψ ` t : B}

2 — Cut Elimination as Reduction 2072 — Cut Elimination as Reduction 2072 — Cut Elimination as Reduction 207

4. The reduction rule (λy.t)[x ← u] −→lam λy.t[x ← u] corresponds to the
permutation of the cut over a right implication rule, and this case is just the
straightforward adaptation of the corresponding case in λx.

5. The rule (let y = z v in t)[x ← u] −→inl let y = z v[x ← u] in t and
the similar rules inr and inb correspond to the permutation of a cut over
an application when it does not involve the main formula of the cut, so that
from the derivation:

ξ{Γ,Ω, y : {κ ‖ Σ,∆, x : {Ω,∆,Ψ ` u : A} . A ` v : B } . C ` t : D}
let −−−

ξ{Γ,Σ,Ω,∆, x : {Ω,∆,Ψ ` u : A} . A ` let y = z v in t : D}
sub −−−

ξ{(Γ,Σ,Ω,∆,Ψ) 3 z : {κ } . B→ C ` (let y = z v in t)[x ← u] : D}

we obtain the following derivation:

ξ{Γ,Ω, y : {κ ‖ Σ,∆, x : {Ω,∆,Ψ ` u : A} . A ` v : B } . C ` t : D}
sub −−−

ξ{Γ,Ω, y : {κ ‖ Σ,Ω,∆,Ψ ` v[x ← u] : B } . C ` t : D}
let −−

ξ{(Γ,Σ,Ω,∆,Ψ) 3 z : {κ } . B→ C ` let y = z v[x ← u] in t : D}

and the cases of inr and inb correspond to the cases where the assumption
on the type of x appears the other environment, or in both, respectively.

6. The rule (let y= x v in t)[x ← u] −→ins (let y=z v in t)[x ← u][z← u]
corresponds to the duplication of a cut that can be performed when this cut
introduces a formula involved in an implication left rule immediately above
but also in the proof above this instance.

7. The rule (let y = x v in t)[x ← λz.u] −→apd t[y ← u[z ← v]][x ← λz.u]
and the rule t[x ← let y = z v in u] −→out let y = z v in t[x ← u] are
the reflections of the interaction between a cut and a left implication rule, in
two possible situations, and both cases are just direct the adaptations of the
corresponding case in λx.

The correspondence for the λs-calculus is established by the same analysis of
each reduction case, and the precise transformations are very similar to the ones
used for λe, simply omitting the part of the context being duplicated in the typing
rules for substitutions and applications. The correspondence between cases of cut
elimination and reduction rules leads to the expect theorem, stating that well-typed
terms can be normalised, by cut elimination in JNb∪ {ebs}.

Theorem 2.3. Given a λe-term t well-typed in Ne, there exists a terminating strategy
that allows to compute the strong normal form of t for −→λe.

Proof. By detour elimination in JNb∪ {ebs}, since it was proved that all cuts can be
eliminated from a given proof in this system. Through the correspondence shown
above, all redexes can be eliminated from the term t.

The same result holds in λs, through the correspondence of typing derivations
in Ns and proofs in the JNs∪ {es} system, and the observation that elimination
steps yield the reduction rules of the −→λs system.

208 5 — Nested Typing for Explicit Substitutions208 5 — Nested Typing for Explicit Substitutions208 5 — Nested Typing for Explicit Substitutions

3 Typing with the Calculus of Structures

The nested type systems we have considered so far were based on sequents, with
typing rules that affect both the left-hand side and the right-hand side of a typing
judgement, in a left/right symmetry characteristic of systems in sequent style. As a
consequence, they were restricted to a particular kind of λ-calculi, the ones using
pure explicit substitutions. However, standard explicit substitutions calculi, where
β-redexes coexist with explicit substitutions, are much better understood. If nested
type systems are meant to offer new possibilities, on the computational side, then
we need to be able to handle such standard calculi.

We have seen in Chapter 2 that pure explicit substitutions λ-calculi are handled
with systems based on a sequent style, while standard calculi correspond to systems
of natural deduction, with introduction and elimination rules. In this situation, the
calculus of structures can be used as a basis for both kind of type systems, since we
can use either sequent style or natural deduction style, as shown in Chapter 4.

The problem with the JS∪ {u} system is that it has no distinction between the
logical implication connective and the meta-logical implication, which is typical of
the calculus of structures but is problematic in the traditional typing setting — this
prevents to have a typing rule for abstraction, since curryfication is implicit. Having
already a nested type system for pure explicit substitutions, we are more interested
in a system in natural deduction style, such as JD, to type standard λ-calculi. As in
the case of sequent style systems, different variants of JD correspond to different
calculi, from the most basic to more refined calculi.

3.1 Uniform Typing Structures

In a type system based on a variant of JD, judgements correspond to structures and
we have to use a kind of typing judgement where different levels are nested. This
is achieved by a generalisation of nested typing judgements where judgements can
appear not only inside other judgements, but inside types as well. We call uniform
typing structures such constructions, because they treat types and typing hypotheses
in uniform way, which requires a definition slightly different from the definition of
nested typing sequents.

Definition 3.1. A uniform typing structure U , associating a conditional type T to a
term t, under a certain typing environment, is generated by the following grammar:

U ::= x :φ ` U | t : T | ; T ::= A | φ→ T φ ::= {U } . A

In this setting, all the notions involved are defined syntactically, in a mutually
inductive way, so that there is no clear distinctions left: judgements must depend
on types, but types can themselves depend on judgements. Although it might seem
related, this is completely different from dependent types, since the distinction is
kept between the terms of the object language, which is a λ-calculus, and the level
of typing. Notice that we reuse the symbols from the previous section, to keep the
typing rules readable — that means, as close as possible to the standard syntax for
typing. We will denote typing structures by letters such as U .

3 — Typing with the Calculus of Structures 2093 — Typing with the Calculus of Structures 2093 — Typing with the Calculus of Structures 209

Remark 3.2. For the sake of simplicity, we consider uniform typing structures through
a set of equations, corresponding to the congruence on intuitionistic structures in the
JD system. These equations are:

x :φ ` (y :ψ ` U) ≡ y :ψ ` (x :φ ` U) ≡ x :φ, y :ψ ` U

x : {U1 } . A ` U0 ≡ x : {U2 } . A ` U0 if U1 ≡ U2
t : ({U1 } . A)→ T ≡ t : ({U2 } . A)→ T if U1 ≡ U2

t :φ→ T1 ≡ t :φ→ T2 if t : T1 ≡ t : T2

and they allow to use such a typing structure the same way as we could use a nested
typing sequent, as if the » environment « was a multiset of typing assumptions. Also
note that we can write x1 :φ1, · · · , xn :φn ` t : A in general — where A might be a
conditional type — and we can also write ` t :A, if there is no typing assumption, and
x : A for an assumption that is really x : {;} . A.

The main novelty lies in this notion of conditional type, which allows to express
the fact that a particular part of a type is only valid under the condition that another
typing judgement is valid. Because of the shape of the inference rules in JD and
in natural deduction style systems in general, such a condition can appear before
that part of the type is used, as an assumption — therefore, it must be allowed to
appear within types, on the left of an implication. Notice that a conditional type is
always located in negative position, and never directly on the right of a plain type
— that is, a type where no condition appears.

Finally, the notion of context is slightly more complicated than in the case of
nested typing sequents, because there are two different cases to handle.

Definition 3.3. A uniform context is a uniform typing structure with a hole { }meant
to be filled by another uniform typing structure, as defined by the following grammar:

ξ ::= { } | x : {ξ } . A ` U | t : ({ξ } . A)→ T

The additional case corresponds to the possibility to apply some inference rule
in a conditional type, before this part of the type is moved to the left to be used as
an assumption.

3.2 Uniform Typing for λ-calculi with Explicit substitutions

The purpose of uniform typing structures is to provide a framework for the nested
typing of standard λ-terms with explicit substitutions, where β-redexes coexist with
explicit substitutions, as in the λx-calculus and its variants.

The uniform type system used for λx is called Nx, and its typing rules are given
in Figure 4. As before, rules can be applied inside any valid context. This system
is very similar to the Nx system based on sequents, with the significant difference
that the shape of the application rule makes it correspond to a standard application
t u of one term to another. In this rule, the argument u to the function t is moved
inside a conditional type, so that its type can be used as the input type of t, while
retaining the condition that this is valid only if u is well-typed. As in the Nx system,
there is one rule for each construct of the language, and typing is syntax-directed.

210 5 — Nested Typing for Explicit Substitutions210 5 — Nested Typing for Explicit Substitutions210 5 — Nested Typing for Explicit Substitutions

;
var −−−−−−−−−−−−−−−−−−−−
Γ, x : A ` x : A

Γ, x : {Γ ` u : A} . A ` t : B
sub −−

Γ ` t[x ← u] : B

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

Γ ` t : ({Γ ` u : A} . A)→ B
app −−

Γ ` t u : B

Figure 4: Nested type system Nx for the λx-calculus

This type system is the closest equivalent we can derive in the nested setting of
the most standard S type system for the λ-calculus presented in Chapter 2 — more
precisely, this would be the equivalent of the Sx system, since it is based on explicit
substitutions. The sub and app rules exhibit two particular constructs of a uniform
type system: a judgement nested inside a typing assumption, and the attachment
of another judgement to a part of the type assigned to a term.

Remark 3.4. The notations used in the figure above are meant to emphasise strong
similarities between the Nx system and Sx, in particular by showing there the whole
set Γ of typing assumptions, and by leaving implicit the context in which each rule
can be plugged. Notice that there is always a unique judgement inside some condition,
whereas there were potentially several nested typing sequents in all the systems of the
previous sections.

Example 3.5. Below is shown an example of a typing derivation in the Nx system,
for a λx-term considered under an empty set of assumptions. The simple treatment
of erasure and duplication in this system leaves several assumptions in the topmost
judgement — and some typing hypotheses are used several times, at several levels —
but all the unnecessary assumptions are erased by the var rule.

;
var −−−

z : B, y : {;} . B, x : { · · · ` u : A} . A ` y : B
lam −−

z : B, y : {;} . B ` λx .y : ({ · · · ` u : A} . A)→ B
var −−

z : B, y : { z : B ` z : B } . B ` λx .y : ({ · · · ` u : A} . A)→ B
app −−

z : B, y : { z : B ` z : B } . B ` (λx .y) u : B
sub −−−

z : B ` ((λx .y) u)[y ← z] : B
lam −−−

` λz.((λx .y) u)[y ← z] : B→ B

Notice that what would be located in different branches in a more standard setting is
separated here by the nesting of judgements inside conditions. Moreover, the erasure of
the judgement for the subterm u, performed by the topmost var rule, could not happen
below the use of the lam rule, since the structure of types cannot be manipulated by
anything else than the lam and app rules — and there can be no conditional type in
the set of assumptions, on the left.

3 — Typing with the Calculus of Structures 2113 — Typing with the Calculus of Structures 2113 — Typing with the Calculus of Structures 211

;
var −−−−−−−−−−−−−−−−−

x : A ` x : A

Γ,∆, x : {∆,Ψ ` u : A} . A ` t : B
sub −−

Γ,∆,Ψ ` t[x ← u] : B

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

Γ,∆ ` t : ({∆,Ψ ` u : A} . A)→ B
app −−

Γ,∆,Ψ ` t u : B

Γ ` t : B
rem −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, x : {U } . A ` t : B

Figure 5: Nested type system Nes for the λes-calculus

Following the refinement of λ-calculi with explicit substitutions, we can refine
the Nx system to avoid the duplication of all assumptions each time an application
is encountered. This leads to the Nes type system for the λes-calculus, where the
erasure of assumptions is handled separatly by the rem rule and the distribution of
assumptions in the sub and app rules is hybrid, only a part of the context being
duplicated. The typing rules for Nes are presented in Figure 5, and one can notice
that the rule for application is much simpler than the one used in the pure explicit
substitution variant Ne, regarding the contents of the multisets used to hold typing
assumptions.

Example 3.6. Below is shown an example of a typing derivation in the Nes system,
where a given typing assumption, with a condition, is unnecessary, and no assumption
is ever duplicated. Note that when the assumption on a is erased, the judgement nested
inside is also erased.

;
var −−−

w : (A→ B)→ C ` w : ({;} . A→ B)→ C
var −−−

w : (A→ B)→ C ` w : ({ y : A→ B ` y : A→ B } . A→ B)→ C
app −−−

w : (A→ B)→ C , y : {;} . A→ B ` w y : C
var −−−

w : (A→ B)→ C , y : { x : B ` x : B } . A→ B ` w y : C
rem −−−

w : (A→ B)→ C , y : { x : B, z : A ` x : B } . A→ B ` w y : C
lam −−

w : (A→ B)→ C , y : { x : B ` λz.x : A→ B } . A→ B ` w y : C
sub −−

w : (A→ B)→ C , x : B ` (w y)[y ← λz.x] : C
lam −−

w : (A→ B)→ C ` λx .(w y)[y ← λz.x] : B→ C
rem −−

w : (A→ B)→ C , a : {∆ ` u : D } . E ` λx .(w y)[y ← λz.x] : B→ C

When the assumption on z is erased inside the assumption on y, no inner judgement
needs to be duplicated, since z was attributed the plain type A. This erasure needs to
be performed before the application of the var rule, since this axiom rule has been
modified to handle exactly one assumption.

212 5 — Nested Typing for Explicit Substitutions212 5 — Nested Typing for Explicit Substitutions212 5 — Nested Typing for Explicit Substitutions

;
var −−−−−−−−−−−−−−−−−

x : A ` x : A

Γ, x : {∆ ` u : A} . A ` t : B
sub −−−

Γ,∆ ` t[x ← u] : B

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

Γ ` t : ({∆ ` u : A} . A)→ B
app −−−

Γ,∆ ` t u : B

Γ ` t : B
rem −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, x : {U } . A ` t : B

Γ, x : {U } . A, y : {U } . A ` t[y/x] : B
dup −−

Γ, x : {U } . A ` t : B

Figure 6: Nested type system Ns for the λs-calculus

Finally, we can push further the decomposition of typing rules to reach a type
system suitable for the λs-calculus, where duplication is performed by a separate
rule — which renames an occurrence of some variable when duplicating the explicit
substitution binding it. The typing rule for this system, called Ns, are shown above
in Figure 6.

Remark 3.7. Similarly to the situation in the Ns system, the typing rule dup must be
completed here with the condition that the variable x should appear at least twice in
the term t, as this could otherwise lead to an infinite loop during typing.

Example 3.8. Below is shown an example of a derivation in the refined type system
Ns, where the assumption on x, relying on an assumption on y, has to be duplicated.
The duplication is performed within the typing structure and involves the renaming of
an occurrence of x into w in the term being typed.

;
var −−−

z : A→ A→ B ` z : A→ ({;} . A)→ B
var −−−

z : A→ A→ B ` z : ({;} . A)→ ({ x : A ` x : A} . A)→ B
var −−

z : A→ A→ B ` z : ({w : A ` w : A} . A)→ ({ x : A ` x : A} . A)→ B
app −−

z : A→ A→ B, w : A ` z w : ({ x : {;} . A ` x : A} . A)→ B
var −−−

z : A→ A→ B, w : A ` z w : ({ x : { y : A ` y : A} . A ` x : A} . A)→ B
app −−−

z : A→ A→ B, w : {;} . A, x : { y : A ` y : A} . A ` z w x : B
var −−−

z : A→ A→ B, w : { y : A ` y : A} . A, x : { y : A ` y : A} . A ` z w x : B
dup −−−

z : A→ A→ B, x : { y : A ` y : A} . A ` z x x : B
sub −−

y : A, z : A→ A→ B ` (z x x)[x ← y] : A→ B

Notice that the var rule has to be applied twice on y : A because all the contents of
the condition in the assumption on x is also duplicated along the way. This could
be avoided by using the var rule there before the dup rule causing the duplication
but it illustrates how parts of the typing process can be performed redundantly in this
setting.

3 — Typing with the Calculus of Structures 2133 — Typing with the Calculus of Structures 2133 — Typing with the Calculus of Structures 213

3.3 Properties of Nested Typing with Structures

The nested type systems presented for standard λ-calculi with explicit substitutions
use a slightly more complex syntax than the ones based on nested sequents, so that
the good properties proved in the previous section must be adapted to fit the setting
of uniform typing structures. In particular, the way uniform typing structures are
defined is more modular than the definition of nested typing sequents, but it turns
out to be difficult to accomodate in the proof of termination the equations defined
used on structures. The part of the measure concerning only terms is easily defined
following the same scheme as before:

Definition 3.9. The weight of a λx-term t is defined recursively as:

W(x) = 1 W(u v) = 1+ W(u) + W(u)× W(v)
W(λx .u) = 1+ W(u) W(u[x ← v]) = 1+ W(u) + W(u)× W(v)

Notice that the measure required for the standard form of application is simpler
than the one we used before, as it was induced by the duplication of the assumption
on the variable applied. In order to extend the notion of weight to uniform typing
structure, we will adopt the radical solution of disregarding the equations between
them, by using a notation closer to the nested sequents syntax. Just as in the
notation used in the typing rules of Nx, we consider maximal structures and write
them in the form of:

x1 :φ1, · · · , xn :φn ` t : A

where there might be no φi , in which case the antecedent is denoted ;, and A is
a conditional type that can contain typing structures. The presence of conditions
within types is another reason for the technicality of the proof of termination. Then,
the definition of the weight can be extended to all other notions involved in the type
system, and the notation for it is overloaded.

Definition 3.10. Given a uniform typing structureU for the λx-calculus, the weight
of U is denoted by W(U) and defined by induction as:

W(;) = 0 and W(Γ ` t : A) = (W(Γ)+ W(A))× W(t)

where the weight W(Γ) of a sequence of typing assumptions Γ is defined as:

W(;) = 1 and W(x : {Ux } . B,∆) = W(Ux) + W(∆)

and the weight W(A) of a conditional type A is defined as:

W({UA } . B→ C) = W(UA) + W(C) and W(A) = 0 if A is a plain type

Through all these definitions, the notion of weight used for Nx is similar to the
one used in Nx, but the presence of conditions inside types forces to take the type
assigned to a term into account. We can now prove termination by inspecting the
typing rules of Nx, which are all such that the weight of the involved uniform typing
structure decreases from conclusion to premise.

214 5 — Nested Typing for Explicit Substitutions214 5 — Nested Typing for Explicit Substitutions214 5 — Nested Typing for Explicit Substitutions

Theorem 3.11. The typing process in Nx is terminating.

Proof. For a λx-term t under a typing environment Γ, to which we want to assign
type A, we proceed by induction on W(Γ ` t : A). In the base case, only the var rule
can be applied on t, which is a variable, and typing terminates. In the general case,
we consider any term u under an environment ∆ to which we can apply a typing
rule — if there is none, then typing fails and thus terminates immediately. Notice
that this u can be either t, or any other term to be typed inside a condition in Γ.

Once this term u is chosen, we use a case analysis on the typing rules that can
be applied to it, and in most cases they are of the shape:

Φ ` v : C
r −−−−−−−−−−−−−
∆ ` u : B

≡
UC

r −−−−
UB

where v is either t or a subterm of t, and Φ is a modification of Γ. In each case, we
show that we have W(UC)< W(UB), as follows:

1. If u is a variable x , we apply the var rule which has no premise, so that this
term x appearing in a condition is removed from∆ and thus W(UC)< W(UB).

2. If u of the shape λx .p and B is D→ E, then if D is a plain type, the result is
easy, and otherwise we have W(Φ) = W(∆) + k, where k is the weight of the
structure in D, so that W(UC) = (W(∆)+k+W(E))×W(p) while the conclusion
is such that W(UB) = (W(∆)+W(D→ E))× (1+W(p))— and we conclude by
the observation that W(D→ E) = k+ W(E), by definition.

3. If u is of the shape p q then W(UB) = (W(∆)+W(B))×(1+W(p)+W(p)×W(q))
and W(UC) = (W(∆) + W(∆)× W(q) + W(B))× W(p), since the type for q that
was introduced by app is plain and has weight 0, so that W(UC)< W(UB).

4. If u is of the shape p[x ← q], then the weight W(UB) has the same value as
in the application case, and the sub rule produces also a typing structureUC
of the same weight as in the previous case, so that W(UC)< W(UB).

Remark 3.12. In a practical use of such a nested type system with conditional types,
the type assigned to a term would be unknown until its typing process is complete, but
the structure of the type would be discovered incrementally. Types using metavariables
could be used to allow the representation of an unknown types containing conditions.

As usual, it can be shown that to a given λx-term, the Nx system can only assign
one unique type, up to renaming. The type assigned is always a plain type, because
the conditions are only introduced in the premise of the app rule.

Proposition 3.13. For any typing environment Γ and any λx-term t, there is at most
one type A such that Γ ` t : A in Nx, up to renaming of base types in A.

Finally, the Nes system can be treated the same way, and the adaptation of the
technique to the Ns system requires the same adjustments of measure than the Ns
system, using multiset ordering and the number of occurrences of variables in the
terms being typed.

4 — Detour Elimination as Reduction 2154 — Detour Elimination as Reduction 2154 — Detour Elimination as Reduction 215

4 Detour Elimination as Reduction

Following the same methodology as in the case of nested sequents, we show how
the detour elimination process in the variants of the JD system can be interpreted
as reduction in standard λ-calculi with explicit substitutions, by the correspondence
between proofs and typing derivations. This procedure is simpler than the one for
cut elimination in nested sequents, because it never requires a non-local rewriting
of the proof, so that the modifications on typing derivations during reduction are
always local to the part of the term being reduced.

We start by establishing the correspondence between detour elimination in the
JDa system and reduction in the basic λx-calculus. Then, we will explain how this
correspondence can be extended to more refined proof systems and calculi.

4.1 Reduction in the λx-calculus

As with λ-calculi with explicit substitutions, or standard shallow type systems, we
describe the correspondence between the dynamics of λx and detour elimination
in JDa by considering each reduction rule of −→λx:

1. The reduction rule (λx .t) u−→B t[x ← u] corresponds to the transformation
of a matching pair of introduction and elimination rules into a cut instance:

ξ{Γ, x : {Γ ` u : A} . A ` t : B}
lam −−−

ξ{Γ ` λx .t : ({Γ ` u : A} . A)→ B}
app −−−

ξ{Γ ` (λx .t) u : B}
−→

ξ{Γ, x : {Γ ` u : A} . A ` t : B}
sub −−

ξ{Γ ` t[x ← u] : B}

2. The reduction rule x[x ← u]−→var u corresponds to the interaction of a cut
with an axiom instance, and is seen on typing derivations as follows:

ξ{;}
var −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{Γ, x : {;} . A ` x : A}
D1

ξ{Γ, x : {Γ ` u : A} . A ` x : A}
sub −−

ξ{Γ ` x[x ← u] : A}

−→
ξ{;}
D ′1

ξ{Γ ` u : A}

where D ′1 is obtained by extracting D1 from its toplevel context.

3. The reduction rule z[x ← u]−→nov z corresponds to the erasure of the whole
cut when it encounters an implicit weakening, as shown below:

ξ{;}
var −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{Γ, x : {U } . A ` z : B}
D1

ξ{Γ, x : {Γ ` u : A} . A ` z : B}
sub −−

ξ{Γ 3 z : B ` z[x ← u] : B}

−→
ξ{;}

var −−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{Γ 3 z : B ` z : B}

216 5 — Nested Typing for Explicit Substitutions216 5 — Nested Typing for Explicit Substitutions216 5 — Nested Typing for Explicit Substitutions

4. The reduction rule (λy.t)[x ← u] −→lam λy.t[x ← u] corresponds to the
permutation of a cut over an introduction, so that from the derivation:

ξ{Γ, x : {Γ ` u : A} . A, y : B ` t : C}
lam −−−

ξ{Γ, x : {Γ ` u : A} . A ` λy.t : B→ C}
sub −−−

ξ{Γ ` (λy.t)[x ← u] : B→ C}

we obtain the following new derivation:

ξ{Γ, x : {Γ, y : B ` u : A} . A, y : B ` t : C}
sub −−−

ξ{Γ, y : B ` t[x ← u] : C}
lam −−

ξ{Γ ` λy.t[x ← u] : B→ C}

5. The reduction rule (t v)[x ← u] −→app t[x ← u] v[x ← u] corresponds to
the permutation of a cut over an elimination rule, so that from the following
derivation:

ξ{Γ, x : {Γ ` u : A} . A ` t : ({Γ, x : {Γ ` u : A} . A ` v : B } . B)→ C}
app −−−

ξ{Γ, x : {Γ ` u : A} . A ` t v : C}
sub −−−

ξ{Γ ` (t v)[x ← u] : C}

we obtain the following new derivation:

ξ{Γ, x : {Γ ` u : A} . A ` t : ({Γ, x : {Γ ` u : A} . A ` v : B } . B)→ C}
sub −−−

ξ{Γ, x : {Γ ` u : A} . A ` t : ({Γ ` v[x ← u] : B } . B)→ C}
sub −−

ξ{Γ ` t[x ← u] : ({Γ ` v[x ← u] : B } . B)→ C}
app −−

ξ{Γ ` t[x ← u] v[x ← u] : C}

4.2 Reduction in Other Calculi

As before, the correspondence established for λx can be refined to obtain the other
correspondences between variant calculi and more refined proof systems. The two
sets of typing rules for the λes and λs calculi are quite similar, and we show here
only the correspondence for reduction in the λs-calculus. The reduction cases for
the λes-calculus are obtained by considering possible duplications in substitution
and application typing rules.

1. The reduction rule (λx .t) u−→B t[x ← u] corresponds to the transformation
of a matching pair of introduction and elimination rules into a cut instance:

ξ{Γ, x : {∆ ` u : A} . A ` t : B}
lam −−

ξ{Γ ` λx .t : ({∆ ` u : A} . A)→ B}
app −−

ξ{Γ,∆ ` (λx .t) u : B}
−→

ξ{Γ, x : {∆ ` u : A} . A ` t : B}
sub −−−

ξ{Γ,∆ ` t[x ← u] : B}

2. The reduction rule x[x ← u]−→var u corresponds to the interaction of a cut
with an axiom, and it is almost the same as the corresponding case in λx.

4 — Detour Elimination as Reduction 2174 — Detour Elimination as Reduction 2174 — Detour Elimination as Reduction 217

3. The reduction rule t[x ← u]−→not t corresponds to the erasure of the whole
cut when it encounters a weakening, as shown below:

ξ{Γ ` t : B}
rem −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{Γ, x : {U } . A ` t : B}
D1

ξ{Γ, x : {∆ ` u : A} . A ` t : B}
sub −−−

ξ{Γ,∆ ` t[x ← u] : B}

−→
ξ{Γ ` t : B}

rem∗ ======================
ξ{Γ,∆ ` t : B}

4. The reduction rule t[x ← u] −→dup t[y/x][x ← u][y ← u] corresponds to
the duplication of the whole cut when it encounters a contraction, so that
from the following derivation:

ξ{Γ, x : {U } . A, y : {U } . A ` t : B}
dup −−

ξ{Γ, x : {U } . A ` t : B}
D1

ξ{Γ, x : {∆ ` u : A} . A ` t : B}
sub −−−

ξ{Γ,∆ ` t[x ← u] : B}

we obtain:

ξ{Γ, y : {U } . A, x : {U } . A ` t[y/x] : B}
D′1

ξ{Γ, y : {U } . A, x : {∆ ` u : A} . A ` t[y/x] : B}
D ′1

ξ{Γ, y : {∆ ` u : A} . A, x : {∆ ` u : A} . A ` t[y/x] : B}
sub −−−

ξ{Γ,∆, y : {∆ ` u : A} . A ` t[y/x][x ← u] : B}
sub −−−

ξ{Γ,∆,∆ ` t[y/x][x ← u][y ← u] : B}
dup∗ ===

ξ{Γ,∆ ` t[y/x][x ← u][y ← u] : B}

where D ′1 is obtained by duplicating D1 and changing its context.

5. The reduction rule (λy.t)[x ← u] −→lam λy.t[x ← u] corresponds to the
permutation of a cut over an introduction rule instance, it is a straightforward
adaptation of the corresponding case in λx.

6. The reduction rule (t v)[x ← u] −→apl t[x ← u] v reflects the permutation
of a cut over an elimination rule, so that from the following derivation:

ξ{Γ, x : {Ψ ` u : A} . A ` t : ({∆ ` v : B } . B)→ C}
app −−

ξ{Γ,∆, x : {Ψ ` u : A} . A ` t v : C}
sub −−

ξ{Γ,∆,Ψ ` (t v)[x ← u] : C}

we obtain the following new derivation:

ξ{Γ, x : {Ψ ` u : A} . A ` t : ({∆ ` v : B } . B)→ C}
sub −−

ξ{Γ,Ψ ` t[x ← u] : ({∆ ` v : B } . B)→ C}
app −−−

ξ{Γ,∆,Ψ ` t[x ← u] v : C}

218 5 — Nested Typing for Explicit Substitutions218 5 — Nested Typing for Explicit Substitutions218 5 — Nested Typing for Explicit Substitutions

and the other rule apr corresponds to the other case, where the assumption
on the type of x is used to type the term v, so that the sub rule is moved
upwards inside the argument context.

Chapter 6

Nested Typing and
Extended λ-calculi

In this chapter, we show how features specific to proof systems in the calculus of
structures can be used to type variants of the λ-calculus with explicit substitutions
extended by new operators, expressing a complex control of reduction. Indeed, the
type systems presented in the previous chapter were following the scheme used in
standard type systems, so that they can be used only to type λ-calculi with standard
operations — either in the standard style or using sequentialised application. More
complex constructions can be handled by type systems relying on two of the most
important features of systems in the calculus of structures: the switch rule and the
way contraction is handled.

The particular treatment of contraction in proof systems like JD is induced by
the collapse of the formulas with the meta-level in the deep inference setting. Not
only an assumption — a formula on the left in a sequent — is duplicated, but also
the goal of another sequent, a formula on the right. Through the typing approach, it
means that when a variable is used twice, it can be used to represent two different
pieces of the program, corresponding to the possibly different proofs given for the
copies of the formulas being duplicated. Here, we explore this new expressivity by
describing a λ-calculus with resources, where syntax supports the superposition of
different terms, which may share a common context. Unfortunately, the operational
behaviour of this calculus lacks good properties, in particular because of deadlocks,
although typing ensures that there exists a way to normalise a well-typed term.

The switch rule has a more radical impact on the design of a λ-calculus, through
the operators that are typed by this rule. As it is used in a proof system to distribute
hypotheses to the different substructures, it yields communication operators in the
λ-calculus that are responsible for distributing computational resources — that is,
explicit substitutions — among different subterms considered as parallel threads,
with a hierarchy between functions and their arguments. Reduction in this setting
is much more complex than in standard calculi, and we only prove here that typing
ensures the existence of a terminating reduction. The restrictions needed to recover
properties such as confluence would be complex, and have a global aspect.

220 6 — Nested Typing and Extended λ-calculi220 6 — Nested Typing and Extended λ-calculi220 6 — Nested Typing and Extended λ-calculi

1 Contraction and Resources

In the correspondence between proof systems and λ-calculi, the contraction rule
and its incarnation in other inference rules is responsible for the behaviour of terms
with respect to duplication. In the reduction system, duplicating a part of the term
corresponds to a rewriting in the proof that involves a contraction. As explained in
Chapter 5 this is valid in the nested setting as it is in the standard setting. However,
in a nested proof system, contraction affects more than a formula: it works on the
representation of the meta-level as well, and therefore on what would be sequents
and branches in a shallow formalism.

1.1 Contraction in Nested Proof Systems

Consider the two instances of the basic contraction rule, one from a system such as
JN, in nested sequents, and the other in the calculus of structures, in JD:

Γ, [∆ ` B], [∆ ` B] ` A
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, [∆ ` B] ` A

(B⇒ (c→ D))⇒ (B⇒ (c→ D))⇒ A
c −−−

(B⇒ (c→ D))⇒ A

On the left, the contraction is clearly duplicating more than the formula B, it copies
an entire sequent along with all the assumptions in∆— and all the sequents nested
inside. In a proof in the sequent calculus, only the formula B would be duplicated,
as shown below on the left, and the proof could be translated into nested sequents
by plugging the translation of the proof of ∆=Ψ ` B below the contraction:

��
��

��
??????P1

Ψ ` B

��
��

��
�???????

P2

Γ, B, B ` A
cont −−−−−−−−−−−−−−−

Γ, B ` A
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Ψ ` A

−→

−
P2

Γ, [` B], [` B] ` A
c −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, [` B] ` A
P1

Γ, [[Ψ ` B] ` B] ` A
es −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Ψ ` A

but there are also other possible translations. In particular, the proof P1 can be
duplicated and the translation of each copy plugged above the contraction as shown
below on the left. Otherwise, the contraction is located anywhere in the translation
of the proof P1, which is separated into two parts P3 and P4, as shown below on
the right:

−
P2

Γ, [` B], [` B] ` A
P1

Γ, [` B], [[Ψ ` B] ` B] ` A
P1

Γ, [[Ψ ` B] ` B], [[Ψ ` B] ` B] ` A
c −−−

Γ, [[Ψ ` B] ` B] ` A
es −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Ψ ` A

−
P2

Γ, [` B], [` B] ` A
P ′4

Γ, [` B], [Σ ` B] ` A
P4

Γ, [Σ ` B], [Σ ` B] ` A
c −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ, [Σ ` B] ` A
P3

Γ, [[Ψ ` B] ` B] ` A
es −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,Ψ ` A

1 — Contraction and Resources 2211 — Contraction and Resources 2211 — Contraction and Resources 221

In the sequent calculus, only the two extreme options are available: either the
proofP1 corresponds to both copies of B, or each copy of B corresponds to a copy of
P1 — as obtained after cut elimination, when the cut is duplicated. The specificity
of the nested setting, that we want to exploit, is the existence of the intermediate
proofs, where a contraction separates only a part of the proof. Indeed, notice that
in this situation, the two proofs P4 and P ′4 can be different, so that the two copies
of B have different proofs but share the P3 part.

The situation is exactly the same in the calculus of structures, and in particular
in the system JD in natural deduction style. In the contraction instance from JD

shown above the implication c → D corresponds to a formula, while B⇒ (c → D)
is the equivalent of a sequent — and duplicating this whole structure implies that
B will be proved twice. We can then try to use this in a nested type system derived
from a variant of JD, where interpreting contraction allows to explicitly deal with
resources, and where some terms can share a common context — just as the two
proofs P4 and P ′4 above share the derivation P3.

In order to introduce a notion of resources in a λ-calculus where duplication of
terms is allowed, we will consider two interpretations of contraction in the system,
one for standard duplication and another one for the separation of two resources
u and v packed as a term u+ v. In order to obtain a simple calculus, we associate
this operation with a variant of the contraction rule:

(Γ⇒ A)⇒ (∆⇒ A)⇒ B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(Γ⇒∆⇒ A)⇒ B

which was discussed in Chapter 4. Using this rule, the two different proofs of A use
different assumptions — or copies of the same assumptions created before. In the
correspondence between proofs and terms, we write a term like C[u+ v] of type A
to interpret a proof of A splitted into C[−] and the subproofs u and v. Then, the
goal is to have a distinction between standard terms and terms labelled as sums, as
the sharing of C[−] by u and v is preserved by reduction only if a term containing
a sum is not duplicated before its subterms are separated — as illustrated below.

duplication

separation

The calculus we will present is not expressive enough to ensure that no term meant
to be separated is duplicated, but it allows to define terms where the subterms to be
separated and the subterms to be duplicated are distinguished enough for reduction
to preserve some sharing.

222 6 — Nested Typing and Extended λ-calculi222 6 — Nested Typing and Extended λ-calculi222 6 — Nested Typing and Extended λ-calculi

1.2 Syntax of the λr-calculus

The syntax used to introduce resources in the λr-calculus is just an extension of the
syntax of the λs-calculus [KR11]. It relies on the use of a sum operator on terms,
which expresses the idea that two terms u and v in the same context C[−] can be
composed into one single term where the context C[−] is shared among u and v, by
writing C[u+v]. This+ syntax is meant to convey the idea of superposition of C[u]
and C[v], and was borrowed from the differential λ-calculus [ER03], although it
does not behave the same — indeed, the term u+ v does not represent different
possible results of a computation, but is rather a term that can be used twice, once
with the value of u and once with the value of v.

The distinction between terms considered as a superposition of two terms and
the terms treated as usual is expressed within the binders, so that the treatment of
an argument depends on the code of the function to which it is given. This requires
to refine the notion of binding, and we will have two levels of binding names: the
usual variables of the λs-calculus, that we call the basic names, are denoted letters
such as a, b or c while the compound names are denoted by x , y or z.

Definition 1.1. The language of terms of the λr-calculus is defined as:

t, u ::= a | λx .t | t u | t[x ← u] | t + u with x , y ::= a | x + y

In comparison with the λs-calculus, the only extension is the introduction of
the sum, both at the level of terms and at the level of binding names. In the terms,
the sum is just another binary construct, as the application, and it can contain any
two subterms. The consequence for bindings is that one abstraction, or one explicit
substitution, can now bind more than one basic name at a time. The binding set of
a compound name x , denoted by 〈x〉, is the set of all basic names x contains:

〈a〉 = {a} 〈x + y〉= 〈x〉 ∪ 〈 y〉

and this implies that all these basic names should be considered when defining the
sets of bound and free variables of a term. Note that any basic name a must appear
at most once in a compound name x .

Definition 1.2. Given a λr-term t, the set bv(t) of its bound variables is:

bv(a) = ; bv(t u) = bv(t)∪ bv(u)
bv(λx .t) = bv(t)∪ 〈x〉 bv(t[x ← u]) = bv(t)∪ 〈x〉 ∪ bv(u)
bv(t + u) = bv(t)∪ bv(u)

and the set fv(t) of its free variables is:
fv(t + u) = fv(t)∪ fv(u)

fv(a) = a fv(t u) = fv(t)∪ fv(u)
fv(λx .t) = fv(t) \ 〈x〉 fv(t[x ← u]) = (fv(t) \ 〈x〉)∪ fv(u)

Remark 1.3. The syntax of the λr-calculus defines a set of λr-terms which is a strict
superset of of the set of λs-terms. Indeed, any given λs-term can be considered as a
valid λr-term, if all its binding names are interpreted as basic names from λr, so that
the extension of bindings and terms is » orthogonal « to the syntax of λs.

1 — Contraction and Resources 2231 — Contraction and Resources 2231 — Contraction and Resources 223

(λx .t) u −→B t[x ← u]

a[a← u] −→var u
t[a← u] −→rem t (a 6∈ t)
t[a← u] −→dup t[b/a][b← u][a← u] (|t|a > 1, b 6∈ t)

(λy.t)[x ← u] −→lam λy.t[x ← u]
(t v)[x ← u] −→apl t[x ← u] v (x 6∈ v)
(t v)[x ← u] −→apr t v[x ← u] (x 6∈ t)

t[y ← v][x ← u] −→cmp t[y ← v[x ← u]] (x 6∈ t, x ∈ v)

t[x + y ← u+ v] −→sep t[x ← u][y ← v]
(t + v)[x ← u] −→sul t[x ← u] + v (x 6∈ v)
(t + v)[x ← u] −→sur t + v[x ← u] (x 6∈ t)

t[x ← u][y ← v] ≡e t[y ← v][x ← u] (y 6∈ u, x 6∈ v)

Figure 1: Reduction rules and equation of the λr-calculus

Following usual notations, we write a ∈ t if a ∈ fv(t) and a 6∈ t otherwise, and
this can be extended to compound names by writing x ∈ t if and only if there exists
a ∈ 〈x〉 such that a ∈ t, and x 6∈ t otherwise. Then, clashes between variable names
are avoided with α-conversion, using Barendregt’s convention [Bar84]. Notice that
in the context of compound bindings, the renaming happens only on basic names:

λx .t ≡α λx{b/a}.t{b/a} if b 6∈ x and b 6∈ bv(t)

where {b/a} denotes the renaming of a into b, and similarly for the binding within
an explicit substitution. Moreover, we use the notation |t|a as in λs, for the number
of free occurrences of a in t, and also t[b/a] for the non-deterministic replacement
in t of one free occurrence of a by b.

The purpose of the reduction system of λr is to perform substitution of terms
for basic names, but explicit substitutions allow to handle compound names, which
need to be decomposed during the process. Indeed, the implicit substitution t{u/x}
is only defined when x is a basic name a, and t{u/a} is as usual the term t where
all free occurrences of a have been replaced with u simultaneously.

Reduction rules. The specific reduction rules used for the λr-calculus are given
above in Figure 1. Note that if we considering λs-terms, where no compound name
is used in bindings and no sum appears in any subterm, the rules sep, sul and sur
are superfluous, and the rest are rules of λs. The new rules are:

• The sep rule reduces a term where a substitution on x+ y contains a sum of
the shape u+ v, which can thus be splitted, so that x is then associated to u
and y to v, in two separate explicit substitutions.

• The sul and sur rules dispatch the substitution to one side of a sum, as it
would be done with an application.

224 6 — Nested Typing and Extended λ-calculi224 6 — Nested Typing and Extended λ-calculi224 6 — Nested Typing and Extended λ-calculi

The reduction system comes with the usual equation to exchange independent
explicit substitutions, needed with the rule for composition to allow a substitution
to be pushed independently from other substitutions. We call −→λr the reduction
defined by the rules of Figure 1, and −→≡λr the reduction defined by incorporating
the relation ≡ induced by α-conversion and ≡e, so that t −→≡λr u if and only if
there is t ′ and u′ such that t ≡ t ′ −→λr u′ ≡ u.

Example 1.4. Here is an example of a possible reduction sequence for some λr-term,
where the use of the rules sep and sur is illustrated:

(b (c+ a))[a+ (b+ c)← (u+ v) + p q]
−→sep (b (c+ a))[a← u+ v][b+ c← p q]
−→apr (b (c+ a)[a← u+ v])[b+ c← p q]
−→sur (b (c+ a[a← u+ v]))[b+ c← p q]
−→var (b (c+ (u+ r)))[b+ c← p q]

where we can see that one part of the body of the original substitution can be moved
inside the sum subterm, but not the part containing the application p q, since it is not
of the shape of a sum. If it is eventually reduced into a sum, then it can also be pushed
inside both the sum and application subterms.

The λr-calculus can play on linearity to enforce a sharing of the computations,
by disallowing duplication on certain subterms, using the separation binding syntax
rather than a duplicable binding name. It ensures that the computation required to
obtain the shape of a sum in the body of a substitution is not performed twice —
as happens if the substitution is duplicated before this computation is performed.

Example 1.5. Here is an example of a term where computation is shared among two
possible copies of the same term. In the pure λ-calculus, we would write this term as
(λb.(λa.t) (b v)) (λc.u). But here, we want to ensure that the application of λa.t is
fully reduced only after the function λc.u is applied to v. For that, we use sums:

(λb.(λa1 + a2.t) (b v)) (λc.u+ u)
−→B ((λa1 + a2.t) (b v))[b← λc.u+ u]
−→apr (λa1 + a2.t) (b v)[b← λc.u+ u]
−→apl (λa1 + a2.t) (b[b← λc.u+ u] v)
−→var (λa1 + a2.t) ((λc.u+ u) v)
−→B t[a1 + a2← (λc.u+ u) v]
−→B t[a1 + a2← (u+ u)[c← v]]
−→dup t[a1 + a2← (u[d/c] + u)[d ← v][c← v]]
−→sul t[a1 + a2← (u[d/c][d ← v] + u)[c← v]]
−→sur t[a1 + a2← u[d/c][d ← v] + u[c← v]]
−→sep t[a1← u[c← v]][a2← u[c← v]]

where c occurrs only once in u. There are other possible reduction paths, but in all of
them the duplication performed in the last step above comes after the application of
the function λc.u+ u to the term v, since the subterm (y v) cannot be separated.

2 — Reduction in the λr-calculus 2252 — Reduction in the λr-calculus 2252 — Reduction in the λr-calculus 225

2 Reduction in the λr-calculus

The operational behaviour of the λr-calculus, defined by the set of rules shown in
Figure 1, makes it a generalisation of the λs-calculus incorporating concepts from
resource-conscious calculi such as the λ-calculus with multiplicities [Bou93] or its
non-deterministic variant with resources [BCL99]. The idea in these two calculi is
that in an application, a » bag « of terms is passed as argument rather than a simple
term, so that one could write a term such as:

(λx .x x) (u | v) which would reduce to (u v) or (v u)

In the deterministic version λm [BCL99], bags must be uniform, containing a unique
term, repeated several times — in the example above, this is the case where u= v.
Moreover, an argument u can be explicitly specified as having infinite multiplicity,
which is written u∞ and would correspond to an infinite bag (u | · · · | u). Notice
that a bag may only appear directly as the argument in an application, so that there
is a clear distinction between the level of bags and the level of terms.

In the λr-calculus, we replace bags of terms by terms where bags of terms can
appear anywhere. The equivalent of a bag (u | v) is built using the sum syntax, as
u+ v. The novelty is that sums do not only appear at applications, but anywhere
in a term. However, this comes at a price, as reduction fails if no matching appears
between the separation described by a compound binder and the sums used in the
corresponding body. For this reason, λr lacks many good properties, at least in the
untyped case.

2.1 Operational Properties of λr

The introduction of sums in the setting of explicit substitutions makes the situation
in λr more complex than in λs, because of the subtle equilibrium required when
sums and compound bindings are involved in a term, for it to reduce properly. In
the case of terms not using sums and only basic names in binders, good properties
are recovered since the system behaves exactly like λs — on such a simple term, it
is therefore confluent, and β-reduction can be simulated stepwise by a translation
into this subset, which preserves strong normalisation.

Deadlocks and resources. The rules sep and sum are the only two rules of λr
involving the sum syntax and compound binders, but they can lead to cases where
a term does not reduce to a proper normal form, even if it has only finite reduction
sequences. This phenomenon, known as a deadlock, also happens in other calculi
with resources such as λm [BCL99], when not enough resources are provided to a
function, as arguments in an application.

In the λr-calculus, we have a deadlock if the sum syntax blocks the reduction
of a term containing explicit substitutions, for example if the separation indicated
by a compound binding x + y is needed but the body of the substitution does not
reduce to the shape of a sum, as in the term:

λc.(λa+ b.a b) (c u) −→≡λr λc.(a b)[a+ b← c u]

226 6 — Nested Typing and Extended λ-calculi226 6 — Nested Typing and Extended λ-calculi226 6 — Nested Typing and Extended λ-calculi

In this situation, the term is a normal form for the −→≡λr reduction system, but it
contains an explicit substitution and there is no way to remove it either by pushing
it furthing inside to the variables a and b or by erasing it.

Definition 2.1. A λr-term t is said to be in a deadlock situation if there are explicit
substitutions in t and there is no λr-term u such that t −→≡λr u, and a term v is said
to be reducible when there is no t in deadlock such that v −→≡∗λr t.

The difficulty of defining λr-terms using sums in a non-trivial way is to manage
the global balance of compound bindings and sums, so that enough resources are
provided for separations not to lead to a deadlock. This is particularly difficult for
applications: in t u, if t is not already an abstraction, we cannot know how many
copies of u will be needed during reduction.

Simulation of λ. In a calculus such as λs, explicit substitutions can always be
pushed to variables, each one separately from the others: this is the full composition
result. However, deadlocks in λr disallow any such result in general, which is the
way of obtaining stepwise simulation of β-reduction in the calculus. A translation
chosen for simulation must produce a well-balanced term, from some subset of λr
that enjoys full composition, and there is at least one, because as mentioned before,
λs is the fragment of λr not using sums. Therefore, we consider the translation
¹·ºλs — defined as the identity on λ-terms, where variables in λ are interpreted as
basic names — and prove the simulation result.

Proposition 2.2. For any λ-terms t and u, if t −→β u then ¹tºλs −→
≡
λr ¹uºλs .

Proof. The fragment of λr where no sum and no compound binding is used in any
term is exactly λs, and we know [KR11] that ¹tºλs −→

≡
λs ¹uºλs , based on the full

composition result in this setting. Using exactly the same rules in λr provides the
expected reduction sequence.

It is thus possible to simulate the λ-calculus in λr, but restricting terms to the
λs fragment provides no information on the properties of terms using sums, so that
it is of limited interest. Another possibility for simulation would be to use the other
extreme in the spectrum, and translate an abstraction as follows:

¹λa.tº = λa1 + · · ·+ an.¹t[a1/a]···[an/a]º where |t|a = n

However, it would require to provide enough copies of the translation of arguments
when translating an application, turning ¹t uº into ¹tº (¹uº+ · · ·+¹uº). If the
translation is not in normal form, we cannot know how many ¹uº copies will be
needed without reducing t. Worst, subterms inside t and u might interact, so that
for example applications in t must match the binding of the correct abstraction in
u. This is in general a difficult problem, related to the transformation called weak
linearisation [AF05] in the λ-calculus. Finally, defining a more general translation
allowing to share parts of a term is even more difficult, as it involves an analysis of
what other parts of the term will be duplicated and in which order separation and
duplication should happen, on a global level.

2 — Reduction in the λr-calculus 2272 — Reduction in the λr-calculus 2272 — Reduction in the λr-calculus 227

Note that in the other direction, projecting reduction of λr into β-reduction is
also complicated: one the side of applications, the sum u+ v can be encoded as the
pair (u, v) through the usual encoding of pairs in the λ-calculus, but representing an
abstraction λx+ y.t requires to use several projections fst and snd to decompose
the binding. The translation can be defined as the identity on variables, and:

¹t uºλr = ¹tºλr ¹uºλr ¹λa.tºλr = λa.¹aºλr
¹t + uºλr = (¹tºλr ,¹uºλr) ¹λx + yºλr = λa.¹λx .λy.tºλr (fst a) (snd a)

but this is still problematic to project the sep rule, since it would require to move
the projections fst and snd at the position in the term where separation happens
in the reduction step we are projecting.

Confluence. Besides simulation of the standard β-reduction, one of the most
important property expected from a λ-calculus is confluence, to ensure that when a
normal form is reached by reduction of a term, it is unique. In general, this cannot
hold in λr, because of deadlocks. Consider the following critical pair:

(a b)[a+ b← c+ d][c+ d ← u]

(a b)[a← c][b← d][c+ d ← u] (a b)[a+ b← (c+ d)[c+ d ← u]]

Here, if u is in normal form and is not of the shape of a sum, then the substitution
on c + d on the right cannot be separated to be pushed in both substitutions on a
and b, while it is already inside on the right. We end up with two different normal
forms:

(c d)[c+ d ← u] 6= (c[c+ d ← u]) (d[c+ d ← u])

because of the two different positions where the explicit substitution was blocked
during reduction. This leads to the conjecture that λr is confluent when restricted
to reducible terms, where such deadlocks never happen — proving it would require
a further study of the different deadlock cases.

Sums and non-determinism. As defined, λr is deterministic in the sense that
the structure of sums cannot change, and the association of left and right terms in
sums with names in bindings is fixed. Bindings must match the sum structure in a
term, but this can be relaxed in a non-deterministic setting by using equations:

t + u ≡ u+ t t + (u+ v) ≡ (t + u) + v

so that the association between names and terms can be changed. The equation for
commutativity in particular induces a non-deterministic reduction. Allowing such
non-determinism would induce the possibility to define terms with a rich behaviour,
such as a symmetric form of application:

v u ←−∗ (x y)[x + y ← u+ v] −→∗ u v

or internal choice, with u⊕ v = x[x + y ← u+ v].

228 6 — Nested Typing and Extended λ-calculi228 6 — Nested Typing and Extended λ-calculi228 6 — Nested Typing and Extended λ-calculi

;
var −−−−−−−−−−−−−−−−−−−−−−−−−

a : {;} . A ` a : A

Γ, x : {∆ ` u : A} . A ` t : B
sub −−−

Γ,∆ ` t[x ← u] : B

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

Γ ` t : ({∆ ` u : A} . A)→ B
app −−−

Γ,∆ ` t u : B

Γ ` t : B
rem −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, a : {U } . A ` t : B

Γ, a : {U∞ } . A, b : {U∞ } . A ` t[b/a] : B
cpy −−

Γ, a : {U∞ } . A ` t : B

Γ, x : {U1 } . A, y : {U2 } . A ` t : B
sep −−−

Γ, x + y : {U1 +U2 } . A ` t : B

Figure 2: Nested type system Nr for the λr-calculus

2.2 Nested Typing for λr

The type system Nr for the λr-calculus is based on a variant of the JD proof system
for intuitionistic logic1, and therefore involves nested typing structures, as all other
nested type systems in » natural deduction style « described in Chapter 5. The basic
notions are defined as in other systems:

U ::= x :φ ` U | t : T | ; T ::= A | φ→ T φ ::= {U } . A

We denote plain types, which are intuitionistic formulas without the truth unit, and
conditional types — corresponding to T in the grammar above — the same way, for
the sake of simplicity. Notice that a usual typing hypothesis x : A, as used in type
systems based on natural deduction, is now represented by the more complicated
syntax x : {;} . A, as there can be conditions attached to typing assumptions. We
can keep the standard notation x : A in this setting, since A could be a conditional
type and can thus contain a nested judgement.

Remark 2.3. The binding names used in typing assumptions are in general any valid
name from the calculus, so that it includes compound bindings of the shape x + y, or
basic binding names such as a.

The typing rules of the Nr system for λr are shown in Figure 2. It is similar to
other type systems for more standard calculi, as described in Chapter 5, but has two
distinct rules for the duplication of variables in the typing environment, depending
on the cause of the duplication — either the multiple use of a basic name in a term,
or a compound binding matching a sum subterm. The typing rule for separation is
slightly more complex than more usual typing rules, as it uses a notation indicating
that a judgement has a certain shape, ready to be separated.

1The particular system used here is JDr∪ {u}, the variant of JD where the switch rule is built-in and
the compound cut rule u are used, and where the limited contraction is added to the system.

2 — Reduction in the λr-calculus 2292 — Reduction in the λr-calculus 2292 — Reduction in the λr-calculus 229

Definition 2.4. Any uniform typing structure U = Γ,∆ ` u1 + u2 : A of λr is said to
be separable in the two structures U1 = Γ ` u1 : A and U2 =∆ ` u2 : A, which will be
denoted by U 'U1 +U2 — and by convention we also have ; ' ;+ ;.

This separation relation is implicitly used in the Nr type system, to ensure that
a judgement can be separated along a sum when applying the sep rule. It ensures
that compound bindings will be separated only when the body of the corresponding
substitutions have the shape of a sum — or when they are used in an abstraction.

The meaning of the sep typing rule introduced for λr is that when a typing
assumption is labelled with a compound name x + y and contains a judgement to
type a sum u+v, this assumption can be splitted along the sum, and each judgement
on u and v obtained by separation is associated to the corresponding name, that is
x and y respectively.

Example 2.5. Below is shown an example of a partial derivation in Nr illustrating
the use of the sep typing rule, which requires to split a judgement on u+ v:

Γ, a : {∆ ` u : A} . A ` t : A→ B
var −−
Γ, a : {∆ ` u : A} . A ` t : ({ b : A ` b : A} . A)→ B

Γ, a : {∆ ` u : A} . A ` t : ({ b : {Ψ ` v : A} . A ` b : A} . A)→ B
app −−

Γ, a : {∆ ` u : A} . A, b : {Ψ ` v : A} . A ` t b : B
sep −−−

Γ, a+ b : {∆,Ψ ` u+ v : A} . A ` t b : B
sub −−−

Γ,∆,Ψ ` (t b)[a+ b← u+ v] : B

The cpy rule is a variant of the dup rule from Chapter 5, where the typing
structure being duplicated is verified: the rule can only be applied if all judgements
inside this structure are duplicable as well.

Definition 2.6. Any uniform typing structure U of λr is said to be duplicable, and
is then denoted by U∞, if and only if any typing assumption anywhere inside U is of
the shape a : {Ua } . A — that is, if none of them has a compound binding.

The Nr type system has properties similar to all the other nested type systems,
as presented in Chapter 5. In particular, the typing process is terminating, as can
be shown by defining an appropriate measure on typing structures, following the
same scheme as in Nx and Ns. Although the type assigned to a λr-term is unique,
up to renaming, the Nr system suffers from the same mismatch between terms and
derivations as the others: there are many possible typing derivations for one given
term, because of trivial permutations that are not visible in the term structure.

Remark 2.7. Here, we have several ways of interpreting a given proof as the typing
derivation of a λr-term, because of the two possible interpretations of the contraction
rule. It can be used as a separation of a sum or as a plain duplication if the subproofs of
the two copies of the contracted structure are the same. A canonical way of considering
a proof is to turn all contractions into separations, producing a unique λr-term with
no duplication, which is a » linearisation « of any other term interpreting this proof.

230 6 — Nested Typing and Extended λ-calculi230 6 — Nested Typing and Extended λ-calculi230 6 — Nested Typing and Extended λ-calculi

The correspondence between the λr-calculus and the JDs∪ {u} system lies in
the matching between reduction rules in λr and rewriting steps used in the detour
elimination procedure used in JDs∪ {u}. As in the systems described in Chapter 5,
we can list the reduction rules defining −→λr and observe how the rewriting on a
term corresponds to a rewriting on its typing derivation. Most cases are exactly the
same as for derivations of Ns typing λs-terms, since most rules of λr are also rules
of λs. Therefore, we describe now only the cases involving the contraction:

1. The reduction t[a← u] −→dup t[b/a][a← u][b← u] reflects a permutation
of a cut above a contraction, so that if we consider the following derivation:

ξ{Γ, x : {U∞ } . A, y : {U∞ } . A ` t[y/x] : B}
cpy −−

ξ{Γ, x : {U∞ } . A ` t : B}
D

ξ{Γ, x : {∆ ` u : A} . A ` t : B}
sub −−−

ξ{Γ,∆ ` t[x ← u] : B}

we observe that we can duplicate the environment ∆ first, because all as-
sumptions inside it are on basic names — D cannot contain any sep instance,
since such an instance could permute below sub —, and then use twice the
sub rule, filling the gaps with copies of the D subderivation:

ξ{Γ, x : {U∞ } . A, y : {U∞ } . A ` t[y/x] : B}
D

ξ{Γ, x : {∆ ` u : A} . A, y : {U∞ } . A ` t[y/x] : B}
sub −−−

ξ{Γ,∆, y : {U∞ } . A ` t[y/x][x ← u] : B}
D

ξ{Γ,∆, y : {∆ ` u : A} . A ` t[y/x][x ← u] : B}
sub −−−

ξ{Γ,∆,∆ ` t[y/x][x ← u][y ← u] : B}
cpy∗ ===

ξ{Γ,∆ ` t[y/x][x ← u][y ← u] : B}

The other principal case of contraction, where a typing structure is separated along
a sum, is simpler, but there are two possibilities: either the duplicated assumption
is exactly the one introduced by the cut, or it is inside some larger assumption being
duplicated. We consider first the case where the contraction is duplicating exactly
the typing structure introduced with the cut.

2. The reduction rule t[x+ y ← u+v]−→sep t[x ← u][y ← v] is the reflection
of the other main permutation of a cut above a contraction instance, so that
if we consider the following derivation:

ξ{Γ, x : {∆ ` u : A} . A, y : {Ψ ` v : A} . A ` t : B}
sep −−

ξ{Γ, x + y : {∆,Ψ ` u+ v : A} . A ` t : B}
sub −−

ξ{Γ,∆ ` t[x + y ← u+ v] : B}

2 — Reduction in the λr-calculus 2312 — Reduction in the λr-calculus 2312 — Reduction in the λr-calculus 231

where no rule can be blocked above the cut — because of the shape of the
body of the substitution —, we get the following derivation:

ξ{Γ, x : {∆ ` u : A} . A, y : {Ψ ` v : A} . A ` t : B}
sub −−

ξ{Γ,∆, y : {Ψ ` v : A} . A ` t[x ← u] : B}
sub −−

ξ{Γ,∆,Ψ ` t[x ← u][y ← v] : B}

3. The reduction rule (t+ v)[x ← u]−→sul t[x ← u]+ v shows one of the last
two cases involving a contraction, where the cut goes through a contraction
that separates the inner contexts, and goes only on the left, so that:

ξ{Γ, y : {∆, x : {U } . A ` t : B } . C , z : {Ψ ` v : B } . C ` p : D}
sep −−−

ξ{Γ, y + z : {∆,Ψ, x : {U } . A ` t + v : B } . C ` p : D}
D

ξ{Γ, y + z : {∆,Ψ, x : {Σ ` u : A} . A ` t + v : B } . C ` p : D}
sub −−−

ξ{Γ, y + z : {∆,Ψ,Σ ` (t + v)[x ← u] : B } . C ` p : D}
can be turned into the following derivation:

ξ{Γ, y : {∆, x : {U } . A ` t : B } . C , z : {Ψ ` v : B } . C ` p : D}
D

ξ{Γ, y : {∆, x : {Σ ` u : A} . A ` t : B } . C , z : {Ψ ` v : B } . C ` p : D}
sub −−

ξ{Γ, y : {∆,Σ ` t[x ← u] : B } . C , z : {Ψ ` v : B } . C ` p : D}
sep −−

ξ{Γ, y + z : {∆,Ψ,Σ ` t[x ← u] + v : B } . C ` p : D}

As in other nested systems, the composition rule cmp and the equation≡e that is
introduced with it to handle the exchange of independent substitutions correspond
to trivial permutations. The correspondence between reduction in λr and detour
elimination in JDs∪ {u} described in this case analysis and in Chapter 5 leads us to
the conclusion that if a λr-term admits a typing derivation, there exists a strategy
for reducing it into a normal form.

Theorem 2.8 (Subject reduction). If Γ ` t : A and t −→≡λr u then Γ ` u : A.

Proof. This result can be obtained by inspection of the rewriting cases shown above,
since each reduction rule in the λr-calculus corresponds to a case of moving a cut
above another rule instance, or creating a cut in the case of B.

Theorem 2.9 (Normalisation). For any λr-term t, if Γ ` t : A there is a λr-term u
such that we have t −→≡∗λr u and u is a normal form.

Proof. This immediately follows from the termination of the procedure for detour
elimination in Chapter 4 and Theorem 2.8, since any reduction step corresponds to
a detour elimination step applied in the typing derivation. Moreover, by definition,
when a typing derivation is normal, we know that the corresponding term contains
no explicit substitution and no β-redex.

Since the λr-calculus lacks good properties on the untyped level, this result is
rather weak, but we can conjecture that typing ensures reducibility by its checking
of the balance of sums, and this could imply also confluence.

232 6 — Nested Typing and Extended λ-calculi232 6 — Nested Typing and Extended λ-calculi232 6 — Nested Typing and Extended λ-calculi

3 Switch and Communication

The switch rule is one of the most particular features of deep inference formalisms,
and it is essentially an expression of the interplay between subformulas at different
depth in a structure. As a fine-grained rule performing an operation that cannot be
perceived in shallow formalisms, interpreting in terms of computation its meaning,
through the typing methodology, is a way of obtaining more insights on the nature
of the compound operations it is involved in.

3.1 The Decomposition of Context Splitting

In shallow formalisms such as the sequent calculus or natural deduction, the rules
involving branching must deal, besides the » principal formula «, with some context
that needs to be splitted or duplicated, and distributed among both premises. In a
system in the calculus of structures, this is usually separated from the rule, as the
basic mechanism of distribution is built in the switch rule, as shown below:

C1, · · · , Cn ` A Γ ` A→ B
→e −−−Γ, C1, · · · , Cn ` B

−→

Γ⇒ (((C1⇒ ·· · ⇒ Cn⇒ A)⇒ A)→ B)
si −−

· · ·
si −−
Γ⇒ C1⇒ ·· · ⇒ (((Cn⇒ A)⇒ A)→ B)

si −−
Γ⇒ C1⇒ ·· · ⇒ Cn⇒ ((A⇒ A)→ B)

e −−−
Γ⇒ C1⇒ ·· · ⇒ Cn⇒ B

Here, the implication elimination rule from the standard natural deduction system
NJ is translation into the JD system not only using the » corresponding « rule e, but
also using several switch instances. The purpose of these instances is to distribute
all of the Ci structures to the translation of the left branch, which is nested in the
translation of the right branch. The JD derivation above does exactly the same as
the NJ instance, but it makes each step of the distribution process explicit.

Providing a computational interpretation of the switch rule in JD, based on the
nested typing methodology described in Chapter 5, requires to make distribution
explicit in a λ-calculus as well. In this setting, a rule instance that pushes a typing
assumption inside a subjudgement is exposed when a cut creates this assumption,
and must therefore be pushed inside during its elimination. On the side of terms,
the nesting of judgements is represented by binary operations such as application,
where the inner judgement is associated to the argument, and the operation that a
switch performs is thus a » jump « from a subterm into its argument:

(λy.(jump.t)[x ← u]) (here.v) −→ (λy.t) (v[x ← u])

and we will use a pair of operators following the jump/here scheme above to give a
term annotation to the switch rule — note that one rule will thus type two operators
at a time, taken as a pair. Also, as in the example, a substitution can jump out from
deep inside a term, creating » backwards references « that describe a global form of
communication, where the subterms of an application are distinct processes, much
like in the π-calculus [Mil99].

3 — Switch and Communication 2333 — Switch and Communication 2333 — Switch and Communication 233

3.2 Syntax of the λc-calculus

As done for resources in λr, the syntax we use to introduce communication in the
λc-calculus is a simple extension of the syntax of the λs-calculus [KR11]. It relies
on the use of a pair of operators for input and output, used to communicate explicit
substitutions, considered as resources, from one subterm to another subterm. This
is based on the use of channels, so that we need to assume given a countable set of
channels denoted by greek letters such as α, κ or γ. As usual, variables are denoted
by letters such as x , y and z, and terms by t, u or v.

Definition 3.1. The language of terms of the λc-calculus is defined as:

t, u ::= x | λx .t | t u | t[x ← u] | αx .t | αx .t

The notations used for the input construct αx and the output construct αx are
meant to emphasize the idea of communicating along some channel α, as done in
the π-calculus [Mil99]. As usual with communication primitives, input is binding,
so that if we write αx .t then x is bound in t. This can be observed in the definition
of free and bound variables.

Definition 3.2. Given a λc-term t, the set bv(t) of its bound variables is:

bv(x) = ; bv(t u) = bv(t)∪ bv(u)
bv(λx .t) = bv(t)∪ {x} bv(t[x ← u]) = bv(t)∪ {x} ∪ bv(u)
bv(αx .t) = bv(t)∪ {x} bv(αx .t) = bv(t)

while the set fv(t) of its free variables is:

fv(x) = x fv(t u) = fv(t)∪ fv(u)
fv(λx .t) = fv(t) \ {x} fv(t[x ← u]) = (fv(t) \ {x})∪ fv(u)
fv(αx .t) = fv(t) \ {x} fv(αx .t) = fv(t)∪ {x}

It is important to notice that the syntax of λc contains no operator to bind the
names of channels: if a channel α is used for an output in a subterm, then the other
subterm that needs a resource passed through α must use an input on α. Handling
channel names is therefore a global problem, and the names of the channels matter
when composing terms — we can say that channel names are part of the interface
of a term in λc, as in a process algebra. The basic syntax of λc-terms is simple, but
we need to enforce one condition on the way they use variables.

Definition 3.3. A λc-term t is said to be well-formed if and only if in any subterm
of the shape v u in t, we have fv(u)= ;.

In the following, we only consider well-formed terms: the condition is slightly
surprising, but it corresponds to the fact that the arguments are seen as separate
subprocesses in an application. All the resources they need must be passed through
communication, or given as arguments after reduction of the β-redex. There is no
condition on the use of channels, and one channel name may appear several times
and be used for input and output of different resources — as a consequence, the
reduction system in λc will not be deterministic.

234 6 — Nested Typing and Extended λ-calculi234 6 — Nested Typing and Extended λ-calculi234 6 — Nested Typing and Extended λ-calculi

We use here the same notations as in λs, and α-conversion is used implicitly to
rename bound variables, so that all λc-terms we consider must follow Barendregt’s
convention. We also write |t|x for the number of free occurrences of x in a term t,
and t[y/x] for the non-deterministic replacement in t of exactly one occurrence of
the variable x by another variable y . Notice that the syntactic condition (2) above
allow to rename a channel, if it appears twice in a term, since this term cannot be
composed with another term using this channel. Finally, the implicit substitution
{u/x} cannot be defined directly as in calculi such as λs which are » less explicit «,
only the renaming of variables {y/x} is defined, as usual. Furthermore, we need
some meta-notations.

Definition 3.4. Given a list φ = {x1, · · · , xn} of variables, the meta-notations αiφ.t
and αiφ.t represent of the terms α1 x1. · · · .αn xn.t and α1 x1. · · · .αn xn.t respectively,
and t if φ is empty, where each αi is a different channel.

Threads hierarchy. The separation of arguments from the body of the function
applied on them, made clear by the requirement that the arguments must be closed
subterms, creates a situation where distinct » threads « are identified in a term. In
this view, an application t u is composed of two threads t and u, where the function
body t can be called the main thread, while the argument u is an auxiliary thread
— that might actually not be used, if t discards this argument. The thread t can in
turn contain other applications, each of them with a main and an auxiliary thread,
so that there is a hierarchy among threads in a term:

(t u) is similar to (t ‖ u) with some ordering t � u

In this setting, applications play a particular role, since they form the structure of a
λc-term, in terms of the communication required between threads. However, the
explicit substitution obtained by reducing a β-redex induces a different status of its
body: in t[x ← u] the thread u is partially integrated into t, since they can share
variables and thus have access to the same pool of resources. But here again there
is a hierarchy where t is the main thread and u an auxiliary subterm. Because of
this separation, we will need to define subclasses of normal contexts C[−], where
the distinction between threads is internalised.

Definition 3.5. The application contexts and spine contexts of λc are the classes of
contexts denoted by π{−} and ~π{−} respectively, and defined as:

π ::= − | λx .π | π[x ← u] | αx .π | αx .π ~π ::= π | π{~π u}

An application context π{−} corresponds to a λc-term where the hole is located
within the outermost main thread, as defined by an application. Then, any context
~π{−} represents the spine of a term, as iteration of application contexts. In such a
context, the hole can be located anywhere on the left of any application.

Reductions rules. The set of rules defining the reduction system −→λc for the
λc-calculus is given in Figure 3. A large part of the rules are those of λs, but the
particular approach to subterms in applications simplifies the way substitutions are
pushed into applications. Moreover, some new rules are introduced to handle the
communication mechanisms:

3 — Switch and Communication 2353 — Switch and Communication 2353 — Switch and Communication 235

(λx .t) u −→B t[x ← u]

x[x ← u] −→var u
t[x ← u] −→rem t (x 6∈ t)
t[x ← u] −→dup t[y/x][y ← u][x ← u] (|t|x > 1, y 6∈ t)

(t v)[x ← u] −→apm t[x ← u] v
(λy.t)[x ← u] −→lam λy.t[x ← u] (y 6∈ u)

t[y ← v][x ← u] −→cmp t[y ← v[x ← u]] (x 6∈ t, x ∈ v)

(αy.t)[x ← u] −→get αy.t[x ← u] (y 6∈ u)
(αy.t)[x ← u] −→snd αy.t[x ← u] (y 6= x ,α 6∈ u)

(αx .t)[z← αy.v] −→opn t[z← v{x/y}]

π{(αx .t)[x ← u]} (αy.v) −→com π{(αiφ.t)} (αiφ.v[y ← v])
~π{(αx .t)[x ← u]}[z← αy.v] −→cop ~π{(αiφ.t)}[z← αiφ.v[y ← v]]

(where x 6∈ t, z 6∈ u, φ = fv(u) and all αi channels are fresh)

αx .κy.t ≡g κy.αx .t αx .κy.t ≡s κy.αx .t
αx .λy.t ≡i λy.αx .t αx .λy.t ≡r λy.αx .t (y 6= x)

t[x ← u][y ← v] ≡e t[y ← v][x ← u] (y 6∈ u, x 6∈ v)

Figure 3: Reduction rules and equations of the λc-calculus

• The get rule simply pushes a substitution under an input operator, just as it
would be pushed under an abstraction.

• The snd rule pushes a substitution under an output operator, but this is only
valid when the output is not moving this substitution, and when the body of
the substitution does not contain the matching input on the channel used.

• The opn rule removes a pair of matching input and output that have become
useless by replacing the variable bound by the input in the substitution by
the variable moved through the output — so that the body of the substitution
contains one more free variable.

• The com rule performs the communication of one substitution over a channel,
from the main thread to its argument in an application, using the name from
the input for the resulting substitution, and erasing the channel — and fresh
channels must also be introduced to prepare the moving of substitutions on
the free variables of the substitution.

• The cop rule performs the same communication as com, but from the main
thread to the body of another substitution, and also introduces fresh channels
for future communications.

236 6 — Nested Typing and Extended λ-calculi236 6 — Nested Typing and Extended λ-calculi236 6 — Nested Typing and Extended λ-calculi

The opn rule may seem disturbing, since it erases a pair of valid communication
operators, but it should be noticed that there are two rules performing composition
of substitutions: the standard cmp and the new cop. As in the case handled by opn
the standard rule can be applied on the result, this can be considered as a » garbage
collection « of communication channels.

The heart of the reduction system of λc are the com and cop rules, that allow
to create the flow of resources from the main thread of a term to its arguments and
the subterms inside substitutions. Note that com is the only link between a function
and its argument before the corresponding β-redex is triggered: it introduces some
necessary substitutions into the closed argument and leaves the subterm closed by
introducing inputs for the new free variables.

The reduction system comes with the standard equation ≡e for the exchange
of independent explicit substitutions, but also with equations allowing to exchange
two inputs, or two outputs, as they are always independent — that would not be
the case for an input exchanged with an output. The two last equations ≡i and ≡r
allow to exchange an abstraction with inputs and outputs, in the cases where they
are independent. This avoids the potential problem of β-redexes being blocked by
communication operators. The congruence defined by these equations is integrated
as usual to the reduction system, and the resulting relation is called −→≡λc. Finally,
we can easily prove that this reduction preserves well-formedness.

Proposition 3.6. If t is a well-formed λc-term and we have t −→≡λc u then u is also
a well-formed λc-term.

Proof. First, the equations shown in Figure 3 preserve well-formedness since none
of them induces the creation of new free variables, and they preserve bindings. In
the reduction rules, there is also no creation of new free variables, and binders are
always either erased with all of their scope or replaced by another kind of binder
on the same name — in the case of opn, the renaming ensures that the y is not left
free, since if x is free before then x is not a new free variable after application.

Example 3.7. Here is an example of a reduction of term performing a communication
across an application and also to a subterm inside an explicit substitution:

λw.((λz.αx .t) (αy.(κy.v)[n← κx .x]))[x ← w]
−→apm λw.(λz.αx .t)[x ← w] (αy.(κy.v)[n← κx .x])
−→lam λw.(λz.(αx .t)[x ← w]) (αy.(κy.v)[n← κx .x])
−→com λw.(λz.γw.t) (γw.(κy.v)[n← κx .x][y ← w])
≡e λw.(λz.γw.t) (γw.(κy.v)[y ← w][n← κx .x])
−→cop λw.(λz.γw.t) (γw.(υw.v)[n← υw.x[x ← w]])
−→opn λw.(λz.γw.t) (γw.v[n← x[x ← w]])
−→var λw.(λz.γw.t) (γw.v[n← w])

Notice how the communication rules leave a trail in the term of outputs and rebinding
of w by inputs, a part of it being collected in the end by the opn rule. There are four
threads coming into play here, one per substitution, a main thread in the application
and an argument thread. Also, the channels γ and υ introduced during reduction are
fresh — we assume given a mechanism to retrieve fresh channel names.

4 — Reduction in the λc-calculus 2374 — Reduction in the λc-calculus 2374 — Reduction in the λc-calculus 237

4 Reduction in the λc-calculus

As mentioned before, the reduction system of λc can be highly non-deterministic,
because of the use of channels. If input and output operators are used in a term at
proper locations, each using a different channel, then a given explicit substitution
can be carried out, but if the communication structure is not properly built in this
term, the substitution might not reach its destinations.

The most » natural « location for a communication operator is at toplevel in the
left subterm of an application for outputs, and at toplevel in the right subterm of an
application for inputs, since this is where they are needed for the com reduction rule
to apply. In these positions, they are nothing more than indications of which names
are free in the argument, used to guide substitutions as director strings [KS88], as
it has been used in the λ-calculus to obtain representations of terms without names
or indices, and study evaluation strategies [FMS05]:

(t v)σ[x ← u] −→ t[x ← u] v (σ associates x to the left)
(t v)σ[x ← u] −→ t v[x ← u] (σ associates x to the right)

In the λc-calculus, these directors σ have been internalised in the syntax of terms
and allowed not only at the natural locations, but anywhere in a term, even in some
subterm disjoint from the subterm where they will be needed. As a consequence,
the operators implementing directors must be moved to a position where the rules
for communication can use them: in λc, the communication infrastructure of a term
can be dynamically created during reduction. The price for this rich behaviour is the
lack of good properties in comparison with the λs-calculus it is based on, and the
difficulty to reason on its complex reduction dynamics.

4.1 Operational Properties of λc

The complexity of the reduction dynamics of λc, induced by the essential use made
of communication rules and channels, and the possibility for an explicit substitution
to jump from one subterm out to another subterm, makes it complicated to prove
any general result in this setting. But as we will see, some λc-terms behave better
than others, and might allow to prove limited results.

Deadlocks and synchronisation. In the communication rules com and cop, as
well as in opn, the reduction relies on the particular shape of both the term under
the substitution and the body of the substitution. As in λr, this requirement made
on several independent constructions in the term can lead to deadlock situations, if
one part of the term does not reduce to the expected shape. Consider the term:

λz.(αw.t)[x ← z (αy.u)]

Here, because the input on channel α is located under an application, the opn rule
cannot be applied and therefore the substitution cannot be pushed inside t. Notice
that plugging a term inside a context allows to » unlock « a deadlock situation: for
example, applying the term above to the identity λx .x , allows to pop the input on
α out of the application, and use the opn rule. Also the communication rules com
and cop can produce deadlock situations.

238 6 — Nested Typing and Extended λ-calculi238 6 — Nested Typing and Extended λ-calculi238 6 — Nested Typing and Extended λ-calculi

The creation of deadlocks by reduction rules handling communication between
subterms denotes the presence of concurrency in the λc-calculus. Indeed, subterms
in two different threads can be thought of as being executed in parallel, when both
have redexes to reduce, but deadlocks represent situations where one thread waits
on the other. This is similar to the situation in the π-calculus:

x〈y〉.P ‖ x(z).Q −→ P ‖ Q{y/z}

where communication can happen only when both processes in parallel have the
right prefix, involving channel x . For example, if some process reduces into x(z).Q
then the communication cannot happen before it reaches this form — and it might
rely on the replacement to reduce further. Following this analogy2, we have in λc:

(αy.p)[y ← u] (αz.q) corresponds to x〈y〉.P ‖ x(z).Q

where we can see that the resource being transmitted is more than just a name y ,
since λ-calculi are higher-order — in the π-calculus, this can be done by extending
the language [San93]. As in λr, we can make a distinction between terms blocked
on communication and those where communication always goes through.

Definition 4.1. A λc-term t is said to be in a deadlock situation if there are explicit
substitutions in t and there is no λc-term u such that t −→≡λc u, and a term v is said
to be reducible when there is no t in deadlock such that v −→≡∗λc t.

Again, avoiding deadlocks is a global problem, since it requires a balance among
different inputs and outputs on various channels, where channel names are used in
a cautious way to avoid any clash, and misrouting of the resources. When defining
λc-terms, we must always keep in mind that they will have to sychronise at some
point with other terms to receive resources.

Simulation of λ. Although λc is based on the λs-calculus, which can simulate
the reduction of the standard λ-calculus, the problem of deadlocks can prevent an
explicit substitution to be carried out completely. Moreover, a pure λ-term is a valid
λc-term only if all the subterms used as arguments in an application are closed, so
that a translation cannot be defined as easily as in λr. However, there exists one
translation of λ-terms into λc-terms allowing a kind of simulation of β-reduction
— the idea is to place inputs and outputs at their » natural « positions, much like
weakenings and contractions in the λlxr-calculus [KL07].

Definition 4.2. The translation ¹·ºλc from pure λ-terms into λc-terms is defined as:

¹xºλc = x

¹λx .tºλc = λx .¹tºλc
¹t uºλc = (αiφ.t) (αiφ.u) where φ = fv(u), and all αi are fresh

Note that during translation, a given channel name is used only once, since we
pick fresh channels when translating an application — that is, a channel introduced
there should be unused in any other part of the whole resulting term.

2In this analogy, the terms in an application in λc are considered as parallel, since as we mentioned
the argument thread is independent, in the sense that it is a closed term, although there is a hierarchy.

4 — Reduction in the λc-calculus 2394 — Reduction in the λc-calculus 2394 — Reduction in the λc-calculus 239

With this translation, all the communication operators required to carry out any
substitution are located at the positions where they will be needed. This allows to
prove a variant of the full composition result.

Lemma 4.3. For any λ-terms t and u, we have ¹tºλc[x ← ¹uºλc]−→
≡∗
c ¹t{u/x}ºλc .

Proof. We proceed by structural induction on t. First, if x does not appear in t then
it cannot appear in ¹tºλc , we can use the rem rule and we are done. If t is x , then
we conclude using var, and if t is λy.v then we use the induction hypothesis. If t
is p q, then ¹tºλc[x ← ¹uºλc] reduces to (αiφ.¹pºλc)[x ← ¹uºλc] (αiφ.¹qºλc) by
apm, where φ = fv(q), and if x ∈ t we can copy [x ← ¹qºλc] with dup and use
an induction on φ to push a copy to ¹pºλc with snd — and conclude by induction.
Finally, we can use ≡g and ≡s to apply com and go on by induction on q.

There is however a problem with the translation, in the case where a reduction
erases free variables, as some communication operators are made useless and thus
are not present in the translation of the reduced term. In order to deal with this,
we consider ' the smallest congruence such that (αx .t) (αx .u)' t u if x 6∈ u.

Theorem 4.4. For any λ-terms t and u, if t −→β u then ¹tºλc −→
≡∗
λc v ' ¹uºλc .

Proof. If the β-reduction in t does not appear at toplevel, we use a straightforward
induction on its structure, and in the case where t is of the shape p q, its translation
reduces to some v where potentially more inputs and outputs are used than in ¹uºλc
— because reduction might erase free variables — but such that v ' ¹uºλc . Then,
in the case where t is the redex (λx .p) q being reduced, we have:

t ≡ (λx .αiφ.¹pºλc) (αiφ.¹qºλc) −→B (αiφ.¹pºλc)[x ← αiφ.¹qºλc]
−→∗opn ¹pºλc[x ← ¹qºλc]

so that we have finally t −→≡∗λc ¹p{q/x}ºλc , by Lemma 4.3.

Projecting the dynamics of λc into β-reduction would be even more complex,
because of » backwards references « allowed by communication — and preservation
of strong normalisation is also made highly difficult in this setting.

Confluence. Due to the complex reduction behaviour of λc, confluence in this
setting is bound to be a difficult result, valid only for some particular subset of all
terms, better behaved than the others — as in λr, deadlocks disallowing a general
confluence result. Notice however that the first and foremost problem here is the
potentially non-deterministic use of channel names, leading to critical pairs which
can clearly not be closed, as shown in the following term, in which two independent
explicit substitutions are competing for a unique resource:

(αx .(y z))[x ← u][y ← αw.w][z← αw.w]

so that specific conditions must be imposed on channels to obtain confluence through
the −→≡λc relation, and possibly also conditions on the reducibility of terms.

240 6 — Nested Typing and Extended λ-calculi240 6 — Nested Typing and Extended λ-calculi240 6 — Nested Typing and Extended λ-calculi

;
var −−−−−−−−−−−−−−−−−−−−−−−−−−

x : {;} . A ` x : A

Γ, x : {∆ ` u : A} . A ` t : B
sub −−−

Γ,∆ ` t[x ← u] : B

Γ, x : A ` t : B
lam −−−−−−−−−−−−−−−−−−−−−−−−−
Γ ` λx .t : A→ B

Γ ` t : ({ ` u : A} . A)→ B
ape −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ ` t u : B

Γ ` t : B
rem −−−−−−−−−−−−−−−−−−−−
Γ, x : A ` t : B

Γ, x : {U } . A, y : {U } . A ` t[y/x] : B
dup −−

Γ, x : {U } . A ` t : B

Γ ` t : ({∆, y : A ` u : B } . C)→ D
com −−
Γ, x : A ` αx .t : ({∆ ` αy.u : B } . C)→ D

Γ, z : {∆, y : A ` u : B } . C ` t : D
cop −−−
Γ, x : A, z : {∆ ` αy.u : B } . C ` αx .t : D

Figure 4: Nested type system Nc for the λc-calculus

4.2 Nested Typing for λc

The type system Nc for the λc-calculus is the representation in terms of typing of
the JD proof system for intuitionistic logic, extended with the cut rule used during
detour elimination, as presented in Chapter 4. The explicit use of the switch rules
in this system leads to the definition of typing rules for the pair of communication
operators introduced in λc. Following the nested typing methodology, we will see
how typing a term in this setting allows to ensure that it can be reduced. The basic
notions are defined as in other nested type systems:

U ::= x :φ ` U | t : T | ; T ::= A | φ→ T φ ::= {U } . A

We denote plain types A and conditional types T the same way, simply as formulas,
for the sake of simplicity. The typing rules for the Nc system for λc are shown in
Figure 4, and they are mostly the same as the Ns system for λs shown in Chapter 5,
except for the equivalent of the switch rules, used to type communication operators.

The new typing rules used in Nc are rather different from rules of standard type
systems, or other nested systems. Their intuitive meaning is the following:

• The com rule says that when typing a term αx .t under an environment that
contains the assumption x : A, if the type of this term depends on the typing
of a term αy.u, then the assumption y : A must be used to type u, while the
original x : A must be erased before typing t.

• The cop rule is the same as the com rule except that it applies when the term
αy.u is being typed in an assumption in the structure typing αx .t, rather
than inside a conditional type.

4 — Reduction in the λc-calculus 2414 — Reduction in the λc-calculus 2414 — Reduction in the λc-calculus 241

From the viewpoint of the typing process, these rules com and cop are in charge
of the dispatch of typing assumptions among all different terms being typed, within
assumptions or inside conditional types. This explains the shape of the ape variant
of the app rule, where no typing assumption is initially given to the structure in
the premise, so that assumptions must be moved later inside, from the outer set of
assumptions, to complete the typing process.

Example 4.5. Below is shown an example derivation in the Nc type system, which is
illustrating the use of both the com and cop typing rules, to move typing assumptions
from outer parts of a typing judgement into the inner parts of this judgement, following
a pair of communication operators.

;
var −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

y : A→ B ` y : A→ B

y : {∆ ` u : A→ B } . A→ B ` y : A→ B
var −−

y : {∆ ` u : A→ B } . A→ B ` y : ({w : A ` w : A} . A)→ B
com −−−

x : A, y : {∆ ` u : A→ B } . A→ B ` αx .y : ({ ` αw.w : A} . A)→ B
sub −−−

∆, x : A ` (αx .y)[y ← u] : ({ ` αw.w : A} . A)→ B
var −−−
∆, x : {n : A ` n : A} . A ` (αx .y)[y ← u] : ({ ` αw.w : A} . A)→ B

cop −−
∆, z : A, x : { ` κn.n : A} . A ` κz.(αx .y)[y ← u] : ({ ` αw.w : A} . A)→ B

app −−
∆, z : A, x : { ` κn.n : A} . A ` (κz.(αx .y)[y ← u]) (αw.w) : B

sub −−−
∆, z : A ` ((κz.(αx .y)[y ← u]) (αw.w))[x ← κn.n] : B

Notice that the structure of the communication operators forces the typing process to
build a derivation where the assumption z : A is moved to the appropriate judgement,
concerning x, before this assumption on x is itself moved to type the argument (αw.w).
The typing derivation where the assumption on z is first moved into the context of the
argument and then moved inside the judgement for x is obtained by considering the
variant of the initial term where, in the body of the function, αx appears above κz.

Despite its specificities, the Nc type system has properties similar to other nested
type systems, and in particular, the typing process is terminating, as can be shown
by defining an appropriate measure on typing structures, following the same scheme
as in Nx and Ns. There is still a mismatch between terms and derivations, but one
derivation is associated to only one λc-term.

The correspondence between the λc-calculus and the JD∪ {u} system lies in
the matching between reduction rules in λc and rewriting steps used in the detour
elimination procedure used in JD∪ {u}. As in the systems described in Chapter 5,
we list the reduction rules of −→λc and observe how all the rewritings on a term
correspond to rewritings on its typing derivation, and most cases are the same as
in Ns or Nr. Note that in this setting, the ape rule cannot receive assumptions in
the judgement it creates, so that instances of the com rule will stack upon it when
it is permuted upwards, and we this β-redex is turned into a cut, the com instances
will be stacked as well, although they can be removed later. We list the new cases:

242 6 — Nested Typing and Extended λ-calculi242 6 — Nested Typing and Extended λ-calculi242 6 — Nested Typing and Extended λ-calculi

1. The reduction rule (t v)[x ← u] −→apm t[x ← u] v reflects the exchange of
a cut with an implication elimination, so that the derivation:

ξ{Γ, x : {U } . B ` t : ({ ` v : C } . C)→ A}
ape −−−

ξ{Γ, x : {U } . B ` t v : A}
D

ξ{Γ, x : {∆ ` v : B } . B ` t v : A}
sub −−

ξ{Γ,∆ ` (t v)[x ← u] : A}

is turned in the following derivation:

ξ{Γ, x : {U } . B ` t : ({ ` v : C } . C)→ A}
D

ξ{Γ, x : {∆ ` u : B } . B ` t : ({ ` v : C } . C)→ A}
sub −−−

ξ{Γ,∆ ` t[x ← u] : ({ ` v : C } . C)→ A}
ape −−−

ξ{Γ,∆ ` t[x ← u] v : A}

2. The reduction rule (αy.t)[x ← u]−→get αy.t[x ← u] corresponds to the cut
permuted above a switch moving some structure — not the one introduced
by the cut — inside a conditional type or inside another structure, so that in
the first case, the following derivation:

ξ{Γ ` t : ({Ψ, x : {U } . A, z : B ` v : E } . D)→ C}
com −−

ξ{Γ, y : B ` αy.t : ({Ψ, x : {U } . A ` αz.v : E } . D)→ C}
D

ξ{Γ, y : B ` αy.t : ({Ψ, x : {∆ ` u : A} . A ` αz.v : E } . D)→ C}
sub −−

ξ{Γ, y : B ` (αy.t) : ({Ψ,∆ ` (αz.v)[x ← u] : E } . D)→ C}

is turned into the derivation:

ξ{Γ ` t : ({Ψ, x : {U } . A, z : B ` v : E } . D)→ C}
D

ξ{Γ ` t : ({Ψ, x : {∆ ` u : A} . A, z : B ` v : E } . D)→ C}
sub −−−

ξ{Γ ` t : ({Ψ,∆, z : B ` v[x ← u] : E } . D)→ C}
com −−

ξ{Γ, y : B ` αy.t : ({Ψ,∆ ` αz.v[x ← u] : E } . D)→ C}

and in the second case, the derivation:

ξ{Γ, w : {Ψ, x : {U } . A, z : B ` v : E } . D ` t : C}
cop −−−

ξ{Γ, y : B, w : {Ψ, x : {U } . A ` αz.v : E } . D ` αy.t : C}
D

ξ{Γ, y : B, w : {Ψ, x : {∆ ` u : A} . A ` αz.v : E } . D ` αy.t : C}
sub −−

ξ{Γ, y : B, w : {Ψ,∆ ` (αz.v)[x ← u] : E } . D ` (αy.t) : C}

4 — Reduction in the λc-calculus 2434 — Reduction in the λc-calculus 2434 — Reduction in the λc-calculus 243

is turned into the derivation:

ξ{Γ, w : {Ψ, x : {U } . A, z : B ` v : E } . D ` t : C}
D

ξ{Γ, w : {Ψ, x : {∆ ` u : A} . A, z : B ` v : E } . D ` t : C}
sub −−−

ξ{Γ, w : {Ψ,∆, z : B ` v[x ← u] : E } . D ` t : C}
cop −−−

ξ{Γ, y : B, w : {Ψ,∆ ` αz.v[x ← u] : E } . D ` αy.t : C}

3. The reduction rule (αy.t)[x ← u] −→snd αy.t[x ← u] corresponds to the
the other configuration of a cut permuted above an unrelated switch moving
a structure inside inside a conditional type or inside another structure, so
that in the first case, the following derivation:

ξ{Γ, x : {U } . A ` t : ({Ψ, z : B ` v : E } . D)→ C}
com −−

ξ{Γ, y : B, x : {U } . A ` αy.t : ({Ψ ` αz.v : E } . D)→ C}
D

ξ{Γ, y : B, x : {∆ ` u : A} . A ` αy.t : ({Ψ ` αz.v : E } . D)→ C}
sub −−

ξ{Γ, y : B,∆ ` (αy.t)[x ← u] : ({Ψ ` αz.v : E } . D)→ C}

is turned into the derivation:

ξ{Γ, x : {U } . A ` t : ({Ψ, z : B ` v : E } . D)→ C}
D

ξ{Γ, x : {∆ ` u : A} . A ` t : ({Ψ, z : B ` v : E } . D)→ C}
sub −−−

ξ{Γ,∆ ` t[x ← u] : ({Ψ, z : B ` v : E } . D)→ C}
com −−

ξ{Γ, y : B,∆ ` αy.t[x ← u] : ({Ψ ` αz.v : E } . D)→ C}

and in the second case, the derivation:

ξ{Γ, x : {U } . A, w : {Ψ, z : B ` v : E } . D ` t : C}
cop −−−

ξ{Γ, y : B, x : {U } . A, w : {Ψ ` αz.v : E } . D ` αy.t : C}
D

ξ{Γ, y : B, x : {∆ ` u : A} . A, w : {Ψ ` αz.v : E } . D ` αy.t : C}
sub −−

ξ{Γ, y : B,∆, w : {Ψ ` αz.v : E } . D ` (αy.t)[x ← u] : C}

is turned into the derivation:

ξ{Γ, x : {U } . A, w : {Ψ, z : B ` v : E } . D ` t : C}
D

ξ{Γ, x : {∆ ` u : A} . A, {Ψ, z : B ` v : E } . D ` t : C}
sub −−

ξ{Γ,∆, w : {Ψ, z : B ` v : E } . D ` t[x ← u] : C}
cop −−−

ξ{Γ, y : B,∆, w : {Ψ ` αz.v : E } . D ` αy.t[x ← u] : C}

Finally the principal cases involving the switch rules correspond to the case of the
communication rules, and in each case this just a linear permutation of a cut above
a switch moving this cut.

244 6 — Nested Typing and Extended λ-calculi244 6 — Nested Typing and Extended λ-calculi244 6 — Nested Typing and Extended λ-calculi

4. The reduction π{(αx .t)[x ← u]} (αy.v) −→com π{αiφ.t} (αiφ.v[x ← u]) is
the reflection of the exchange of a cut with a switch, so that the derivation:

ξ{Γ ` t : ({Ψ, y : {U } . A ` v : B } . C)→ D}
com −−

ξ{Γ, x : {U } . A ` αx .t : ({Ψ ` αy.v : B } . C)→ D}
D

ξ{Γ, x : {∆ ` u : A} . A ` αx .t : ({Ψ ` αy.v : B } . C)→ D}
sub −−

ξ{Γ,∆ ` (αx .t)[x ← u] : ({Ψ ` αy.v : B } . C)→ D}

is turned in the following derivation:

ξ{Γ ` t : ({Ψ, y : {U } . A ` v : B } . C)→ D}
D

ξ{Γ ` t : ({Ψ, x : {∆ ` u : A} . A ` v : B } . C)→ D}
sub −−−

ξ{Γ ` t : ({Ψ,∆ ` v[x ← u] : B } . C)→ D}
com∗ ===

ξ{Γ,∆ ` αiφ.t : ({Ψ ` αiφ.v[x ← u] : B } . C)→ D}

5. The rule ~π{(αx .t)[x ← u]}[z← αy.v]−→cop ~π{αiφ.t}[z← αiφ.v[x ← u]]
is the reflection of the exchange of a cut with an instance of the other form
of switch, so that the derivation:

ξ{Γ, z : {Ψ, y : {U } . A ` v : B } . C ` t : D}
cop −−−

ξ{Γ, x : {U } . A, z : {Ψ ` αy.v : B } . C ` αx .t : D}
D

ξ{Γ, x : {∆ ` u : A} . A, z : {Ψ ` αy.v : B } . C ` αx .t : D}
sub −−−

ξ{Γ,∆, z : {Ψ ` αy.v : B } . C ` (αx .t)[x ← u] : D}

is turned in the following derivation:

ξ{Γ, z : {Ψ, y : {U } . A ` v : B } . C ` t : D}
D

ξ{Γ, z : {Ψ, x : {∆ ` u : A} . A ` v : B } . C ` t : D}
sub −−

ξ{Γ, z : {Ψ,∆ ` v[x ← u] : B } . C ` t : D}
cop∗ ===

ξ{Γ,∆, z : {Ψ ` αiφ.v[x ← u] : B } . C ` αiφ.t : D}

6. The rule (αz.t)[x ← αy.u]−→opn t[x ← u{z/y}] reflects the assimilation of
a switch instance into a cut, when this switch moves another structure into
the structure introduced by the cut, so that the derivation:

ξ{Γ, x : {Ψ, y : {U } . B ` u : A} . A ` t : C}
cop −−

ξ{Γ, z : {U } . B, x : {Ψ ` αy.u : A} . A ` αz.t : C}
D

ξ{Γ, z : {U } . B, x : {∆ ` αy.u : A} . A ` αz.t : C}
sub −−

ξ{Γ, z : {U } . B,∆ ` (αz.t)[x ← αy.u] : C}

4 — Reduction in the λc-calculus 2454 — Reduction in the λc-calculus 2454 — Reduction in the λc-calculus 245

is turned in the following derivation:

ξ{Γ, x : {Ψ, z : {U } . B ` u{z/y} : A} . A ` t : C}
D

ξ{Γ, x : {∆, z : {U } . B ` u{z/y} : A} . A ` t : C}
sub −−−

ξ{Γ, z : {U } . B,∆ ` t[x ← u{z/y}] : C}

In the λc-calculus, the composition of explicit substitution is performed through
the cop rule, which was described as a non-trivial permutation, or with the cmp
rule, which was a trivial permutation. The exchange of two substitutions, obtained
by the equation ≡e corresponds to another trivial permutation, where unrelated
cuts are moved one above the other. Finally, the equations≡g and≡s correspond to
trivial permutations between two instances of the same kind of switch rule, and ≡i
and ≡r to the trivial permutation of an implication introduction with both kinds of
switches. The correspondence between reduction in λc and detour elimination in
JD∪ {u} described in this case analysis and in Chapter 5 leads us to the conclusion
that if a λc-term admits a typing derivation, there exists a strategy for reducing it
into a normal form.

Theorem 4.6 (Subject reduction). If Γ ` t : A and t −→λc u then Γ ` u : A.

Proof. This result can be obtained by inspection of the rewriting cases shown above,
since each reduction rule in the λc-calculus corresponds to a case of moving a cut
above another rule instance — except the B, rule which is the transformation of an
introduction and elimination pair in a cut.

Theorem 4.7 (Normalisation). For any λc-term t, if Γ ` t : A there is a λc-term u
such that we have t −→∗λc u and u is a normal form.

Proof. This immediately follows from the termination of the procedure for detour
elimination in Chapter 4 and Theorem 4.6, since any reduction step corresponds to
a detour elimination step applied in the typing derivation. Moreover, by definition,
when a typing derivation is normal, we know that the corresponding term contains
no explicit substitution and no β-redex.

This result is rather weak, due to the treatment of channel names in λc and in
the type system Nc, and in general because of the lack of good properties of the
whole set of untyped λc-terms. Studying further the kind of guarantees offered by
typing might offer a more satisfying situation, for example if typing can be proved
to ensure reducibility — despite non-confluence, which would in addition require
conditions on the use of channel names.

246 6 — Nested Typing and Extended λ-calculi246 6 — Nested Typing and Extended λ-calculi246 6 — Nested Typing and Extended λ-calculi

PART 4

Nested Proof Search
as Computation

Chapter 7

Nested Focusing
in Linear Logic

In this chapter, we consider the transfer of the focusing technique from the LL
sequent calculus for linear logic where it has its roots, to the setting of the calculus
of structures, with the double purpose of proving that focusing is not essentially a
feature of the sequent calculus formalism, while exploring the possibility of using a
nested deduction system to perform structured proof search. Indeed, there are two
sides to the focusing concept: it is a normal form — and the calculus of structures
offers a versatile notion of proof supporting many interesting normal forms — but
also a technique for efficient proof search — on this point, the calculus of structures
is a priori problematic, because of the huge search space it induces.

In order to define a notion of focusing that would follow the principles of nested
deduction, we need to be able to observe the same decompositions in a focused
calculus of structures as in an unfocused one, and in particular we need to preserve
the switch decomposition. The approach used here is to transfer in the calculus of
structures the essence of the focusing notion: the respect of the polarities. We show
here how the introduction of explicit polarity shifts in a system for linear logic
leads to the observation that not all rules respect the polarity of their conclusion.
Then, a modification of these rules induces a system having a property similar to
the subformula property, but ensuring that no rule introduces new polarity shifts
from conclusion to premise — this can be used as a characterisation of the notion
of focused proof in the calculus of structures, by analogy with analytic proofs.

Since our goal is also to make proof search reasonable in the nested deduction
setting, we start with the usual system for linear logic in the calculus of structures
and remove all equations, introducing the necessary rules to perform the deduction
steps that were previously implicit. Then, we refine this system in several steps to
incorporate formulas with explicit polarities and use only inference rules respecting
the polarities in its conclusive formula. Finally, we describe a focused calculus of
structures, as well as a grouped system using synthetic positive rules. The grouped
system is then used to provide a surprisingly simple proof of completeness of the
focusing normal form, and we also discuss the relation of the focused calculus of
structures to the standard focused sequent calculus for linear logic.

250 7 — Nested Focusing in Linear Logic250 7 — Nested Focusing in Linear Logic250 7 — Nested Focusing in Linear Logic

1 Linear Logic in the Calculus of Structures

As it was mentioned in Chapter 2, the standard proof system for linear logic [Gir87]
is given in the form of a sequent calculus, that can be derived from any variant of
the sequent calculus LK by a careful analysis of structural rules and polarities. The
definition of a proof system implementing full linear logic under the deep inference
methodology was done in the calculus of structures [Str03a], the system being
called SLS, and this is our starting point.

There are several ways of defining the inference rules for linear logic, leading
to variants of the SLS system. Here, we have particular needs to refine the system
into its focused form, so that we will choose the shape of the rules accordingly. To
keep notations simple, we overload the name SLS to denote our own variant1.

1.1 The Symmetric Linear System SLS

The level of formulas for linear logic in the calculus of structures is exactly the same
as in the sequent calculus. We assume given a countable set of atoms, denoted by
letters such as a, b and c. Then, we need another set of negated atoms, isomorphic
to the first one, and we denote by a, b and c the negated atoms corresponding to
atoms a, b and c. We also have the usual linear disjunctions O and ⊕, the linear
conjunctions ⊗ and N, and the corresponding units ⊥ and 0, and 1 and >. Finally,
we have the exponential modalities ! and ? to control infinite behaviour.

Definition 1.1. The formulas of linear logic are defined by the following grammar:

A, B ::= a | a | ⊥ | 1 | AO B | A⊗ B | > | 0 | AN B | A⊕ B | ?A | !A

and structures of linear logic are defined as the equivalence classes of formulas through
the congruence induced by the equations shown in Figure 1.

The role of the congruence relation, denoted by ≡, is to keep notations simple
and proofs readable, since we can avoid defining the corresponding inference rules
— this is similar to the use of mutisets in the sequent calculus. Moreover, negation
in linear logic is involutive, and we can push it to the atoms, where it is expressed
through the two isomorphic sets of atoms described above, by De Morgan’s laws of
dualities between connectives.

Definition 1.2. Linear negation is defined on structures by the following equations:

A⊥⊥ = A a⊥ = a ⊥⊥ = 1 (AO B)⊥ = A⊥ ⊗ B⊥

(?A)⊥ = !A⊥ 0⊥ = > (A⊕ B)⊥ = A⊥N B⊥

Although dualities are important, the use of the linear negation operator is not
often needed, as only atoms must be marked as negated. Notice that the equations
shown above define negation for all connectives and units, because of involutivity
of the negation. For example, we have 1⊥ = ⊥⊥⊥ and ⊥⊥⊥ = ⊥, therefore 1⊥ = ⊥,
and (A⊥ ⊗ B⊥)⊥ = (AO B)⊥⊥, so that (A⊗ B)⊥ = A⊥O B⊥.

1This variant differs on the design of some inference rules, not essentially in the general design, but
we will prove soundness and completeness from the sequent calculus, for the sake of clarity.

1 — Linear Logic in the Calculus of Structures 2511 — Linear Logic in the Calculus of Structures 2511 — Linear Logic in the Calculus of Structures 251

AO B ≡ B O A A⊗ B ≡ B⊗ A
AN B ≡ B N A A⊕ B ≡ B⊕ A

AO (B O C) ≡ (AO B)O C A⊗ (B⊗ C) ≡ (A⊗ B)⊗ C
AN (B N C) ≡ (AN B)N C A⊕ (B⊕ C) ≡ (A⊕ B)⊕ C

⊥O A ≡ A 1⊗ A ≡ A
>N A ≡ A 0⊕ A ≡ A

?⊥ ≡ ⊥ !1 ≡ 1
1N 1 ≡ 1 ⊥⊕⊥ ≡ ⊥

Figure 1: Equations for linear structures

In order to have the ability to apply inference rules deep inside structures, we
define contexts as usual, by indicating where the hole is within a structure. There is
no restriction here where this hole can be, unlike the intuitionistic system presented
in Chapter 4, since we are working with classical linear logic.

Definition 1.3. The contexts of linear logic are structures with a hole { }, meant to
be filled by another structure and defined by the following grammar:

ξ ::= { } | ξO A | ξ⊗ A | ξN A | ξ⊕ A | ?ξ | !ξ

The inference rules for SLS are given in Figure 2, where no context is explicity
written, but all of them can be applied deep inside a structure. Both the basic down
fragment LS and the up fragment are shown, with the switch rule s being self-dual,
so that it belongs to both fragments. As usual, the most important rule from the
up fragment is i↑, the equivalent of the cut rule in the sequent calculus. It can be
used to encode other up rules, using their dual down rules. Notice that a proof of
some structure A in this system is a derivation from 1 to A — the additive truth unit
> is not considered a valid final premise, but it can be deduced from 1 using the
u↓ rule. The inference rules for this system are almost the same as the ones of the
original system [Str03a], with some minor differences:

• we use explicity the inference rule a↓ to handle erasures induced by >, since
we intend not to use the identity rule i↓ on units — this also forces us to use
the u↓ rule to remove additive units.

• additive contraction is built inside the y↓ rule for N, rather than attached to
the ⊕ connective so that the interaction between additive connectives is not
a primitive operation:

ξ{(AO C)N (B O D)}
================================
ξ{(A⊕ B)O (C N D)}

=

ξ{(AO C)N (B O D)}
o↓ −−−
ξ{(AO C)N ((A⊕ B)O D)}

o↓ −−−
ξ{((A⊕ B)O C)N ((A⊕ B)O D)}

y↓ −−−
ξ{(A⊕ B)O (C N D)}

252 7 — Nested Focusing in Linear Logic252 7 — Nested Focusing in Linear Logic252 7 — Nested Focusing in Linear Logic

Multiplicatives

1
i↓ −−−−−−−−−−

A⊥O A

(AO B)⊗ C
s −−−−−−−−−−−−−−−−−

AO (B⊗ C)

A⊥ ⊗ A
i↑ −−−−−−−−−
⊥

Additives

>
a↓ −−−−−−−−
>O A

A
o↓ −−−−−−−−

A⊕ B

AN B
o↑ −−−−−−−−

A

0⊗ A
a↑ −−−−−−−

0

(AO C)N (B O C)
y↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−

(AN B)O C

1
u↓ −−−
>

0
u↑ −−−
⊥

(A⊕ C)⊗ B
y↑ −−−−−−−−−−−−−−−−−−−−−−−−−−
(A⊗ B)⊕ (C ⊗ B)

Exponentials

?AO ?A
c↓ −−−−−−−−−−−

?A

⊥
w↓ −−−

?A

!A
w↑ −−−

1

!A
c↑ −−−−−−−−−−

!A⊗ !A

!(?AO B)
p↓ −−−−−−−−−−−−−

?AO !B

A
d↓ −−−

?A

!A
d↑ −−−

A

!A⊗ ?B
p↑ −−−−−−−−−−−−−

?(!A⊗ B)

Figure 2: Inference rules for system SLS

• the thinning rule t↓ is replaced with the more standard rule o↓ to handle the
⊕ connective, but this does not affect the shape of the proofs, since the 0 unit
can only be removed by the equation 0⊕ A≡ A.

• exponential contraction is separated from dereliction, so that c has two copies
of ?A as a premise and we need d↓ to obtain a copy of A without a modality:

ξ{?AO A}
==============
ξ{?A}

=

ξ{?AO A}
d↓ −−−−−−−−−−−−−−−−
ξ{?AO ?A}

c↓ −−−−−−−−−−−−−−−−
ξ{?A}

• we also separate dereliction from the promotion rule, so that the ? modality
appears in the premise of the p↓ rule, and we can obtain the other form of
promition using the d↓ rule:

ξ{!(AO B)}
=================
ξ{?AO !B}

=

ξ{!(AO B)}
d↓ −−−−−−−−−−−−−−−−−−−
ξ{!(?AO B)}

p↓ −−−−−−−−−−−−−−−−−−−
ξ{?AO !B}

• symmetrically, the differences on up rules are the same as the differences we
have described for down rules.

1 — Linear Logic in the Calculus of Structures 2531 — Linear Logic in the Calculus of Structures 2531 — Linear Logic in the Calculus of Structures 253

Remark 1.4. The inference rules of the SLS system are divided into three categories,
multiplicatives, additives and exponentials, corresponding to the three layers of linear
logic, but they are also divided into the down fragment, shown on the left, and the up
fragment, shown on the right, where s in the middle belongs to both.

This system is the basis for all other systems of linear logic we use here. It has
the same properties as the original system, and in particular, completeness is not
lost when restricting the identity i↓ and cut i↑ rules to their atomic form.

Proposition 1.5. Any instance of the i↓ rule can be replaced by a derivation in LS

with same premise and conclusion, using instances of i↓ only in its atomic form ai↓.

Proof. By induction on the structure A affected by a general instance of the identity
rule, with premise ξ{1} and conclusion ξ{A⊥ O A}. If A is an atom, then we are
done. Otherwise, we use a case analysis on the shape of A, and build a derivation
using identity instances on smaller structures, and other rules depending on the
toplevel connective of A — for example, for O or ⊗ we use a switch s, for N or ⊕
we use the y↓ and o↓ rules. In the cases where A is some unit, we build a derivation
directly with the rules a↓ and u↓, and the congruence.

The set of equations provided to define the congruence ≡ is not minimal, but it
was chosen to avoid writing down obvious equivalence in inference steps. We will
see later which equations are required to have a complete system.

Remark 1.6. Using a congruence implicitly on formulas is not a problem here, because
the equations we use correspond to linear equivalences. A sequence of applications of
inference rules can also be made more explicit by using the fake rule ≡, which can be
instantiated with premise A and conclusion B whenever A≡ B. Moreover, a structure
always has a normal form [Str03a]— for example, AO ?⊥ can be written A.

1.2 Correspondence to the Sequent Calculus

In order to get a better insight on the way the SLS system compares to the standard
sequent calculus for linear logic, we will now show soundness and completeness of
SLS with respect to the LL sequent calculus shown in Figure 3. This is done using
a translation in each direction, between sequents and structures, and we can then
build from any proof in one system a corresponding proof in the other system. For
soundness, the translation from structures to sequent is trivial.

Theorem 1.7 (Soundness of SLS). If some structure A is provable in SLS, then the
sequent ` A is provable in the LL∪ {cut} sequent calculus.

Proof. By induction on the length of a given proof P of A in SLS. In the base case,
the proof P is reduced to the structure 1, we use an instance of the 1 rule, and we
are done. In the general case, we consider the bottommost instance r in P :

−

ξ{C}
r −−−−−−−
ξ{B}

254 7 — Nested Focusing in Linear Logic254 7 — Nested Focusing in Linear Logic254 7 — Nested Focusing in Linear Logic

ax −−−−−−−−−−
` A⊥, A

` Γ, A ` A⊥,∆
cut −−−−−−−−−−−−−−−−−−−−−−−

` Γ,∆

` Γ
⊥ −−−−−−−−−
` ⊥,Γ

` A, B,Γ
O −−−−−−−−−−−−−−
` AO B,Γ

` Γ, A `∆, B
⊗ −−−−−−−−−−−−−−−−−−−−−
` Γ,∆, A⊗ B

1 −−−−
` 1

` Γ, A
⊕L −−−−−−−−−−−−−−` Γ, A⊕ B

` Γ, B
⊕R −−−−−−−−−−−−−−` Γ, A⊕ B

` A,Γ ` B,Γ
N −−−−−−−−−−−−−−−−−−−−
` AN B,Γ

> −−−−−−−−−
` >,Γ

` A,Γ
derl −−−−−−−−−−
` ?A,Γ

` ?Γ, A
prom −−−−−−−−−−−

` ?Γ, !A

` ?A, ?A,Γ
cont −−−−−−−−−−−−−−−

` ?A,Γ

` Γ
weak −−−−−−−−−−

` ?A,Γ

Figure 3: Inference rules for system LL∪ {cut}

and we must show that the linear implication ξ{C}−◦ξ{B} holds in the LL∪ {cut}
sequent calculus, when written as the equivalent formula ξ{C}⊥ O ξ{B}. The first
step is to show that the sequent ` C⊥, B is provable in LL∪ {cut}, by using a case
analysis on the r instance, and building the corresponding proof. In each case, we
can easily build such a proof. Then, by straightforward induction on the context ξ,
we show that this proof can be transformed into a proof Π1 of ` ξ{C}⊥,ξ{B}. We
conclude by producing a proof Π2 of ` ξ{C} by induction hypothesis, and use the
two proofs to build the expected proof of ` ξ{B} in LL∪ {cut}:

��
��

��
??????Π2

` ξ{C}
��

��
��

�???????
Π1

` ξ{C}⊥,ξ{B}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` ξ{B}

Remark 1.8. The translation from structures to sequents relies on the extraction of
a formula from a structure, which is of course always possible. However, the formula
used as translation is not unique, because of the many equations of the congruence. A
more precise statement for soundness would thus be that any sequent ` A obtained by
translation is provable. Fortunately, this is obvious because equations are equivalences
in linear logic, and we prove completeness of SLS below, so that if A ≡ B and ` A is
provable, then ` B is provable.

The translation in the other direction, needed to prove completeness of SLS, is
not direct as the one for soundness. But sequents in LL∪ {cut} are simple objects,
so that this boils down to the replacement of commas with O connectives.

Definition 1.9. The translation ¹·ºP from linear sequents into linear structures is
defined recursively as follows:

¹` AºP = A and ¹` A,ΓºP = AO¹ΓºP

1 — Linear Logic in the Calculus of Structures 2551 — Linear Logic in the Calculus of Structures 2551 — Linear Logic in the Calculus of Structures 255

We can now prove the completeness theorem, by translation from the sequent
calculus. The proof is a good illustration of the inference mechanism in SLS, and in
particular it shows how nesting replaces the branching abilities of sequent calculi.

Theorem 1.10 (Completeness of SLS). If a sequent ` Γ is provable in the LL∪ {cut}
sequent calculus, then the structure ¹ΓºP is provable in SLS.

Proof. By induction on a proof Π of the sequent ` Γ in LL∪ {cut}, and case analysis
on the bottommost rule instance r inΠ, we build a proofP of the translation of this
sequent in SLS. This follows a simple scheme, where the translation of branches
of the sequent calculus are composed by the connective corresponding to the rule
used, the congruence is used to handle most units, and antecedents are distributed
using the switch and duplication rules. In the base case, Π is an axiomatic instance,
and the result is immediate:

ax −−−−−−−−−−
` A⊥, A

−→
1

i↓ −−−−−−−−−−
A⊥O A

and > −−−−−−−−−−
` >,∆

−→
1

u↓ −−−
>

a↓ −−−−−−−−−−−−−−−−
>O¹∆ºP

and an instance of the 1 rule is simply translated into the structure 1, which in itself
is a proof. In the general case, the induction hypothesis needs to be used, as shown
in the following example:

��
��

�?????ΠA

`∆, A
��

��
��

??????ΠB

`Ψ, B
⊗ −−−−−−−−−−−−−−−−−−−−−−−−−−
`∆,Ψ, A⊗ B

−→

1
DA

¹∆ºP O A
≡ −−−−−−−−−−−−−−−−−−−−−−−−
¹∆ºP O (A⊗ 1)

DB

¹∆ºP O (A⊗ (¹ΨºP O B))
s −−−
¹∆ºP O¹ΨºP O (A⊗ B)

where DA and DB are obtained by induction hypothesis from the proofs ΠA and ΠB
respectively, and composed by a ⊗ using the deep inference methodology, which
allows to plug a proof in a context. The cases of other rules for multiplicative and
additive connectives and units are similar, and rules for exponentials are directly
translated, since none of them is branching. The identity rule ax is also immediately
translated using the i↓ rule. Symmetrically, the cut rule cut is translated by the i↑
rule, and this case is almost the same as the ⊗ case:

��
��

�?????Π1

`∆, A
��

��
��

??????Π2

` A⊥,Ψ
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−

`∆,Ψ

−→

1
D1

¹∆ºP O A
≡ −−−−−−−−−−−−−−−−−−−−−−−−
¹∆ºP O (1⊗ A)

D2

¹∆ºP O ((¹ΨºP O A⊥)⊗ A)
s −−−
¹∆ºP O¹ΨºP O (A⊥ ⊗ A)

i↑ −−
¹∆ºP O¹ΨºP

This procedure allows us to build the required proof of ¹ΓºP, although all proofs
built this way have a particular shape, reflecting the shape of the original proof tree
in the sequent calculus.

256 7 — Nested Focusing in Linear Logic256 7 — Nested Focusing in Linear Logic256 7 — Nested Focusing in Linear Logic

Remark 1.11. None of the rules of the up fragment is needed to prove completeness,
except the cut rule i↑, so that they are admissible in LS∪ {i↑}. Moreover, the i↑ rule
is used only to translate the cut rule cut of the sequent calculus. Therefore, by using
the cut elimination result of the LL∪ {cut} calculus, we can deduce the completeness
of LS. This is an external cut admissibility result for SLS.

1.3 From Equations to Inference Rules

The SLS system we have described allows for a natural representation of proofs of
linear logic, comparable to the LL∪ {cut} sequent calculus — with some benefits,
since it is made simpler by the use of a congruence and has for example a functorial
promotion rule, which is local in its application. However, we are at least partially
concerned here with the use of this system for proof search, and therefore we need
to make the proof construction process as explicit as possible. In the deep inference
methodology, proof search is performed by rewriting of structures and not simple
formulas, so that it must take into account the congruence.

To stay close to the proof search perspective, we define a variant of SLS where
all equations are removed, so that structures are plain formulas, and inference rules
are added to keep completeness by performing operations that were handled by the
congruence. The inference rules of the system, called SLSE, are shown in Figure 4
— it is mostly a superset of the rules of SLS. The inference rules introduced in SLSE
are e↓, b↓, j↓, α↓, σ↓ and v↓, as well as their duals in the up fragment. However,
this is not the only difference with SLS, since some rules have been modified, in
comparison of the original system:

• There are two switch rules, called sL and sR which are self-dual and have been
separated because there is no rule for the commutativity of the ⊗ connective.

• The rule o↓ handling ⊕ connectives is splitted into the two rules oL↓ and oR↓,
since there is no rule for the commutativity of ⊕— the same change is done
in the up fragment, on the o↑ rule.

In order to make sure that the rules introduced to replace equations are enough
to retain completeness of the system, we prove that all equations used in SLS can
be simulated by inference rules that are admissible in SLSE.

Definition 1.12. An equation A≡ B is said to be admissible in a proof system if both
the rule with premise A and conclusion B and its dual, are admissible in this system.

For each equation used in SLS, we now prove that the two corresponding rules
are admissible in LSE, by showing that if there is a proof of one formula, there is
also a proof of the other formula. This means we have to prove two implications for
each equation2 used in SLS, but some of them are already implemented as rules in
LSE, and most of the others are routine inductions on the height of a given proof.
Unless stated otherwise, the following proofs can implicitly use several times their
induction hypothesis, as the transformation preserves the height of proofs.

2Compared to the number of rules in the SLS system, this is quite a lot to verify, but the high number
of inference rules to use or prove admissible in LSE is the price for being explicit, and it is well-known
that » the devil is in the detail «.

1 — Linear Logic in the Calculus of Structures 2571 — Linear Logic in the Calculus of Structures 2571 — Linear Logic in the Calculus of Structures 257

Multiplicatives

1
j↓ −−−−−−−
1⊗ 1

A
b↓ −−−−−−−−
⊥O A

1
i↓ −−−−−−−−−−

A⊥O A

C ⊗ (B O A)
sL −−−−−−−−−−−−−−−−−AO (B⊗ C)

A⊥ ⊗ A
i↑ −−−−−−−−−
⊥

1⊗ A
b↑ −−−−−−−

A

⊥O⊥
j↑ −−−−−−−−−
⊥

(AO B)O C
α↓ −−−−−−−−−−−−−−−−−

AO (B O C)

B O A
σ↓ −−−−−−−−

AO B

B⊗ (AO C)
sR −−−−−−−−−−−−−−−−−AO (B⊗ C)

B⊗ A
σ↑ −−−−−−−−

A⊗ B

A⊗ (B⊗ C)
α↑ −−−−−−−−−−−−−−−−−
(A⊗ B)⊗ C

Additives

>
a↓ −−−−−−−−
>O A

1
v↓ −−−−−−−

1N 1

⊥⊕⊥
v↑ −−−−−−−−−

⊥
0⊗ A

a↑ −−−−−−−
0

(AO C)N (B O C)
y↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−

(AN B)O C

1
u↓ −−−
>

0
u↑ −−−
⊥

(A⊕ C)⊗ (B N C)
y↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−

(A⊗ B)⊕ C

A
oL↓ −−−−−−−−A⊕ B

B
oR↓ −−−−−−−−A⊕ B

AN B
oR↑ −−−−−−−−B

AN B
oL↑ −−−−−−−−A

Exponentials

1
e↓ −−−

!1

?AO ?A
c↓ −−−−−−−−−−−

?A

⊥
w↓ −−−

?A

!A
w↑ −−−

1

!A
c↑ −−−−−−−−−−

!A⊗ !A

?⊥
e↑ −−−−
⊥

!(?AO B)
p↓ −−−−−−−−−−−−−

?AO !B

A
d↓ −−−

?A

!A
d↑ −−−

A

!A⊗ ?B
p↑ −−−−−−−−−−−−−

?(!A⊗ B)

Figure 4: Inference rules for system SLSE

Lemma 1.13. The equation AN B ≡ B N A is admissible in LSE.

Proof. The two rules corresponding to this equation are symmetric, so that we only
have to prove that if there is a proof of some structure ξ{AN B} in LSE, then there
is also a proof of ξ{B N A}. We proceed by induction on the height of some proof
P of ξ{AN B}, using a case analysis on its bottommost rule instance r. In the base
case, r is a v↓ instance and we are done. In the general case, if the structure ANB is
not modified or if changes happen only inside A or B, we rewrite ANB into BNA in
this instance and we conclude by induction hypothesis on the proof above. There
is only one other case, when r is some instance of y↓ applied on (ANB)OC . In this
situation, we can rewrite (AO C)N (B O C) into (B O C)N (AO C) and conclude by
induction hypothesis.

258 7 — Nested Focusing in Linear Logic258 7 — Nested Focusing in Linear Logic258 7 — Nested Focusing in Linear Logic

Lemma 1.14. The equation AO (B O C)≡ (AO B)O C is admissible in LSE.

Proof. One of the rules corresponding to this equation is already in the LSE system,
it is the α↓ rule. The other rule can be obtained from α↓ by commutativity, so that
it is not only admissible but derivable, as follows:

ξ{AO (B O C)}
σ↓∗ =======================

ξ{(C O B)O A}
α↓ −−−−−−−−−−−−−−−−−−−−−−−
ξ{C O (B O A)}

σ↓∗ =======================
ξ{(AO B)O C}

Lemma 1.15. The equation ⊥O A≡ A is admissible in LSE.

Proof. The b↓ rule in LSE corresponds to one of the directions of this equation.
In the other direction, we need to prove that if there is a proof of ξ{⊥O A}, then
there is a proof of ξ{A}, in LSE. Again, we proceed by induction on the height of a
proof P of ξ{AO⊥} or ξ{⊥O A}. Most cases are handled by simply rewriting the
formula and using the induction hypothesis, and we are done when the structure
is erased or when the b↓ rule is encountered.

Lemma 1.16. The equation >N A≡ A is admissible in LSE.

Proof. For this equation, we need to prove that both of the corresponding rules are
admissible. Given a proof P of ξ{A} in one direction and ξ{>N A} in the other, we
use an induction on the pair (c, h) under lexicographic order, where c is the number
of y↓ and c↓ instances in P and h is the height of P . In the first direction, we can
rewrite ξ{A} as ξ{>N A} and use the induction hypothesis in most cases, when the
bottommost instance r does not affect A, or affects only substructures of A. In the
case of an interaction between A and its context, we introduce new rule instances:

ξ{C ⊗ (B O D)}
sL −−−−−−−−−−−−−−−−−−−−−−−
ξ{D O (B⊗ C)}

−→

ξ{>N (C ⊗ (B O D))}
sL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{>N (D O (B⊗ C))}

σ↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{>N ((B⊗ C)O D)}

a↓ −−−
ξ{(>O D)N ((B⊗ C)O D)}

y↓ −−−
ξ{(>N (B⊗ C))O D}

σ↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{D O (>N (B⊗ C))}

For this transformation, we are done when A is 1 and we can introduce a derivation
from 1 to >N 1 instead, formed by a u↓ instance and a v↓ instance, as follows:

ξ{1} −→
ξ{1}

v↓ −−−−−−−−−−−−−
ξ{1N 1}

u↓ −−−−−−−−−−−−−
ξ{>N 1}

In the other direction, we prove the more general result that from any given proof
of ξ{B N A} we can build a proof of ξ{A}. In the base case, both A and B are 1 and
the result is trivial. In the general case, we always use the induction hypothesis.

1 — Linear Logic in the Calculus of Structures 2591 — Linear Logic in the Calculus of Structures 2591 — Linear Logic in the Calculus of Structures 259

Lemma 1.17. The equation ?⊥≡⊥ is admissible in LSE.

Proof. One of the rules corresponding to this equation is the dereliction d↓, already
present in LSE. In the other direction, we consider a proof P of ξ{?⊥}, and show
by induction on the pair (c, h), where c is the number of y↓ and c↓ instances in
P and h is the height of P , how to build a proof of ξ{⊥}. In the base cases, the
bottommost rule instance in D is a weakening w↓ or a dereliction d↓ affecting ?⊥,
we are done. In most other cases, we use the induction hypothesis. In the case of a
promotion p↓ applied on ?⊥, Lemma 1.15 allows us to use the equation ⊥O B ≡ B
as follows:

ξ{!(?⊥O B)}
p↓ −−−−−−−−−−−−−−−−−−−−
ξ{?⊥O !B}

−→
ξ{!(⊥O B)}

≡ ==================
ξ{!B}

b↓ −−−−−−−−−−−−−−−
ξ{⊥O !B}

and the case of a contraction c↓ applied on ?⊥ is treated similarly, by replacing the
contraction with a rule corresponding to the use of Lemma 1.15.

Lemma 1.18. The equation 1N 1≡ 1 is admissible in LSE.

Proof. The v↓ rule in LSE corresponds to one direction of this equation. In the
other direction we prove that for any proof P of ξ{1 N 1}, we can build a proof
of ξ{1} using the equation >N A ≡ A, admissible by Lemma 1.16. This proof
construction is direct, as follows:

−

ξ{1N 1} −→

−

ξ{1N 1}
u↓ −−−−−−−−−−−−−−
ξ{>N 1}

≡ ==============
ξ{1}

In order to prove admissible the rest of the equations, we need another lemma,
symmetric to the admissibility of a part of the equation AO⊥ ≡ A. This is the only
part of up fragment equations — the ones shown on the right in Figure 1 — that
we need to show admissible directly, rather than through admissibility of its dual.

Lemma 1.19. If there is a proof of ξ{A} in LSE, there is also a proof of ξ{1⊗ A}.

Proof. We proceed by induction on the pair (c, h), defined as previously for a proof
D of ξ{A}, to show a stronger result: we can build a proof of ξ{A⊗ 1} and a proof
of ξ{1⊗ A} in LSE. In the base case, A is 1 and we use an instance of the j↓ rule,
for both proofs. All other cases rely just on the induction hypothesis, except those
where A interacts with its context. In such cases, we introduce a switch instance
to move the material to A, and use the other induction hypothesis — symmetric to
the current one, since the switch swaps the positions of the 1 and the A.

Now, we can use this lemma to build derivations in SLSE, involving a cut, that
are equivalent to the inference rules induced by the other equations of SLS, dual to
the equations that we have already shown admissible. The idea is that the detour
created by a pair of identity and cut instances allows to manipulate the dual of the
target formula rather than the formula itself.

260 7 — Nested Focusing in Linear Logic260 7 — Nested Focusing in Linear Logic260 7 — Nested Focusing in Linear Logic

Proposition 1.20. If an inference rule with premise A and conclusion B is admissible
in LSE, then its dual with premise B⊥ and conclusion A⊥ is admissible in LSE∪ {i↑}.

Proof. This is a standard result in deep inference, obtained by building a derivation
corresponding to the dual of the rule, using a cut and identity pair to flip its premise
and conclusion. However, in this setting, the proof is slightly more complicated. We
need to show that if there is a proof of ξ{B⊥} in LSE∪ {i↑}, there is also a proof of
ξ{A⊥} in this system. Now, by Lemma 1.19 we can build a proof D of ξ{1⊗ B⊥}
from the given proof of ξ{B⊥} and use it to build the expected proof:

ξ{1⊗ B⊥}
≡ ===============
ξ{B⊥ ⊗ 1}

i↓ −−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{B⊥ ⊗ (AO A⊥)}

sL −−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{A⊥O (A⊗ B⊥)}
===========================
ξ{A⊥O (B⊗ B⊥)}

i↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{A⊥O⊥}

≡∗ ================
ξ{A⊥}

Finally, we can reach the final conclusion, that the SLSE system is sound and
complete with respect to linear logic, since it can simulate any proof of SLS, which
is itself complete. Because these systems are almost the same, this boils down to the
ability of simulating all equations of SLS, which follows from the previous lemmas.

Theorem 1.21. For any formula A of linear logic, A is provable in SLSE if and only
if the corresponding structure A is provable in SLS.

Proof. In the first direction, the result is trivial, since from any proof of A in SLSE

we can build a proof of A in SLS by replacement of the extra rules added to simulate
equations by an application of the congruence, and adjusting the use of the sL and
sR rules — equivalent to s through the congruence — and of the oL↓ and oR↓ rules
— equivalent to o↓ by commutativity of the ⊕ connective.

In the other direction, we build a proof of A in SLSE from a proof of A in SLS by
explicitly using the ≡ rule in the given proof in SLS, and then apply Lemma 1.13,
Lemma 1.14, Lemma 1.15, Lemma 1.16, Lemma 1.17 and Lemma 1.18, as well as
Proposition 1.20 to rewrite it into a valid proof of A in SLSE.

From the viewpoint of the design of deducive systems, the SLSE system without
equations is interesting because it shows that many of the equations which are used
through the congruence present in the calculus of structures are either completely
superfluous, or could be used in only one direction. This parcimony in the design
of a system is not only useful from the viewpoint of an implementation, but also
provides more insight on the structure of proofs. This observation can be applied in
general to the calculus of structures, as systems such as SKS could be modified to
avoid using equations. Notice that this also questions the definitions of the sequent
structure in the sequent calculus, where equations simulated by the use of either
sets or multisets.

2 — Systems with Explicit Polarities 2612 — Systems with Explicit Polarities 2612 — Systems with Explicit Polarities 261

2 Systems with Explicit Polarities

The notion of polarity is an important byproduct of the fine-grained study of logical
systems induced by linear logic, such as the analysis of classical logic [Gir91] and
of the translations and computational interpretations of classical and intuitionistic
systems [Lau02], although it was already implicitly present in existing systems for
intuitionistic logic. There is a strong connection between polarities, as assigned to
the connectives and to formulas, and the properties of the corresponding inference
rules in the sequent calculus. In particular, this notion is a key to the development
of normal forms known as focused proofs in linear logic [And92], which are useful
to build proof search procedures and logic programming languages.

For this reason, we consider the systems where polarities appear explicitly at the
level of formulas, and in particular we refine the LSE system defined previously, to
follow this methodology. The introduction of polarities will be an important step in
the definition of the normal forms we are ultimately interested in.

2.1 Polarised Formulas and Calculi

The starting point in the introduction of polarities is the redefinition of formulas,
to which polarities are assigned. This creates two syntactic categories, the positive
and the negative formulas, that respect negation in the sense that the dual of some
positive formula is a negative formula, and conversely. Historically, these categories
have been defined to reflect the behaviour of the corresponding inference rules in
the sequent calculus, but one can also consider them as the only distribution such
that duality switches from one group to the other, and each group contains both a
conjuntion and a disjunction, with their respective units, at least when considering
the fragment without exponentials — the polarity of exponentials is less clear, and
this reflects the complexity of these connectives, compared to the others.

Definition 2.1. The polarised formulas of linear logic are defined in two categories,
positive formulas defined by P and negative formulas defined by N in the grammar:

P,Q ::= a | 1 | P ⊗Q | 0 | P ⊕Q | !N | N

N , M ::= a | ⊥ | N O M | > | N N M | ?P | P

Note that there are explicit shifts in this syntax, so that a positive formula can
appear within a negative one, using a shift, and the other way around — this is
not the case in LLP [Lau02], where shift is only performed by exponentials. Then,
standard formulas can easily be translated into the polarised setting.

Definition 2.2. The polarised translation bAc of a formula A of linear logic is defined
on the structure of A such that bAc= bAc+, with the following mutual inductions:

b1c+ = 1 bA⊗ Bc+ = bAc+ ⊗ bBc+
b0c+ = 0 bA⊕ Bc+ = bAc+ ⊕ bBc+
bac+ = a b!Ac+ = !bAc−

b⊥c− = ⊥ bAO Bc− = bAc−O bBc−
b>c− = > bAN Bc− = bAc−N bBc−
bac− = a b?Ac− = ?bAc+

and bAc+ = bAc− otherwise and bAc− = bAc+ otherwise

262 7 — Nested Focusing in Linear Logic262 7 — Nested Focusing in Linear Logic262 7 — Nested Focusing in Linear Logic

The other way around, the unpolarised translation dAe of a polarised formula A
is simply defined by removing all shifts and in A. Moreover, we call minimally
polarised a formula A which contains no more shifts than bdAec, or equivalently a
formula which contains no shift pair or .

The distinction between positive and negative formulas creates distinctions at
all levels of the system, and in particular this raises the question of the polarity of
the conclusion of a derivations and proofs. In the sequent calculus, the conclusion
is a sequent where the comma corresponds to O, so that it is always considered as
negative. But in the calculus of structures, we may need to plug a derivation in any
given context, so that we have to handle both cases. For the sake of simplicity, we
will consider both positive and negative derivations, but only positive proofs, using
the following manipulation of formulas.

Definition 2.3. The positivation A+ of a polarised formula A is defined as A when the
formula A is positive, and A when it is negative.

In the following, a proof of A will implicitly refer to a proof of A+. Notice that
from such a proof, a negative derivation can be built by adding a shift in front of
the toplevel structures in every rule instances. Then, the contexts need to be able
to distinguish between polarities.

Definition 2.4. A polarised context ξ is said to be positive or negative when the result
of inserting a polarised formula A in place of its hole is a valid polarised formula only
if A is positive or negative, respectively.

If the resulting formula ξ{A} is positive, the context ξ is said to be outer-positive,
and if it is negative then ξ is an outer-negative context. Usually, only homogeneous
contexts will be used — these are the ones where the hole has the same polarity as
the whole resulting formula.

Polarity of rules and connectives. Traditionally, polarities are assigned to the
connectives, and thus formulas, of the logic. However, as mentioned in Chapter 2,
the use of polarities is mainly related to the behaviour of inference rule instances,
and in particular to their permutability properties. This observation, which can be
illustrated by the ambiguous handling of polarities for exponentials, in the sequent
calculus, is even more important in the calculus of structures where the rules are
decomposed and often describe an interaction between two connectives rather than
the decomposition of a connective. For example, the switch rule:

(AO B)⊗ C
sL −−−−−−−−−−−−−−−−−AO (B⊗ C)

corresponds to the operation of context-splitting making the ⊗ rule non-invertible
in the sequent calculus, so that it is clearly a positive — or synchronous — rule, but
it involves a O, which is a negative connective. This can seem disturbing, since the
O structure is modified just as much as the ⊗ in this rewriting, but the point is that
this operation is intrinsically synchronous. Here, we avoided another disturbing
example by using the g rule for N rather than the distribution rule which makes N
interact with a ⊕ [Str03a].

2 — Systems with Explicit Polarities 2632 — Systems with Explicit Polarities 2632 — Systems with Explicit Polarities 263

Multiplicatives

1
ai −−−−−−−−−

a O a

((N O P)⊗Q)
sL −−−−−−−−−−−−−−−−−−−−−−−−−−N O (P ⊗Q)

(P ⊗ (N O Q))
sR −−−−−−−−−−−−−−−−−−−−−−−−−−N O (P ⊗Q)

(N O M)O L
α −−−−−−−−−−−−−−−−−−−

N O (M O L)

M O N
σ −−−−−−−−−−

N O M

N
b −−−−−−−−−
⊥O N

1
j −−−−−−−
1⊗ 1

Additives

(N O L)N (M O L)
y −−−−−−−−−−−−−−−−−−−−−−−−−−−−

(N N M)O L

1
u −−−
>

1
v −−−−−−−−−−−

1N 1

>
a −−−−−−−−−
>O N

P
oL −−−−−−−−P ⊕Q

Q
oR −−−−−−−−P ⊕Q

Exponentials

?P O ?P
c −−−−−−−−−−−−

?P

⊥
w −−−

?P

P
d −−−

?P

!(?P O N)
p −−−−−−−−−−−−−−−−

?P O !N

1
e −−−−

! 1

Figure 5: Inference rules for system LEP◦

2.2 The Polarised System LEP

The first step of the refinement of the LSE proof system is to make polarities explicit
in formulas, and translate directly all inference rules into this polarised setting. We
obtain the LEP◦ system shown in Figure 5, by introducing the polarity annotations
everywhere in inference rules. Also, the switch rule sL used here is a variation of
the sL↓ rule used in SLSE, which is not self-dual but is better suited3 for our proof
search purposes — this is not a problem, as we will not concentrate on the dual, up
fragment of the system in this section. Notice that because of explicit shifts, even
the other switch rule sR is not self-dual.

Remark 2.5. In the presence of polarity annotations, the plugging of formulas inside
contexts must respect the additional conditions of well-formedness applied to polarised
formulas, and inference rules as well. In the LEP◦ system, the polarity of the premise
of a rule is always the same as the polarity of its conclusion.

The LEP◦ system is essentially the same as the LSE system, and it is interesting
to remark that most of the rules are naturally compatible with polarities.

3Keeping the left switch rule sL of the SLS system would have been problematic regarding the use
of commutativity rules, making derivations more difficult to read.

264 7 — Nested Focusing in Linear Logic264 7 — Nested Focusing in Linear Logic264 7 — Nested Focusing in Linear Logic

A crucial observation concerning the LEP◦ system is that polarity shifts are not
only introduced in a formula which is then proved, but also introduced during the
proof search process. In particular, the switch rules sL and sR are responsible for the
accumulation of shifts during proof search, and we need a way to clean up these
annotations — since they can block the further application of inference rules. For
this reason, we complete the system with the rules:

P
τ+ −−−−−P

N
τ− −−−−−−N

to form the system LEP = LEP◦ ∪ {τ+,τ−}, a polarised system for linear logic that
we will study and compare to the unpolarised LSE system.

Remark 2.6. Although the polarity shifts appearing in a formula during proof search
have no immediate logical meaning, they syntactically prevent the system from being
complete without the cleaning τ+ and τ− rules. For instance, the polarised formula

a O a has only one proof in LEP, which critically uses theses rules, as shown below:

1
τ+ −−−−−1
i −−−−−−−−−−−−
(a O a)

τ− −−−−−−−−−−−−−−−−(a O a)

In order to establish a precise correspondence between LEP and LSE, we need
to fill the gap created by the variant rules introduced in LEP. This is easy, as we can
simply express one version of a rule in the other system. In the case of the switch
rule sL , this is just a matter of reorganisation4 of the formula.

Lemma 2.7. The version of the switch sL used in LEP, when depolarised, is admissible
in LSE, and the version used in LSE, when polarised, is admissible in LEP.

Proof. In the LSE system, we can easily obtain the other version of sL by using both
commutativity rules in the up and down fragments, as shown below on the left, and
then produce the required proof by eliminating the σ↑ instance, by admissibility of
the up fragment. In LEP, we can use the σ rule, as shown below on the right, and
the commutativity of ⊗, which can be shown admissible by a simple induction:

ξ{(AO B)⊗ C}
σ↓ −−−−−−−−−−−−−−−−−−−−−−−
ξ{(B O A)⊗ C}

σ↑ −−−−−−−−−−−−−−−−−−−−−−−
ξ{C ⊗ (B O A)}

sL −−−−−−−−−−−−−−−−−−−−−−−
ξ{AO (B⊗ C)}

ξ{ (Q⊗ (P O N))}
σ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{ (Q⊗ (N O P))}
================================
ξ{ ((N O P)⊗Q)}

sL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{N O (P ⊗Q)}

and use this derivation as a replacement for the original sL rule of the LSE system,
after introduction of the polarities.

4There is no form of switch that could satisfy the criterions of all the different systems used in this
section, but the transformation of one form into another is made easy by the commutativity rule.

2 — Systems with Explicit Polarities 2652 — Systems with Explicit Polarities 2652 — Systems with Explicit Polarities 265

The polarised syntax we use allows to compose freely the two shift operators,
so that there is no reason, in general, to consider only the polarised formulas that
are minimal, in the sense that there is an unpolarised formula A such that bAc is the
considered formula. However, some rules of LEP apply only on formulas which are
locally minimal. We can overcome this problem by removing unnecessary shifts.

Lemma 2.8. For any polarised formula A of linear logic, there is a derivation from
the minimally polarised formula bdAec to A in LEP.

Proof. We proceed by induction on the number of shift operators in A. In the base
case, the formula A is minimally polarised, so that A= bdAec. Otherwise, there is a
subformula of the shape P or N inside A. We can thus remove these two shifts
and use the induction hypothesis, and then complete the resulting derivation either
with a τ+ instance or a τ− instance.

We can now prove that the system LEP is equivalent to the unpolarised system
LSE, by translating proofs from one system to the other. In one direction, this is
just a matter of rewriting formulas, and in the other it requires to replace rules with
derivations produced by the previous lemma.

Theorem 2.9. For any polarised formula A of linear logic, A is provable in LEP if and
only if the unpolarised formula dAe is provable in LSE.

Proof. Given a proof P of A in the polarised system LEP, we can produce a proof
of dAe in the unpolarised system LSE by removing shifts from formulas in P , and
replacing instances of LEP rules by instances of the corresponding rules in LSE —
using Lemma 2.7 to handle the sL rule.

In the other direction, we proceed by structural induction on the given proof P
of dAe, to produce the proof of A. At each step, we can use the induction hypothesis
and the rule of LEP corresponding to the encountered rule instance of LSE, after
the transformation of A into bdAec by Lemma 2.8. Applying the corresponding LEP
rule is always possible because the conclusions of all these rules match minimally
polarised formulas.

We can also prove that the logical relation between A and bdAec is actually an
equivalence, by showing that from a proof of any formula, a proof can be built for
its minimally polarised version.

Lemma 2.10. For any polarised formula A of linear logic, if A is provable in LEP

then the minimally polarised formula bdAec in also provable in LEP.

Proof. By induction on the height of a proof P of A in LEP, using a case analysis
on the bottommost rule instance r in P . In the base case, r is a δ+ or δ− instance
that removes the last pair or from a formula, and we can use the proof above.
In the general case, if r is a δ+ or δ− instance then it is removed and the induction
hypothesis is used, while in all other cases, the induction hypothesis can be used
immediately and r reused, since no rule in LEP can modifiy a pair of shifts — and
the induction hypothesis can be used twice if required, since the resulting proof is
at most of the same height as P .

266 7 — Nested Focusing in Linear Logic266 7 — Nested Focusing in Linear Logic266 7 — Nested Focusing in Linear Logic

3 From Polarities to Focusing

The system SLSE for linear logic, described in the previous section, is interesting
from the point of view of proof search, because it is completely explicit — there are
no equations used implicitly between inference rules applications, and the objects
being rewritten are plain formulas. However, for other reasons there is still a huge
amount of non-determinism in the proof search process in this system:

• The search is not organised by branches, as in the sequent calculus, and thus
at each step one must choose in which part of the formula, corresponding to
a branch, to apply the next inference rule.

• Among different formulas within the equivalent of a branch — that is, some
sequence of formulas separated by O — the same non-determinism as in the
sequent calculus is present, induced by the choice of the next formula to treat
and the of the inference rule to apply.

• There are more rules in SLSE than in the sequent calculus, as we turned into
rules equations that are handled implicitly in the sequent calculus, through
the definition of sequents as multisets of formulas, and through branches.

• The SLSE system is symmetric, and the power of its up fragment corresponds
to the power of the cut rule of the sequent calculus, so that we should restrict
the system to the cut-free, down fragment LSE.

Our goal here is to improve the situation from the proof search perspective, by
restricting this system until we obtain a proof search procedure guided by strong
constraints, while retaining its completeness. The first step, as mentioned above, is
to consider only the down fragment LSE, which is complete with respect to linear
logic — this is obvious, as performing proof search in the presence of cut becomes
extremely difficult, since the cut breaks the subformula property and thus requires
a » clever guess « to be applied. Beyond this step, there is no obvious restriction that
would not deprive us from too many proofs — an outermost-leftmost-first strategy
would produce only proofs directly equivalent to sequent calculus proofs, and deny
any benefit to the use of the deep inference methodology, for instance.

We need guidance to design such restrictions, and we will follow the concept of
polarities to achieve this, with the slogan that » although some proofs do not respect
polarities, the set of proofs respecting them is enough to retain completeness «. What
we mean by » respecting « polarities here is that a given polarised formula should
not require more or shifts than it contains originally to be proved. This is similar
to the subformula property, in the sense that we want a system where any shift in
the premise of a rule instance corresponds to a shift present in its conclusion. This
idea leas us to a system which is more than just cut-free, because it respects this
stronger form of the subformula property — although in terms of formulas, the
property is not stated as in sequent calculi, since there is no meta-level. The system
LEP is the natural starting point in this study, because it is close to the unpolarised
system LSE but is equipped with the syntax necessary to state the focusing result.

3 — From Polarities to Focusing 2673 — From Polarities to Focusing 2673 — From Polarities to Focusing 267

3.1 The Focused System LEF

In the polarised system LEP, the borders between subformulas of different polarity
are made explicit by the shift operators and , but LEP does not respect polarities
in the sense that it requires the introduction of new shifts in a formula during proof
search, when applying the switch rules:

((N O P)⊗Q)
sL −−−−−−−−−−−−−−−−−−−−−−−−−−N O (P ⊗Q)

(P ⊗ (N O Q))
sR −−−−−−−−−−−−−−−−−−−−−−−−−−N O (P ⊗Q)

In order to design a system where polarities are respected — that means, not
only a copy of LSE where polarities are made explicit, but a system constrained by
polarities — we need to modify these rules. We restrict the use of the switch rules
to a positive context, so that there is no need to introduce an additional shift, and
obtain the following replacement rules:

(N O P)⊗Q
sL −−−−−−−−−−−−−−−−−−−−−−−−−(N O (P ⊗Q))

P ⊗ (N O Q)
sR −−−−−−−−−−−−−−−−−−−−−−−−−(N O (P ⊗Q))

In these rules, which are of critical use in the proof search process, we can see
the importance given to formulas of the shape (−O −), since the sL and sR rules
preserve this shape, which is modified only when the negative formula N has been
pushed through a complete layer of⊗ connectives. This is characteristic of a positive
focus phase in standard focused sequent calculi [And92], formed of a sequence of
rule instances dealing with a unique layer of positive connectives. In such a sequent
calculus, a sequent of the shape:

` Γ, [P] where [P] means » P under focus «

is the conclusion of a proof where a synthetic positive formula P is decomposed by
interaction with the formulas in Γ, to produce premises where negative formulas
are decomposed to obtain sequents where one positive formula can be put under
focus. In the calculus of structures, no decomposition of P really happens, and the
interaction of Γ and P is seen as the aggregation of several steps, through the use
of several switches. Therefore, we can consider the switch rules described above as
the interaction of one negative5 formula with a positive formula.

Remark 3.1. In the sequent calculus, the primary difference between a focused and an
unfocused system is the vertical grouping of positive rule instances, but in any sequent
calculus, one can see some horizontal grouping of interactions between formulas in
a branching rule instance, when looking through the glasses of deep inference where
switches allow to consider the equivalent non-grouped interaction. It is thus legitimate
that horizontal grouping is not enforced in a focused calculus of structures, as this kind
of grouping is an artifact of the sequent calculus and not an essential byproduct of the
focused normal form.

5In the usual focused sequent calculus, all the formulas in the sequent ` Γ, [P] should be considered
as negative formulas, in the sense that comma is a O, so that if the system was polarised it would require
shifts to appear on P positive formulas in Γ.

268 7 — Nested Focusing in Linear Logic268 7 — Nested Focusing in Linear Logic268 7 — Nested Focusing in Linear Logic

Restrictions on LEP. The comparison between focused sequent calculi and the
polarised LEP system provides some insight on the use of the shifts: any formula
of the shape P can be seen as a positive [P] under focus, which can interact with
a negative formula N if both of them are inserted under a shift, thus forming the
conclusion (N O P) of the modified switches. This can be internalised by defining
the new connective : that extends the polarised formulas into potentially focused
polarised formulas, with the following intended meaning:

N : P ≡ (N O P)

This new connective describes a local variant of the sequent ` Γ, [P], and it has
the particularity of accepting only subformulas of different polarity, one negative
and one positive. As a consequence, we use it as a non-commutative connective, to
keep the distinction between the two subformulas easy to read. This extension of
the language of formulas6 is the first step on our way to the definition of a focused
calculus of structures.

Definition 3.2. A simply focused formula is a polarised formula A which contains
exactly one subformula of the shape N :P, and a multi-focused formula is a polarised
formula containing more than one subformula of this shape.

Notice that the language of formulas extended with this » focusing connective «
naturally tends to support the idea of multi-focusing [CMS08], and even a further
form of focusing where focused formulas can contain focused formulas interacting
with negative subformulas. Following the standard approach to focusing, we can
also adapt the observation that negative formulas can be completely » treated « —
in the sequent calculus, that would mean decomposed — before they interact with
positive formulas. To achieve this, we restrict further the use of switches, to avoid
applying them on negative formulas where the toplevel connective is a O or a N,
by defining new classes of formulas, that can be reflected on unpolarised formulas.

Definition 3.3. The active and reactive formulas of linear logic, denoted below by F
and U respectively, are defined by the following grammars:

F ::= !N | N | a U ::= ?P | P | a

Definition 3.4. A formula A of linear logic is said to be pre-reactive if and only if
there exists a polarised, reactive formula U such that A= dUe.

Finally, the switch rules we will use in the definition of a focused system are the
following restricted variant of the basic rules:

(U O P)⊗Q
sL −−−−−−−−−−−−−−−−−−−−−−−−−(U O (P ⊗Q))

P ⊗ (U O Q)
sR −−−−−−−−−−−−−−−−−−−−−−−−−(U O (P ⊗Q))

(10)

which can also be expressed in terms of the new : connective. However, we start
with the standard notation and we will translate these rules in the new syntax when
the focused system is really defined.

6This methodology of introducing a new connective in the language is similar to the nested sequents
approach to modal logics [Brü10], where the syntax is extended with meta-level equivalents of modal
connectives, thus allowing to stay within the modal language rather than rely on annotations or labels.

3 — From Polarities to Focusing 2693 — From Polarities to Focusing 2693 — From Polarities to Focusing 269

In the process of modifying the handling of shifts in the switch rules, we have
created a new problem. Indeed, the application of a switch now requires a formula
of a certain shape, but other formulas can be written that should be provable —
for example, it is impossible to prove a O a with these switch rules. To regain the
ability to prove such formulas, we need the following rules:

P
δ+ −−−−−P

N
δ− −−−−−−N

which are the opposite of the τ+ and τ− rules, since they introduce a delay during
proof search. The restricted system obtained by addition of these rules is the last
step before the focused calculus.

Definition 3.5. The LER system is a variant of LEP where switches are replaced with
the restrictions shown in (10), and extended with the δ+ and δ− rules.

The LER system uses restricted rules, but has four new rules allowing to handle
shifts. We can now prove that the new rules provide enough ways of manipulating
formulas to make the system complete with respect to LEP. We start with a result
stating the invertibility of the rules dealing with the negative connecties O and N.

Lemma 3.6. The following rules are admissible in the LER system:

⊥O N
b −−−−−−−−−

N

>O N
a −−−−−−−−−
>

(N N M)O L
y −−−−−−−−−−−−−−−−−−−−−−−−−−−−
(N O L)N (M O L)

Proof. For each of these rules, we proceed by induction on the height of a given
proof P of the premise, and show how it can be transformed into a proof of the
conclusion — and in all cases, the transformation is at most height-preserving:

1. For b, the induction hypothesis is extended to N O⊥, with a base case when
b is used at the bottom of P . In all other cases, the induction hypothesis is
directly used and the bottommost rule instance reused, or removed if it was
affecting this ⊥ — note that a switch cannot be used to move ⊥ inside N ,
since we use a restricted form of switch, and if a pair is added on ⊥ by δ−,
nothing can happen except the removal of this pair, so that the corresponding
instance of τ− can be removed immediately from the proof.

2. For a, the induction hypothesis is extended to N O>, with a base case when a
is used at the bottom of P , and other cases are treated similarly to the cases
used in the induction for b.

3. The case of y is treated the same way, with an induction hypothesis extended
to L O (N N M) and a base case when y is used at the bottom of P .

Notice that in each of these inductions, the hypothesis is extended to deal with the
commutativity rule σ, and the induction hypothesis might be applied twice in cases
where the considered formula is duplicated by a c or y instance.

270 7 — Nested Focusing in Linear Logic270 7 — Nested Focusing in Linear Logic270 7 — Nested Focusing in Linear Logic

Then, we need to prove the admissibility of two rules that will be used in the
transformation of proofs in LEP into proofs in LER.

Lemma 3.7. The following rules are admissible in the LER system:

(N N M)⊗ P
z1 −−((N ⊗ P)N (M ⊗ P))

>⊗ A
z2 −−−−−−−−−−>

Proof. For each of these two rules, given a proof P of the premise, we proceed by
induction on the pair (c, h), where c is the number of y and c instances inP and h is
the height ofP . At each step, we use a case analysis on the bottommost instance in
P . In the case of z1, we can always directly use the induction hypothesis, possibly
twice when a y or c instance is encountered, except when a switch sL or sR affecting
the considered formula is encountered. In these cases, we use the transformation
of the instance:

ξ{ (N N M)⊗ (U O P)}
sR −−−
ξ{ (U O ((N N M)⊗ P))}

into the derivation:

ξ{ ((N ⊗ (U O P))N (M ⊗ (U O P)))}
sR; sR ===

ξ{ ((U O (N ⊗ P))N (U O (M ⊗ P)))}
δ−;δ− ===

ξ{ ((U O (N ⊗ P))N (U O (M ⊗ P)))}
y −−

ξ{ (U O ((N ⊗ P)N (M ⊗ P)))}
τ− −−−
ξ{ (U O ((N ⊗ P)N (M ⊗ P)))}

for sR, then using the induction hypothesis, and a similar one for sL . In the case of
z2, the induction hypothesis can also be used, except when matching switches are
encountered. The transformation used for a right switch is the following:

ξ{ >⊗ (U O P)}
sR −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{ (U O (>⊗ P))}

−→
ξ{ >}

a −−−−−−−−−−−−−−−−−−−
ξ{ (U O>)}

τ− −−−−−−−−−−−−−−−−−−−−−−−
ξ{ (U O >)}

where the induction hypothesis can be used to produce the proof of ξ{ >} needed.
For a left switch, the proof of ξ{ (U O >)⊗ P} located above the switch can be
transformed into a proof of ξ{ >⊗P} of the same height through a straightforward
induction, and using the invertibility of a described by Lemma 3.6. Finally, we can
apply the induction hypothesis to obtain a proof of ξ{ >}.

Using these rules, we can show how to translate proofs between the restricted
system LER and the basic polarised system LEP. The most complicated part of this
is of course to show that the generic form of switches used in LEP can be simulated
in LER, and this is where the admissible rules come into play.

3 — From Polarities to Focusing 2713 — From Polarities to Focusing 2713 — From Polarities to Focusing 271

Lemma 3.8. A formula A is provable in LER if and only if it is provable in LEP.

Proof. In one direction, the result is straightforward: given a proof P of A in LER,
we build a proof of A in LEP by induction on the length of P . Indeed, any instance
of a rule of LER is valid in LEP, except instances of the δ+ and τ+ rules, but when
such instances are encountered, they can be removed by applying Lemma 2.10. In
the other direction, given a proof P of A in LEP, we also use an induction on the
height of P . In most cases, we can apply the induction hypothesis and reuse the
bottommost rule instance in P , since an instance of a rule of LEP is valid in LER,
except for switches. In the case of a switch instance, we show how to replace it by
a valid derivation in LER, by induction on the size |N | of the negative formula N
being pushed inside. In the base case, either this is a valid switch instance or N is
⊥ or >. The last two cases are handled by the following transformations, for ⊥:

ξ{ (⊥O P)⊗Q}
sL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{ (⊥O (P ⊗Q))}

−→

ξ{ (⊥O P)⊗Q}
b ===========================

ξ{ P ⊗Q}
δ+ −−−−−−−−−−−−−−−−−

ξ{P ⊗Q}
τ+ −−−−−−−−−−−−−−−−−−−−
ξ{ (P ⊗Q)}

b −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{ (⊥O (P ⊗Q))}

and for >:

ξ{ (>O P)⊗Q}
sL −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{ (>O (P ⊗Q))}

−→

ξ{ (>O P)⊗Q}
a ===========================

ξ{ >⊗Q}
z2 ================

ξ{ >}
a −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{ (>O (P ⊗Q))}

where the rules a and b are admissible in LER, by Lemma 3.6, and the rule z2 can
be used since it is admissible by Lemma 3.7. In the general case, N can have O as
toplevel connective, and it is handled with the following transformation:

ξ{ ((N O M)O P)⊗Q}
sL −−−
ξ{ ((N O M)O (P ⊗Q))}

−→

ξ{ ((N O M)O P)⊗Q}
α −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{ (N O (M O P))⊗Q}

τ− −−−
ξ{ (N O (M O P))⊗Q}

sL −−
ξ{ (N O ((M O P)⊗Q))}

sL −−
ξ{ (N O (M O (P ⊗Q)))}

δ− −−
ξ{ (N O (M O (P ⊗Q)))}

α/σ ===
ξ{ ((N O M)O (P ⊗Q))}

where the newly created sL instances can be dealt with by induction hypothesis,
and possibly rewritten into valid LER derivations. Notice that the two derivations
obtained by induction hypothesis can be plugged into this derivation because of
the deep inference feature of the calculus.

272 7 — Nested Focusing in Linear Logic272 7 — Nested Focusing in Linear Logic272 7 — Nested Focusing in Linear Logic

Then, N can also have N as toplevel connective, and this case is handled with
the transformation of the instance:

ξ{ ((N N M)O P)⊗Q}
sL −−−
ξ{ ((N N M)O (P ⊗Q))}

into the derivation:

ξ{ ((N N M)O P)⊗Q}
y ===
ξ{ ((N O P)N (M O P))⊗Q}

τ−;τ− −−
ξ{ ((N O P)N (M O P))⊗Q}

z1 ===
ξ{ (((N O P)⊗Q)N ((M O P)⊗Q))}

sL; sL ===
ξ{ ((N O (P ⊗Q))N (M O (P ⊗Q)))}

δ−;δ− ===
ξ{ ((N O (P ⊗Q))N (M O (P ⊗Q)))}

y −−−
ξ{ ((N N M)O (P ⊗Q))}

where the y rule can be used since it is admissible by Lemma 3.6, and z1 can also be
used because it is admissible by Lemma 3.7. All the cases involving a right switch
sR instance are treated the same way as the left switch instances shown above.

Finally, the main induction hypothesis is used on the proof above the considered
switch instance, and the result is glued to the derivation used as a replacement for
the switch.

Focused syntax. The actual focused system that we define in framework of the
calculus of structures is called LEF, its inference rules being shown in Figure 6. It
is essentially the same as LER, but it is based on focused formulas, where the new
connective : can appear. More importantly, it uses some more restrictions:

• The rules τ+ and δ+ are removed from the system, except for the use of τ+
on the positive unit 1, which is necessary.

• The rules τ− and δ− are restricted to particular situations, which involve the
interaction between a negative and a positive, and are used under the names
r and f which correspond respectively to the following situations:

(U O N)
τ− −−−−−−−−−−−−−−−−−(U O N)

(U O P)
δ− −−−−−−−−−−−−−−−−−U O P

These new restrictions correspond to the needs we have when performing proof
search, as the manipulation of negative pairs is not required, while a positive
pair is needed to control the interaction between a negative and a positive. If
a formula of the shape U : P is considered as the equivalent of a focused sequent
` U , [P] then the use of the f rule is clear: it is the equivalent of the decision rule
in the sequent calculus, where one positive is chosen to be treated. Then, the r rule
correspond to the reaction rule, used when the interaction is completed — that is,
when the subformula of a positive connective is a negative formula.

3 — From Polarities to Focusing 2733 — From Polarities to Focusing 2733 — From Polarities to Focusing 273

Interaction

1
ai −−−−−−−

a : a

(U : P)⊗Q
sL −−−−−−−−−−−−−−−−−−U : (P ⊗Q)

P
oL −−−−−−−−P ⊕Q

P ⊗ (U : Q)
sR −−−−−−−−−−−−−−−−−−U : (P ⊗Q)

Q
oR −−−−−−−−P ⊕Q

!(?P O N)
p −−−−−−−−−−−−−−

?P : !N

(U O N)
r −−−−−−−−−−−−−−

U : N

Decision

P
d −−−

?P

(U : P)
f −−−−−−−−−−−−−

U O P

Superposition

>
a −−−−−−−−−
>O N

(N O L)N (M O L)
y −−−−−−−−−−−−−−−−−−−−−−−−−−−−

(N N M)O L

Exponentiation

?P O ?P
c −−−−−−−−−−−−

?P

⊥
w −−−

?P

Start Congruence

1
−−−−−−−
1⊗ 1

1
−−−−
! 1

1
−−−−−
1

1
−−−−−−−−−−−
1N 1

1
−−−
>

(N O M)O L
−−−−−−−−−−−−−−−−−−−
N O (M O L)

M O N
−−−−−−−−−−
N O M

N
−−−−−−−−−
⊥O N

Figure 6: Inference rules for system LEF

In the design of the focused LEF system, we were guided by two ideas. First, the
goal of making polarities explicit in the formulas and in inference rules has lead us
to the LEP system. Then, the modifications of LEP leading to the LER system were
motivated by the idea that shifts should not be introduced during proof search, or
should in any case be manipulated only when strictly required. This goal was not
achieved in LER because of the free use of the four rules for shift manipulation, but
it is at least decoupled from other rules in this system. Finally, the LEF system is
obtained by restricting the manipulations of shifts as much as possible, and because
of the new connective : and its meaning in terms of polarities, this system never
allows syntactical introduction of shifts during proof search — the shifts are hidden
inside this connective.

It is interesting to notice that this reasoning, and the corresponding refinement
of proof systems, leads to a system which is very similar7 to the standard focused
sequent calculus, as defined by Andreoli. Indeed, there are still more proofs in LEF
than in the LLF focused sequent calculus, but this is normal in the setting of deep
inference, and our goal was not to restrict the LSE system so much that it would
be as weak as the sequent calculus, but the principles behind the design of LEF are
the same as in the standard focusing setting.

7Of course, the system was developped with the standard focusing result in mind, but all the steps
leading to it can be justified in terms of polarities, thus exposing their strong relation to focusing.

274 7 — Nested Focusing in Linear Logic274 7 — Nested Focusing in Linear Logic274 7 — Nested Focusing in Linear Logic

From a proof search perspective, the LEF system is meant to be used in a similar
way as the LLF sequent calculus. We start with any given polarised formula, start
treating negative formulas, and then perform one complete focusing phase. But the
two parts of this » dipole « are slightly different than in the sequent setting, because
they are decomposed variants of the asynchronous and synchronous phases. The
asynchronous phase in LLF is meant to ensure that available negative connectives
are decomposed before we pick a positive to decompose, since this positive might
require to split the context obtained after the asynchronous phase. In LLF, only
the negative formulas at toplevel in the sequent are available, but in LEF we might
treat negative connectives deep inside the formula: the point is that only negative
formulas in the » direct context « of a positive formula need to be treated when the
positive involved in the subsequent focusing phase is this one. This direct context
is the maximal context of the shape ξ, where all the positive formulas inside ξ —
including the considered positive P — are replaced with holes.

Once negative formulas in the surroundings of the formula P have been treated
by the rules of the congruence, superposition and exponentiation fragments, this
P can be associated to a reactive formula U , and prepared for an interaction. The
preparation depends on how P appears in its negative context:

(U : P)
f −−−−−−−−−−−−−

U O P
or

(U : P)
f −−−−−−−−−−−−−

U O P
d −−−−−−−−−−

U O ?P

where the congruence fragment is used to move U next to P. Finally, the interaction
can be performed by the set of synchronous rules involving the : connective, and
this corresponds to one slice of the synchronous decomposition of P as it would be
performed in the sequent calculus. Then, the two steps are repeated until the proof
is complete.

Just as in the sequent calculus, focusing is a cyclic normal form that repeats the
basic operations of asynchronous and synchronous phases. By a detailed analysis of
the possible permutations between rules of LEF, we could show that the following
decomposition is possible:

1
Start

Z
(Focus)∗

A

where Focus is defined as

A
Interaction

Ai
Decision

Ad
Exponentiation

Ae
Superposition

As
Congruence

Ac

as it corresponds to the description of a focused strategy given above. The focusing
result states that the LEF system is complete with respect to the unfocused system
LSE, but we will prove this later and consider now a variant of LEF.

3 — From Polarities to Focusing 2753 — From Polarities to Focusing 2753 — From Polarities to Focusing 275

Interaction

⊗

{1}
gai −−−−−−−−−−−−−−−−

a O
⊗

{a}

⊗

{!(?P O N)}
gp −−−−−−−−−−−−−−−−−−−−−−−

?P O
⊗

{!N}
P

oL −−−−−−−−P ⊕Q

⊗

{ (U O N)}
gs −−−−−−−−−−−−−−−−−−−−−−−

U O
⊗

{ N}
Q

oR −−−−−−−−P ⊕Q

Decision

P
d −−−

?P

Superposition

>
a −−−−−−−−−

N O>
(N O M)N (N O L)

y −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
N O (M N L)

Exponentiation

?P O ?P
c −−−−−−−−−−−−

?P

⊥
w −−−

?P

Start Congruence

1
−−−−−−−
1⊗ 1

1
−−−−
! 1

1
−−−−−
1

1
−−−−−−−−−−−
1N 1

1
−−−
>

(N O M)O L
−−−−−−−−−−−−−−−−−−−
N O (M O L)

M O N
−−−−−−−−−−
N O M

N
−−−−−−−−−
N O⊥

Figure 7: Inference rules for system LEG

3.2 The Grouped System LEG

While the LEF system allows the observation of the small steps leading a negative
formula through a layer of positive connectives, one of the main consequences of
using a focused system is that this can be hidden. Indeed, if we group rules in the
interaction fragment, we can observe big steps, where a reactive formula is pushed
through a complete positive layer at once. This is the idea behind the synthetic rules
and synthetic connectives [Cha08] that stem from basic focused rules. Following
this methodology, we introduce the grouped8 system called LEG, where interaction
between a reactive formula and a positive layer is done in big steps. It uses a special
notation for layers of positive connectives.

Definition 3.9. In the LEG system, positive groups are the outer-positive and positive
contexts denoted by

⊗

{ } or named π and defined by the following grammar:

π ::= { } | π⊗ P | P ⊗π

The inference rules for LEG are shown in Figure 7, and one can notice how it
is similar to LEF but hides the : connective through the use of synthetic rules.

8We choose not to call this system synthetic because it groups only the positive connectives together,
while separated rules handle negative connectives individually, even if they could also be grouped.

276 7 — Nested Focusing in Linear Logic276 7 — Nested Focusing in Linear Logic276 7 — Nested Focusing in Linear Logic

The LEG system is a variant of the focused LEF system respecting the focusing
discipline, by never introducing new shifts during proof search, but without relying
on the interaction connective :. To achieve this, it groups interaction rule instances
into synthetic rule instances, so that only the interface of a focusing phase is seen,
which never introduces shifts. This is an interesting variant of LEF because it uses
the basic syntax of polarised formulas, and can be used without restrictions, but it
ensures the really important part of focusing: synchronous steps are atomic.

Also, this system is an illustration of the dissymmetry of the focusing normal
form with respect to the negative/positive categories. Rules for positive connectives
are grouped, while rules for negative connectives can be applied separately, at any
point in the proof, with the only constraint that a positive can only interact with
a reactive formula, so that N formulas must duplicate the positive P before this P
can start interacting with one of the conjuncts. This situation is radically different
from the focused sequent calculus LLF, where the mandatory eager decomposition
of negative formulas is an artifact of the shallow methodology. In the calculus of
structures, this is not required because each reactive formula interacts separately
with one positive, in the lazy way characteristic of the switch rule and of the nested
setting in general. The important result here is completeness of LEG with respect
to the unfocused LSE system, but we will also prove this in the next section. We
can prove now that LEG is sound with respect to LEF.

Theorem 3.10. If a polarised formula A is provable in the LEG system then it is also
provable in the LEF focused system.

Proof. This is straightforward, because only the rules gai, gp and gs are not also
rules of LEF, and each instance of these rules can be replaced by a derivation of
LEF — as can be shown by a simple induction on the structure of the positive group
involved.

4 Completeness and Relation to Sequent Calculi

The focused system LEF presented in the previous section, and its variant LEG, are
the first sytems implementing the focusing methodology in another formalism than
the sequent calculus — except for a focused system described in natural deduction
[BNS10], but this is also a shallow setting — proving that it is not just an artifact
of sequents, but rather an underlying principle of deductive reasoning. There are
however two points to study in more details, the first and most important one being
the proof of completeness of these focused calculi. In the calculus of structures, the
proof of this result, which can be tedious in the sequent calculus, is surprisingly
simple. Indeed, this boils down to the admissibility of one rule, which breaks the
focusing property — just as the cut, which breaks the subformula property, can
be shown admissible. Then, we can describe in more details the relation between
the standard focused sequent calculus LLF and the focused calculi of structures
proposed here. It turns out that there is a close correspondence between LLF and
LEF, despite the radically different structure of their proofs.

4 — Completeness and Relation to Sequent Calculi 2774 — Completeness and Relation to Sequent Calculi 2774 — Completeness and Relation to Sequent Calculi 277

4.1 Internal Proof of the Focusing Property

The focused proof system LEF, as well as its grouped variant LEG, could be proved
complete with respect to linear logic by translation from the LL sequent calculus or
its focused variant LLF. However, it is more interesting to consider an internal proof
of the focusing result, independent from the sequent calculus, as it reveals more on
the nature of the focusing normal form, and the corresponding transformation.

A remarkably simple way of proving completeness of the focusing restrictions in
the calculus of structures is to consider the LEG system, extend it by an admissible
rule which breaks the focusing property, and then show how the resulting system
can simulate the unfocused calculus LSE. This elegant technique is similar to the
traditional cut elimination result and supports the comparison between these two
proof transformations, following the argument that respecting the polarity shifts of
a formula is of the same nature as respecting the subformula property.

The rule we introduce in LEG to break the focusing property is called pg and
performs partial group crossing, allowing any reactive formula to be moved inside
a layer of positive connectives, but not necessarily at the exact negative border of
this group, as would be done with the gs or gp rules:

⊗

{ (U O P)}
pg −−−−−−−−−−−−−−−−−−−−−−−−

U O
⊗

{P}

The resulting system does not respect the principle that polarity shifts should
never be introduced in a formula during proof search, but there is no way of moving
a reactive formula in the middle of a positive group without introducing a pair of
shifts. This rule corresponds to the use of a delay , as expressed by the following
lemma.

Lemma 4.1. If there is a proof P of a formula ξ{ P} in LEG, then there is a proof
of ξ{P} in LEG∪ {pg} of at most the same height as P .

Proof. We proceed by induction on the height of P , with a base case when ξ{ P}
is 1, where the result is immediate. In the general case, we use a case analysis on
the bottommost rule instance r in P , and in most cases we can directly apply the
induction hypothesis and remove the delay from the formula. If r is an instance
of the start rule rewriting 1 into 1, we can remove this instance and go on by
induction hypothesis. Finally, if r is a matching gs instance, we replace it with an
instance of pg, as follows:

ξ{
⊗

{ (U O P)}}
gs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{U O

⊗

{ P}}
−→

ξ{
⊗

{ (U O P)}}
pg −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{U O
⊗

{P}}

However, the pg rule is admissible in the LEG system: this can be shown by a
simple induction on the structure of a proof using it. The idea here is that when it is
moved upwards, the pg rules is assimilated inside valid grouped rule instances, as
one would » repair « a proof that does not respect polarities. The following lemma
is the crucial step in the focusing proof.

278 7 — Nested Focusing in Linear Logic278 7 — Nested Focusing in Linear Logic278 7 — Nested Focusing in Linear Logic

Lemma 4.2. The rule pg is admissible in LEG.

Proof. Given a proof P of a formula A in LEG∪ {pg}, we prove by induction on
the height of P that there is a proof of A in LEG of at most the same height. In the
base case, A is 1 and the result is trivial. In the general case, we use a case analysis
on the bottommost rule instance r in P , and if it is not an instance of pg, we use
the induction hypothesis on the proof above r and compose the result with r. In
the case where r is a pg instance, we consider the instance r1 above r in P and use
another case analysis:

1. If r1 is not an instance of gai, gp, gs or pg then we can permute it above r in
P and conclude by induction hypothesis on the proof above — notice that
in the case of a c or y instance, we need to use it twice, which is possible
because the transformation is height-preserving.

2. If r1 is an instance of gai, we merge r and r1 into a new gai instance:

ξ{
⊗

1{
⊗

2{1}}}
gai −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{
⊗

1{ (a O
⊗

2{a})}}
pg −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{a O
⊗

1{
⊗

2{a}}}
−→

ξ{
⊗

1{
⊗

2{1}}}
gai −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{a O

⊗

1{
⊗

2{a}}}

then use the induction hypothesis on the proof above, and apply Lemma 4.1
on the result to produce a proof P ′ with a conclusion matching the premise
of the new gai instance — and finally, we can use the induction hypothesis
on P ′ and compose the result with the new instance.

3. If r1 is an instance of gp, we merge r and r1 into a new gp instance:

ξ{
⊗

1{
⊗

2{!(?P O N)}}}
gp −−−
ξ{
⊗

1{ (?P O
⊗

2{!N})}}
pg −−−

ξ{?P O
⊗

1{
⊗

2{!N}}}
−→

ξ{
⊗

1{
⊗

2{!(?P O N)}}}
gp −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

ξ{?P O
⊗

1{
⊗

2{!N}}}

and proceed the same way as in the previous case, using Lemma 4.1, and the
induction hypothesis twice.

4. If r1 is an instance of gs, we merge r and r1 into a new gs instance:

ξ{
⊗

1{
⊗

2{ (U O N)}}}
gs −−
ξ{
⊗

1{ (U O
⊗

2{ N})}}
pg −−

ξ{U O
⊗

1{
⊗

2{ N}}}
−→

ξ{
⊗

1{
⊗

2{ (U O N)}}}
gs −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{U O

⊗

1{
⊗

2{ N}}}

and proceed the same way as in the previous case, using Lemma 4.1, and the
induction hypothesis twice.

5. If r1 is also a pg instance, then we use the induction hypothesis on the proof
above r to obtain a proofP ′ on which we use again the induction hypothesis.

In the end of the process, we obtain a proof where all the pg instances have been
merged into instances of other grouped rules, therefore valid in LEG.

4 — Completeness and Relation to Sequent Calculi 2794 — Completeness and Relation to Sequent Calculi 2794 — Completeness and Relation to Sequent Calculi 279

The second step is to show that the pg rule, by its ability to break the focusing
discipline, allows to simulate any given proof from an unfocused system. The basis
used here to write unfocused proofs is LER, since it is the closest unfocused system
that we have defined, where some restrictions of the focused system have already
been shown complete.

Lemma 4.3. A polarised formula A is provable in LER if and only if it is provable in
the grouped system LEG∪ {pg} with partial group crossing.

Proof. Given a proof of A in LEG∪ {pg}, it is trivial to build a proof of A in LER,
since any rule instance in LEG∪ {pg} can be replaced with a derivation in LER— in
the case of the grouped rules gai, gp and gs, this can be shown by a straightforward
induction on the structure of the positive group involved.

In the other direction, we can prove by induction on the height of a given proof
P of A in LER how to build a proof of A in LEG∪ {pg}. In the base case, A is 1 and
the result is trivial. In the general case, we use a case analysis on the bottommost
rule instance r in P , and there are only four interesting cases, the ones of the rules
ai, sL and sR, and p, which are actually particular cases of the rules gai, pg, and gp
respectively:

1
gai −−−−−−−−−

a O a

((U O P)⊗Q)
pg −−−−−−−−−−−−−−−−−−−−−−−−−−

U O (P ⊗Q)

(P ⊗ (U O P))
pg −−−−−−−−−−−−−−−−−−−−−−−−−−

U O (P ⊗Q)

!(?P O N)
gp −−−−−−−−−−−−−−−−

?P O !N

and we can conclude by induction hypothesis, after these replacements. In all other
cases, we can simply reuse r and conclude by induction hypothesis, since the other
rules of LER are valid in LEG∪ {pg} too.

This proves that pg is really the missing piece between the unfocused and the
focused systems. Now, the actual focusing result is obtained by assembling the
lemmas to create a connection between the basic LSE system and the focused LEF

system, using the fact that given a proof in LEG, we can turn it into a proof in LEF.

Theorem 4.4 (Focusing). Any polarised formula A is provable in the focused system
LEF if its unpolarised variant dAe is provable in the unfocused system LSE.

Proof. Given a proof of dAe in LSE, we can apply Theorem 2.9 to translate it to a
proof of A in the polarised system LEP. Then, by applying Lemma 3.8 we can build
build a proof in LER and subsequently in LEG∪ {pg}, using Lemma 4.3. Thus by
Lemma 4.2 we obtain a proof of A in LEG. Finally, by Theorem 3.10 we have the
expected proof of A in LEF.

This internal completeness result can be obtained directly in the LEF system,
without going through the grouped variant LEG, by proving the admissibility of
the rule shown below, which adapts the idea of pg to the interaction connective of
the LEF system:

(U O P)
−−−−−−−−−−−−−−−

U : P

280 7 — Nested Focusing in Linear Logic280 7 — Nested Focusing in Linear Logic280 7 — Nested Focusing in Linear Logic

Decision and Reaction

` Γ | ∆ ⇓ P
d −−−−−−−−−−−−−−−−−−−−−
` Γ | ∆, P ⇑ ·

` Γ, P | ∆ ⇓ P
d! −−−−−−−−−−−−−−−−−−−−−−−
` Γ, P | ∆ ⇑ ·

` Γ | ∆ ⇑ N
re −−−−−−−−−−−−−−−−−−−
` Γ | ∆ ⇓ N

Asynchronous Phase

> −−−−−−−−−−−−−−−−−−−−−−
` Γ | ∆ ⇑ >,Ψ

` Γ | ∆ ⇑ Ψ
⊥ −−−−−−−−−−−−−−−−−−−−−−
` Γ | ∆ ⇑ ⊥,Ψ

` Γ | ∆ ⇑ N , M ,Ψ
O −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ | ∆ ⇑ N O M ,Ψ

` Γ | ∆, P◦ ⇑ Ψ
n −−−−−−−−−−−−−−−−−−−−−−−
` Γ | ∆ ⇑ P◦,Ψ

` Γ, P | ∆ ⇑ Ψ
? −−−−−−−−−−−−−−−−−−−−−−−
` Γ | ∆ ⇑ ?P,Ψ

` Γ | ∆ ⇑ N ,Ψ ` Γ | ∆ ⇑ M ,Ψ
N −−

` Γ | ∆ ⇑ N N M ,Ψ

Synchronous Phase

ax −−−−−−−−−−−−−−−−−−
` Γ | a⊥ ⇓ a

1 −−−−−−−−−−−−−−
` Γ | · ⇓ 1

` Γ | ∆ ⇓ P ` Γ | Φ ⇓ Q
⊗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` Γ | ∆,Φ ⇓ P ⊗Q

` Γ | · ⇑ N
! −−−−−−−−−−−−−−−−−
` Γ | · ⇓ !N

` Γ | ∆ ⇓ P
⊕L −−−−−−−−−−−−−−−−−−−−−−−−` Γ | ∆ ⇓ P ⊕Q

` Γ | ∆ ⇓ Q
⊕R −−−−−−−−−−−−−−−−−−−−−−−−` Γ | ∆ ⇓ P ⊕Q

Figure 8: Inference rules for the focused system LLF

4.2 Correspondence to Standard Focusing

Since the focusing technique was introduced in the setting of the sequent calculus
for linear logic, in which it has been thoroughly studied, it is interesting to compare
the so-called focused calculus of structures that we have proposed in the previous
section. The LLF sequent calculus, presented in Chapter 2, is recalled in Figure 8,
where the standard triadic syntax is used, but it is slightly modified to use polarised
formulas rather than plain linear logic formulas. In this setting, P◦ denotes either
P or a negative atom a.

From LLF to LEF. The first part of the comparison consists in the simulation of
focused sequent proofs in the LEF calculus of structures. The difficulty there lies
in the difference between shallow and nested formalisms, but we can establish a
correspondence through an abstraction relation that relates formulas in LEF to the
triadic sequents of the LLF calculus. The rest of the reasoning will be done modulo
this abstraction.

4 — Completeness and Relation to Sequent Calculi 2814 — Completeness and Relation to Sequent Calculi 2814 — Completeness and Relation to Sequent Calculi 281

Definition 4.5. Given a triadic sequent δ and a polarised formula A, we say that A is
a structural interpretation of δ, written A≈ δ, if we can derive it from the rules:

−−−−−−−−−−−−−−−−−−−−−−−−
P ≈ (` · | · ⇓ P)

P ≈ (` Γ | ∆ ⇓ Q)
−−−
(U : P)≈ (` Γ | ∆, U ⇓ Q)

N ≈ (` Γ | ∆ ⇑ Ψ)
−−
(N O M)≈ (` Γ | ∆ ⇑ M ,Ψ)

−−−−−−−−−−−−−−−−−−−−−−−−−
N ≈ (` · | · ⇑ N)

P ≈ (` Γ | ∆ ⇓ Q)
−−
(?R : P)≈ (` Γ, R | ∆ ⇓ Q)

N ≈ (` Γ, R | ∆ ⇑ Ψ)
−−
(N O ?R)≈ (` Γ, R | ∆ ⇑ Ψ)

P ≈ (` Γ | ∆ ⇓ Q)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
P ≈ (` Γ, R | ∆ ⇓ Q)

N ≈ (` Γ | ∆ ⇑ Ψ)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
N ≈ (` Γ, R | ∆ ⇑ Ψ)

With this definition, structural interpretations can arbitrarily reorder a sequent,
but they preserve the multiplicities of the formulas in the linear part of the LLF

sequent, while potentially erasing or duplicating the unrestricted formulas. Then,
we can prove a simulation theorem showing that LEF can preserve the structural
interpretations of each rule of LLF.

Remark 4.6. In the following, we will use the notations∆:P and∆ON respectively
for M1 : (· · ·: (Mn : P)) and M1 O · · ·O Mn O N to simplify the handling of the
multisets of the form ∆ = M1, · · · , Mn from the sequent calculus, with the convention
that this is simply P and N respectively in the case where ∆ is empty.

Theorem 4.7. For any Γ, ∆ and P, if ` Γ | ∆ ⇓ P is provable in LLF then there is a
Q ≈ (` Γ | ∆ ⇓ P) such that Q is provable in LEF, and for any Ψ, if ` Γ | ∆ ⇑ Ψ is
provable in LLF then there is a N ≈ (` Γ | ∆ ⇑ Ψ) provable in LEF.

Proof. Given a proof P in LLF, we proceed by structural induction on P , with a
trivial base case when P is reduced to an identity instance, so that we can use the
ai rule from LEF:

ax −−−−−−−−−−−−−−−−−−
` Γ | a⊥ ⇓ a

−→
1

ai −−−−−−−
a : a

In the general configuration, we consider all the cases for the bottommost rule
instance in P to perform the structural induction. All cases are similar, and we
show the case of the ⊗ rule:

` Γ | ∆ ⇓ P ` Γ | Φ ⇓ Q
⊗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` Γ | ∆,Φ ⇓ P ⊗Q
−→

1
−−−−−−−
1⊗ 1
P2

1⊗ (Σ2 : Q)
P1

(Σ1 : P)⊗ (Σ2 : Q)
{sL ,sR}

Σ1 : (P ⊗ (Σ2 : Q))
{sL ,sR}

Σ1,Σ2 : (P ⊗Q)

where (Σ1 : P)≈ (` Γ |∆⇓ P) and (Σ2 :Q)≈ (` Γ |Ψ⇓ Q), so that the proofs P1
and P2 are obtained by induction hypothesis.

282 7 — Nested Focusing in Linear Logic282 7 — Nested Focusing in Linear Logic282 7 — Nested Focusing in Linear Logic

Corollary 4.8 (Completeness). If the sequent ` Γ | ∆ ⇑ Ψ is provable in LLF, then
the structure ∆OΨO ?Γ is provable in LEF.

Proof. Given the structure ∆OΨO ?Γ, we can apply the rules c and w to build a
derivation with ∆OΨO ?Σ as premise, where Σ is Γ where some structures ?P
have been erased or duplicated. Then, we can apply Theorem 4.7 to conclude.

This result allows us to represent any LLF proof in the LEF system in a shallow
form, where the interactions happen only at the outermost level. This is not using
much of the particular features of LEF, but provides a translation from the focused
sequent calculus into the focused calculus of structures.

From LEF to LLF. The other way around, we might want to consider the LEF
proofs where the interactions happen anywhere inside structures, and we can show
that a single LLF proof — modulo some irrelevant permutations of negative rules
— can be extracted from any LEF proof.

Given a proof P of some structure N , we can decompose P into a derivation
from M to N in {c}, for some M , and a proof P ′ of M in LEF \ {c}, as can be
shown by a straightforward inductive argument. Indeed, it is easy to observe that
contraction permutes below all other inference rules of the LEF system. Then, we
extract information from the proof P ′ by uniquely labelling the active and reactive
formulas in M . More precisely, we modify the grammar of structures as follows:

P,Q ::= au | 1 | P ⊗Q | 0 | P ⊕Q | !uN | uN | N : P

N , M ::= au | ⊥ | N O M | > | N N M | ?uP | uP

where letters such as u or v denote labels drawn from an infinite set. Then, the rules
for LEF are modified to incorporate these labels. Most cases are straightforward,
and the important rules are the following:

u(Uv : P)
f −−−−−−−−−−−−−−−−

Uv O uP

1
ai −−−−−−−−−−−

av : au

!u(?v P O N)
p −−−−−−−−−−−−−−−−−−

?v P : !uN
u(Uv O N)

r −−−−−−−−−−−−−−−−−
Uv : uN

uP
d −−−−−

?uP
u1

−−−−−−−−−−−−−−
u1N v1

?Pu O ?v P
c −−−−−−−−−−−−−−

?uP

where the two labels u and v in the c rule are said to be of the same species — this is
needed to keep track of the relation between structures obtained by duplication of
the same initial structure. The rules {f,ai,p, r} in the first line induce an ordering <
on labels, with u < v in each case. Since we have labelled the conclusion of P ′ in
such a way that all active and reactive formulas have unique labels, the reflexive,
transitive closure of this label ordering is a partial order denoted by ≤.

We will extract a proof of ` · | ·⇑ N in LLF by an algorithm using this order. The
algorithm is essentially deterministic, since the only choices it makes are the order
in which it applies negative rules — there is no choice involved in the positive or
decision rules. We use a labelled version of LLF where the unrestricted context
contains reactive formulas labelled with a multiset of labels of the same species, so
that they are written L P, where L = u1, · · · , un.

4 — Completeness and Relation to Sequent Calculi 2834 — Completeness and Relation to Sequent Calculi 2834 — Completeness and Relation to Sequent Calculi 283

Then, the non-linear decision rule d! is modified to consume one of the available
labels in the multiset of the formula, and the d rule also consumes the label of the
considered linear reactive formula. Moreover, the exponential rule ? is modified to
extend one of the label multisets corresponding to the same species of label — if
there is no existing formula in the conclusion of the instance with the same species
of label, the rule is interpreted as implicitly adding one. The resulting rules are:

` Γ | ∆ ⇓ P
d −−−−−−−−−−−−−−−−−−−−−−−
` Γ | ∆, uP ⇑ ·

` Γ, L P | ∆ ⇓ P
d! −−−−−−−−−−−−−−−−−−−−−−−−−
` Γ, L,uP | ∆ ⇑ ·

` Γ, L,uP | ∆ ⇑ Ψ
? −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` Γ, PL | ∆ ⇑ ?uP,Ψ

and the remaining rules of LLF are modified to use labels in a straightforward way.
The extraction algorithm for a labelled LLF proof of ` · | · ⇑ N then proceeds by
applying LLF rules upwards, with the following cases:

1. For a sequent ` Γ | ∆ ⇑ Ψ for which there are available negative rules to be
applied, one of these rules is applied, and the order of the application of the
rules is irrelevant.

2. For a sequent ` Γ | ∆ ⇑ · we pick the unique, smallest label for ≤ from the
available labels in Γ and ∆, and use d or d! accordingly — the completeness
of the whole algorithm depends on the presence of such a smallest label.

3. For the⊗ rule of LLF, we send side formulas to the premise involving P when
their labels are larger by ≤ than some label of a subformula of P, and the rest
to the premise involving Q — since labelling is unique, the sets of labels in P
and Q are disjoint —, and for the ⊕ rules we simply repeat the choice made
in the P ′ proof.

Notice that there are no labels in 1, so that nothing can be sent to any branch
focusing on 1, and the only side formula that can be sent to a branch focusing on au
is a formula av with u< v, so that the identity rule always succeeds. This algorithm
leads us to the expected result.

Proposition 4.9 (Extraction). If a structure N is provable in LEF then the sequent
` · | · ⇑ N is provable in LLF.

This relies on the fact that at any step of the bounded search described above,
there exists a unique label smallest for ≤ among all available labels. This implies
that the algorithm can always make progress, and it is also terminating because
labels are consumed by the d and d! rules. From N we can thus build a proof in
LLF starting with a reaction instance, that we can cut off, and we finally remove
all labels to obtain the desired proof.

284 7 — Nested Focusing in Linear Logic284 7 — Nested Focusing in Linear Logic284 7 — Nested Focusing in Linear Logic

Chapter 8

Proof Search as Reduction
in the λ-calculus

In this chapter, we present a non-standard correspondence between proof search
in an intuitionistic system and computation as described in the λ-calculus. Due to
the collapse of the branches into a flat sequential structure, a proof in the calculus
of structures is built by a sequence of rewriting steps on formulas, opening the way
for an interpretation of proof search as reduction in a computational model based
on rewriting. Naturally, the λ-calculus is an interesting candidate, and we set out to
relate proof search in the JS proof system, described in Chapter 4, to the reduction
system of a λ-calculus with explicit substitutions.

However, the proof search process in a nested deduction system is much richer
than the dynamics of explicit substitutions, and we need to impose restrictions on
the logical system to make it match the chosen computational model. There is an
obvious mismatch in the sense that the result of a computation is not always the
same, as the premise of a proof is always the truth unit, but this simply means that
we will be concerned here with open derivations rather than complete proofs. The
most important restrictions are those ensuring an adequate level of determinacy in
the application of inference rules, and of course the ones necessary to make the
structure of formulas match the structure of a λ-term with explicit substitutions.

We start with the plain JS system and define several restrictions to obtain our
candidate logical system. Then, we show that all the restrictions on inference rules
are reasonable with respect to the restrictions made on the set of formulas, and we
exhibit a direct, one-to-one correspondence between inference rules of this system
and reduction rules for the λs-calculus, presented in Chapter 2, through a simple
encoding. We then discuss how this strong relation between logic and computation
allows to transfer results from one world to the other.

Finally, we observe that through this correspondence, the strategy chosen to
perform proof search on a formula is also the strategy chosen to reduce the term it
represents. Following this idea, we introduce further restrictions on the side of the
logical system, using annotations to enforce a normal form in the style of focusing,
and show how it creates phases corresponding to big-step reductions implementing
the call-by-name reduction strategy of the standard λ-calculus.

286 8 — Proof Search as Reduction in the λ-calculus286 8 — Proof Search as Reduction in the λ-calculus286 8 — Proof Search as Reduction in the λ-calculus

B
x −−−−−−−−−−−−−−−−−−−
(B→ A)→ A

B
w −−−−−−−−−

A→ B

((A→ B)→ C)→ D
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A→ (B→ C)→ D

A→ A→ B
c −−−−−−−−−−−−−−−−

A→ B

>→ A ≡u A
A→ (B→ C) ≡a B→ (A→ C)

Figure 1: Inference rules and congruence for JS

1 Proof Search as Rewriting

In the calculus of structures, the notion of deduction is not implemented through
rules decomposing formulas into a deductive meta-level, as in the sequent calculus,
but rather through rewriting rules that can be applied anywhere in formulas. This
approach to the representation of proof objects establishes a connection between
the standard framework of proof theory and the well-developped theory of rewrite
systems [BN98], that is not just the traditional view of proof normalisation, or cut
elimination, as a rewriting operation on the term representing a proof.

The operations performed on the structures of a system such as JS, presented in
Chapter 4, and recalled in Figure 1, are much more complex than the manipulation
of formulas in the sequent calculus or natural deduction. It is actually rich enough
to be rather similar to some rewrite systems found in the literature: in particular,
we are interested here in its similarity to the λ-calculus with explicit substitutions,
as presented in Chapter 2, in its standard version.

The connection between the λ-calculus and proof search in the setting of deep
inference has already been studied in the particular, restricted case of the purely
linear λ-calculus [Rov11]. However, this correspondence relies on a rather exotic
proof system, which is a variant of the system BV [Gug07] extended by an oper-
ator for renaming atomic formulas. Moreover, the conceptual complexity of the
system is in mismatch with the simplicity of the linear λ-calculus, and extending
this to the standard λ-calculus would be complicated because of the complexity of
exponentials in linear logic — a system such as NEL [GS02] would be required.

We propose a study of the JS intuitionistic system based on three observations:

(i) Proof search in deep inference allows the application of an inference rule at any
position inside a formula.

(ii) Implication in the intuitionistic system JS is a non-commutative connective that
induces a distinction between positive and negative positions.

(iii) All inference rules in JS preserve the positive and negative position of formulas,
even when formulas are moved from one context to another.

1 — Proof Search as Rewriting 2871 — Proof Search as Rewriting 2871 — Proof Search as Rewriting 287

The first observation is obviously the reason why encoding any computational
model based on rewriting, such as the λ-calculus, is possible in the first place. The
two other observations are suggesting that it is not necessary to introduce a new
non-commutative connective as in BV, since implication is non-commutative and
has the required properties — in particular, it provides a clear distinction between
positive and negative formulas.

Following the idea that we have two separate kinds of formulas in JS, we decide
to represent λ-terms as positive formulas and binding names as negative ones. We
want to establish a correspondence based on the following encoding of a λ-term
into an intuitionistic structure:

¹xº = x
¹λx .tº = x → ¹tº
¹t uº = (¹uº→>)→ ¹tº

¹t[x ← u]º = (¹uº→ x)→ ¹tº

which reflects the idea that an application, that can become a β-redex, is a potential
explicit substitution to which no binding name has yet been attached. In order to
support the correspondence, we will need a proof system where the application of
an inference rule rewrites the encoding of a term t into the encoding of a term u
such that t −→ u. This requires the use of explicit substitutions, through the use of
the λs-calculus [KR11], since the rewriting steps implemented in JS are primitive,
local operations. The restricted shape of structures obtained through the encoding
of terms leads to the use of a restriction of JS, called JSL, that ensures the stability
of the encoding under inference.

Moreover, we will consider a variant of the JSL proof system using syntactic
annotations in the style of focusing, which allows to consider groups of inference
rule instances corresponding to the dispatch of the explicit substitutions inside all
subterms of a term. This system yields a correspondence with big-step reduction of
λs-terms, and therefore with the standard λ-calculus with plain β-reduction. On
the other side of the restriction spectrum the question of an interpretation of proof
search in the complete, unrestricted JS system remains open. The general form of
the JS structures allowing complex negative substructures suggests an extension of
binding names into patterns, yielding a correspondence with some calculus based
on pattern-matching [JK09]. The general picture of the situation is:

Logical system Computational device

JSL with restrictions and λs-calculus
deterministic proof search (explicit substitutions)

JSL with restrictions pure λ-calculus
and focusing annotations (with β-reduction)

JSL without further non-deterministic variant
restrictions of the λ-calculus ?

complete JS system » pattern calculus « ?

288 8 — Proof Search as Reduction in the λ-calculus288 8 — Proof Search as Reduction in the λ-calculus288 8 — Proof Search as Reduction in the λ-calculus

2 A Restricted Intuitionistic System

Although it is a simple system for a fragment of intuitionistic logic, JS is already too
general to represent the λ-calculus with precision in a proof search style. Indeed,
no λ-term corresponds to a formula with a compound formula in negative position,
such as (A → (B → C)) → D, and even if we restrict formulas to images of the
translation mentioned in the previous section, we still have problems with inference
rules and equations that do not correspond to valid operations of our λ-calculus,
as for example:

λx .t −→ λx .λx .t
λx .λy.t ≡a λy.λx .t

Thus, we define a restriction of this system, called JSL, where formulas are limited
to those where the subformulas in negative position, located on the left of an odd
number of implications, only have a certain shape where at most one implication
is used — plus some restrictions on the use of the > unit.

Definition 2.1. The restricted formulas of intuitionistic logic are defined by B in the
following grammar:

B ::= a | a→ B | ω→ B | δ→ B

where a block δ and a matcher ω are defined as:

δ ::= B→ a ω ::= B→>
We will denote restricted formulas the same way as formulas, to keep notations

simple. Blocks are defined as subformulas in negative position where the rightmost
literal is an atom, they are denoted by greek letters such as δ, κ or µ, and they
represent explicit substitutions in our encoding. Then, matchers are subformulas
in negative position where the rightmost literal is the unit >, they are denoted by
ω or τ, and they represent the argument term in an application. We use contexts
to restrict the congruence as well, keeping only the equation ≡a on specific positive
subformulas:

ξ{δ→ (κ→ A)} ≡b ξ{κ→ (δ→ A)}
so that only negative subformulas can be exchanged, and this corresponds to the
fact that there is only one positive formula located directly under an implication in
negative position, in the definition of restricted formulas. Notice that the equation
≡b forbids the exchange of any subformula that is not a block.

Definition 2.2. The restricted structures of the intuitionistic system JSL are defined
as the equivalence classes of formulas generated by the congruence described by the
single equation ≡b.

Finally, the inference rules for the restricted system JSL are given in Figure 2.
In this system, the switch rule and the rules of weakening and contraction can only
be used to move, erase or duplicate blocks. Moreover, another part of the equation
≡a is expressed in the rule ex, which also can only exchange blocks. The identity
rule is also restricted, through the condition that the premise cannot be the > unit,
and it only applies on atoms. Note that in the sr rule, L denotes a literal, which is
either an atom a or the unit >.

2 — A Restricted Intuitionistic System 2892 — A Restricted Intuitionistic System 2892 — A Restricted Intuitionistic System 289

B
xr −−−−−−−−−−−−−−−−−−−
(B→ a)→ a

(B→ a)→ C
xsu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→>)→ (a→ C)

A
wr −−−−−−−−−
δ→ A

δ→ (δ→ A)
cr −−−−−−−−−−−−−−−−−−−

δ→ A

A→ (δ→ B)
ex −−−−−−−−−−−−−−−−−−−
δ→ (A→ B)

((δ→ A)→ L)→ B
sr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
δ→ ((A→ L)→ B)

Figure 2: Inference rules for system JSL

2.1 Restrictions on Structures and Rules

The new rule xsu is a compound rule that embodies the use of an identity on the
unit >, and corresponds to the following JS derivation:

(B→ a)→ C
x −−
((((B→>)→>)→ a)→ C)

s −−
(B→>)→ ((>→ a)→ C)

≡u −−−(B→>)→ (a→ C)

This new inference rule will correspond, through the encoding of λs-terms, to the
standard B rule which triggers a β-redex by turning an application into an explicit
substitution, to be carried out:

(λx .t) u−→B t[x ← u]

This system is clearly not going to be complete, since restrictions are so strong
that for example, there is no way of writing a proof of a→ (a→>)→ a. However,
this system can easily be shown sound with respect to its general version JS. This
is proved in a strong sense, relating derivations of the two systems rather than just
proofs. Moreover, it does not require any translation, since any restricted structure
of JSL is a valid structure of JS1.

Theorem 2.3 (Soundness of JSL). If there is a derivation from A to B in JSL, then
there is a derivation from A to B in JS.

Proof. Any derivation from A to B in JSL can be immediately converted into a
derivation in JS. Indeed, the rules xr, wr, cr and sr are restrictions of the rules
of JS, the equation ≡b is a restriction of ≡a and the ex rule also corresponds to
another use of this equation. Finally, any instance of the xsu rule can be replaced
with a derivation of JS, as shown above.

1The congruence used in JSL is also a subset of the general congruence we used in JS, so that the
equivalence class of a restricted formula, forming a structure, is larger in JS than in JSL.

290 8 — Proof Search as Reduction in the λ-calculus290 8 — Proof Search as Reduction in the λ-calculus290 8 — Proof Search as Reduction in the λ-calculus

It is interesting to notice that the identity on the unit > we use in the derivation
corresponding to xsu is not even needed in JS, but will be shown admissible. To
preserve the upper bound on the height of proofs during the process, it is useful to
consider the system JS', a variant of JS where the usual switch is replaced with a
compound rule called super-switch [Str03a]:

ξ{δ} → B
ss −−−−−−−−−−−−−−−−−−−−−−−−−
δ→ (ξ{>} → B)

which is equivalent to a derivation of several switches, so that there exist obvious
translations between JS and JS'. We use this alternative system to count a sequence
of switches as only one rule instance in the height of a proof.

Remark 2.4. The xsu rule is not admissible in the restricted JSL system, since that
would require an equation allowing to add a unit on the left of a formula, under an
implication. This is clearly valid in intuitionistic logic but does not fit our restrictions.

Proposition 2.5. If there is a proof of a structure ξ{A} in JS, then there is a proof of
ξ{(A→>)→>} as well in JS, not using an identity on these > occurrences.

Proof. By induction on the height of the given proof D of A in JS, translated into
the JS' system. If D is of height 0, we replace > with (> → >) → > using ≡u.
Then, in the general case, we use a case analysis on the bottommost rule instance
r in D. We can always rewrite the conclusion and use the induction hypothesis to
rewrite the premise, but in the case of a switch moving some structure E inside A,
where A is (B→ C)→ D, we must use an additional switch:

ξ{((E→ B)→ C)→ D}
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{E→ ((B→ C)→ D)}

−→
ξ{((((E→ B)→ C)→ D)→>)→>}

s −−
ξ{((E→ ((B→ C)→ D))→>)→>}

s −−
ξ{E→ ((((B→ C)→ D)→>)→>)}

which can be rewritten into a super-switch ss instance. Note that in the case of the
contraction c, we need to use the induction hypothesis twice, and this is possible
because the transformation is height-preserving, thanks to the super-switch.

Now, we will show that the JSL proof system is actually not so far from being
complete with respect to the restricted fragment of intuitionistic logic. In order to
do this, we will consider a smaller fragment, by imposing even more restrictions
on structures: only one negative occurrence of each atom is allowed, and all of its
positive occurrences must appear » in the scope « of this negative occurrence. We
use the notation a ∈ B to denote that some atom a appears in the structure B, and
a ∈ ξ if a appears in the context ξ{ }.

Definition 2.6. The (positive) multiplicity of an atom a in some structure B, denoted
by |B|+a , is the number of occurrences of a in positive position within B. Its negative
multiplicity, denoted by |B|−a , is its number of occurrences in negative position in B.

2 — A Restricted Intuitionistic System 2912 — A Restricted Intuitionistic System 2912 — A Restricted Intuitionistic System 291

apply wr on (B→ a)→ C : only if |C |+a = 0
apply crr on (B→ a)→ C : only if |C |+a ≥ 2
apply ex on (B→ a)→ (C → D) : only if |C |+a = 0, |D|+a ≥ 1
apply sr on (B→ a)→ ((C → L)→ D) : only if |C |+a ≥ 1, |D|+a = 0

ξ{(C → a)→ ((D→ b)→ E)} ≡b ξ{(D→ b)→ ((C → a)→ E)}
this equation holds only if we have |D|+a = 0 and |C |+b = 0

Figure 3: Restrictions used to define JSLd from JSL

The formulas left in the more restricted class that we define are called functional
structures because they will be exactly the formulas corresponding to λs-terms in
the following section.

Definition 2.7. A restricted structure B is said to be functional if for any a ∈ B, there
is a context ξ{ } and structures C and D such that we have either B ≡b ξ{a→ C} or
B ≡b ξ{(D→ a)→ C}, with a 6∈ ξ, a 6∈ D, |C |+a ≥ 0 and |C |−a = 0.

This means that in any functional structure, a given atom can appear only once
in negative position, but possibly many times in positive position. Then, we observe
that functional structures are not stable under application of inference rules of JSL,
in particular under contraction. Therefore we need to tweak our inference rules. To
be able to use contraction on such structures, we consider the following variation
of the cr rule:

(B→ d)→ ((B→ a)→ C[d/a])
crr −−−

(B→ a)→ C

where C[d/a] denotes2 C with exactly one occurrence of the atom a replaced by
an occurrence of a » fresh « atom d — not used in the rest of the structure. This
rule can be shown sound through a straightforward induction on proofs. Finally,
we define the proof system JSLd as {xr,xsu,wr,crr,ex, sr}, with extra conditions
on the conclusion of rules and on the congruence, summarised in Figure 3. These
conditions ensure that functional structures are stable under application of rules of
JSLd, as well as its congruence.

These new restrictions correspond, on the side of our λ-calculus, to the idea
that we want to manipulate terms up to renaming of variables, so that no variable
name is bound twice, and we can use implicitly α-conversion to change names.

The JSLd system is sound with respect to intuitionistic logic, since we have only
added restrictions on inference rules of JSL and we observed that the variant rule
crr was sound too, and we now study the question of completeness. As we already
noticed, this system is not complete — the unit > cannot appear as the premise of
a derivation, so that there is no proof per se in this system — but we can establish

2This notation is reminiscent of the renaming operator that can be used in the λ-calculus with explicit
substitutions [AK10], to handle duplication.

292 8 — Proof Search as Reduction in the λ-calculus292 8 — Proof Search as Reduction in the λ-calculus292 8 — Proof Search as Reduction in the λ-calculus

a partial completeness result. We do that in three steps: first we use a subset of the
JSLd system, then we deal with some particular weakenings forbidden in JSLd,
and finally we build the proof premise > from a simple formula, by dealing again
with weakenings. The goal is to show that if some A is provable in JS, we can build
a proof of the shape:

>
{xw,uw}

B
JSLb

A

(11)

where JSLb is the subset of JSLd we will consider, and A is a functional structure,
the idea being that our restricted rules are enough to prove this kind of restricted
structures, up to particular weakenings.

2.2 Termination and the JSLb Proof System

We consider the system JSLb, which is defined as JSLd without the xsu rule, for
which we show that proof search is terminating. To do that, we need a measure
on functional structures that will decrease during proof search, and the first part of
this measure can be defined in a simple way.

Definition 2.8. Given a functional structure A, we define as follows its block-complexity,
denoted by C(A), and its net size, denoted by N(A), using the following induction:

C(a) = 0
C(a→ B) = C(B)

C((C →>)→ B) = C(C) + C(B)
C((C → a)→ B) = C(C) + C(B) + N(B)

N(a) = 1
N(a→ B) = 1+ N(B)

N((C →>)→ B) = N(C) + N(B)
N((C → a)→ B) = N(B)

Remark 2.9. The block-complexity is invariant under congruence, defined by equation
≡b, because the blocks that can be exchanged this way are exactly the substructures
that are not counted in the size of a given structure.

This complexity measure is simply the sum, for each block δ, of the size of the
structure in the scope of δ. We can use this to show that the process of building
a derivation by applications of inference rules of JSLb terminates — we call this
proof search although we are building derivations and not proofs.

Lemma 2.10. Proof search in JSLb is terminating.

Proof. Given some functional structure A, if we apply any inference rule of JSLb
on A other than the contraction crr rule, we obtain a functional structure B such
that C(B)< C(A), as can be checked for the rules xr, wr, ex and sr.

2 — A Restricted Intuitionistic System 2932 — A Restricted Intuitionistic System 2932 — A Restricted Intuitionistic System 293

In the case of crr, we can observe that one positive occurrence of an atom has
been replaced with an occurrence of some fresh atom. We define for any functional
structure F a measure M(F) as the multiset of |F |+d for all d ∈ F , under multiset
ordering, and with crr we have M(B) < M(A) since |B|+e < |A|

+
e for some e ∈ A, and

the introduced atom has a multiplicity of 1 in B.
Finally, we can use an induction on the pair (M(A),C(A)), under lexicographic

order, and we reach the base case with a structure G such that no block δ appears
in G. This implies that no rule of JSLb can be applied on G.

Moreover, we can prove that the rules of JSLb are invertible in JS, so that proof
search preserves provability in JS. This means we can use JSLb on a structure A to
produce by proof search a B such that A is provable in JS if and only if B is provable
in JS. This is expressed in the following lemmas.

Lemma 2.11. If there is a proof in JS of a functional structure ξ{(B → a) → a},
then there is a proof in JS for ξ{B}.

Proof. By induction on the height of some given proof D in JS of ξ{(B→ a)→ a},
we build a proof for the structure ξ{B}. If D has height 2, it uses two identities on
((b→ b)→ a)→ a, and we use the identity on b→ b only. In the general case, we
use a case analysis on the bottommost rule instance r in D:

1. If r does not affect this occurrence of (B → a) → a, we can rewrite the
conclusion into ξ{B}, and use the induction hypothesis to rewrite the premise
accordingly — and if r only affects a structure inside this occurrence of B, we
proceed the same way.

2. If r is a contraction c on this occurrence of B→ a, then one copy of B→ a is
erased by a weakening in the proof, and we can rewrite the proof to remove
this copy, by replacing all switch instances moving material in the copy of B
by weakenings — and obtain a proof of at most the same height, so that we
can use the induction hypothesis.

3. If r is a switch s moving a structure D on the left of B→ a, we can remove it
and go on by induction hypothesis:

ξ{((E→ B)→ a)→ a}
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{E→ ((B→ a)→ a)}

−→ ξ{E→ B}

Notice that there can be no weakening on this B→ a since there would be no a left
in negative position to complete the proof.

Lemma 2.12. If there is a proof in JS of some functional structure ξ{(B→ a)→ C},
and |C |+a = 0, then there is a proof in JS for the structure ξ{C}.

Proof. By induction on the height of a given proof D in JS of ξ{(B→ a)→ C}, we
build a proof for the structure ξ{C}. If D has height 2, it uses a weakening and an
identity on (B→ a)→ (c→ c), and we use the identity on c→ c only to conclude.

294 8 — Proof Search as Reduction in the λ-calculus294 8 — Proof Search as Reduction in the λ-calculus294 8 — Proof Search as Reduction in the λ-calculus

In the general case, we use a case analysis on the bottommost rule instance r in
the given proof D:

1. If r does not affect this occurrence of B → a, we rewrite the conclusion into
ξ{C} and use the induction hypothesis to rewrite the premise accordingly.

2. If r only affects a structure inside this occurrence of B, we can rewrite the
conclusion into ξ{C}, and then we use the induction hypothesis to rewrite
the premise, as in the previous case.

3. If r is a weakening w on this occurrence of B → a, we can remove it in the
conclusion and the result is immediate.

4. If r is a contraction c on this occurrence of B→ a, we rewrite the conclusion
into ξ{C} and then we use twice the induction hypothesis, which is possible
since the first proof obtained has at most the same height as the original.

5. If r is a switch s moving a structure E on the left of B→ a, we replace it by a
weakening, as shown below:

ξ{((E→ B)→ a)→ C}
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{E→ ((B→ a)→ C)}

−→
ξ{C}

w −−−−−−−−−−−−−−−
ξ{E→ C}

and we can go on by induction hypothesis.

Therefore, in any case we can build the expected proof of ξ{C}.

Lemma 2.13. If there is a proof in the JS system of some functional structure of the
shape ξ{(B → a)→ ((C → L)→ D)}, with |C |+a ≥ 1 and |D|+a = 0, then there is a
proof in JS for the structure ξ{((((B→ a)→ C)→ L)→ D)}.

Proof. By induction on the height of a proof D of ξ{(B → a) → ((C → L) → D)}
in JS translated to the JS' system, we build a proof of at most the same height for
ξ{((((B → a)→ C)→ L)→ D)}. In the base case, D has height 3 and it uses on
((c → c)→ a)→ ((a → b)→ b) three identities, so that we can do the same. In
the general case, we use a case analysis on the bottommost rule instance r in D:

1. If r does not affect this occurrence of B → a, we rewrite the conclusion into
ξ{((((B→ a)→ C)→ L)→ D)} and use the induction hypothesis to rewrite
the premise.

2. If r only affects a structure inside this occurrence of B, we can rewrite the
conclusion again, and use the induction hypothesis.

3. If r is a weakening w on this occurrence of B→ a, we rewrite the conclusion
again and use a weakening.

4. If r is a contraction c on this occurrence of B→ a, we rewrite the conclusion
again and use twice the induction hypothesis, which is possible since the
proof obtained the first time has at most the same height as the original.

2 — A Restricted Intuitionistic System 2952 — A Restricted Intuitionistic System 2952 — A Restricted Intuitionistic System 295

5. If r is a switch s moving a structure E on the left of B→ a, we replace it by a
super-switch, as shown below:

ξ{((E→ B)→ a)→ ((C → L)→ D)}
s −−
ξ{E→ ((B→ a)→ ((C → L)→ D))}

−→
ξ{((((E→ B)→ a)→ C)→ L)→ D}

ss −−
ξ{E→ ((((B→ a)→ C)→ L)→ D)}

and then we go on by induction hypothesis. The case of a super-switch is
treated exactly the same way.

In the end, we have a new proof in JS' that we can turn into a proof of the same
structure in JS by expanding super-switches.

Lemma 2.14. If there is a proof in JS of some functional structure ξ{(B→ a)→ C},
with |C |+a ≥ 2, there is a proof in JS for ξ{(B→ d)→ ((B→ a)→ C[d/a])}.

Proof. We proceed by induction on the pair (|C |+a , h), under lexicographic order,
where h is the height of the proof D in JS of ξ{(B→ a)→ C}, we build a proof for
the structure ξ{(B → d)→ ((B → a)→ C[d/a])}. By hypothesis, there is always at
least two occurrences of a in C and we can use a case analysis on the bottommost
rule instance r in the given proof D:

1. If r does not affect this occurrence of B→ a and does not erase or duplicate
the occurrence of a replaced by d in C[d/a], or affects only B, we rewrite the
conclusion into the expected one and use the induction hypothesis to rewrite
the premise accordingly, since h has decreased.

2. If r is a weakening w erasing the occurrence of a replaced by d in C[d/a], then
we simply rewrite the conclusion and introduce a weakening on B→ d at the
bottom of the proof.

3. If r is a contraction c duplicating the occurrence of a replaced by d in C[d/a],
then we apply the induction hypothesis twice on the proof above r to rewrite
the premise — this is possible because |C |+a decreased after the first rewriting
— and introduce an additional contraction on B→ d.

4. If r is a weakening w on this occurrence of B→ a, we rewrite the conclusion
and insert an additional weakening to erase the structure B → d, while if it
is a contraction on B→ a, we immediately use the induction hypothesis.

5. If r is a switch s moving a structure E on the left of B → a, we introduce a
contraction and a switch, as follows, and go on by induction hypothesis:

ξ{((E→ B)→ a)→ C}
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{E→ ((B→ a)→ C)}

−→
ξ{(((E→ B)→ d)→ (E→ B)→ a)→ C[d/a]}

s∗ ==
ξ{E→ E→ ((B→ d)→ (B→ a)→ C[d/a])}

c −−−
ξ{E→ ((B→ d)→ (B→ a)→ C[d/a])}

296 8 — Proof Search as Reduction in the λ-calculus296 8 — Proof Search as Reduction in the λ-calculus296 8 — Proof Search as Reduction in the λ-calculus

Lemma 2.15. If there is a proof of a functional structure ξ{(B→ a)→ (C → D)} in
JS with |C |+a = 0 and |D|+a ≥ 1, there is a proof in JS for ξ{C → ((B→ a)→ D)}.

Proof. This corresponds to the use of the congruence in the JS system, namely the
equation ≡a, so that this is immediate.

We can use all these lemmas to prove that the proof search process in JSLb has
the interesting property of preserving provability, which will be a crucial argument
in our partial completeness result.

Lemma 2.16. For any structures A and B, if there is a derivation from A to B in the
JSLb system and B is provable in JS, then A is provable in JS.

Proof. By induction on the height of the given derivation D from A to B in JSLb.
If D has height 0, the result is immediate since A is B. In the general case, we use
a case analysis on the bottommost rule instance r in D, to prove that if there is a
proof of its conclusion A in the JS system, there is also a proof of its premise, by
either Lemma 2.11, Lemma 2.12, Lemma 2.14, Lemma 2.15 or Lemma 2.13.

2.3 Closing JSLb Proofs

The rules of JSLb form a subsystem of JSL that cannot be used in general for the
construction of complete proofs, because of the strong restrictions imposed on the
use of weakenings. In order to establish a partial completeness result, we now
show how to close a proof by dealing with weakenings that cannot be performed
in JSLb or in JSL, to recover the provability of the JS system.

Weakening matchers. We consider the following rule, which corresponds to a
case of weakening forbidden in JSL:

A
uw −−−−−−−−−−−−−−−−−−−−
(B→>)→ A

Then, we can show that this inference rule is invertible, in the sense that using
it during the proof search process cannot turn some provable structure into another
structure that is not provable — reading from conclusion to premise.

Lemma 2.17. If there is a proof in JS of some functional structure ξ{(B→>)→ A},
then there is a proof of ξ{A} in JS.

Proof. By induction on the given proofD in JS, we build a proof of ξ{A}, preserving
the upper bound on the height of the proof. If D has height 1, it uses a weakening
on (B → >)→ >, and the result is immediate. In the general case, we use a case
analysis on the bottommost rule instance r in D:

1. If r does not affect this B→> occurrence, we remove it from the conclusion
and use the induction hypothesis to rewrite the premise accordingly.

2. If r only affects a structure inside this occurrence of B, we can remove this
instance and use the induction hypothesis.

2 — A Restricted Intuitionistic System 2972 — A Restricted Intuitionistic System 2972 — A Restricted Intuitionistic System 297

3. If r is a weakening w on this occurrence of B→>, the result is immediate.

4. If r is a contraction c on this occurrence of B→>, we rewrite the conclusion
and we use twice the induction hypothesis, which is possible since the proof
obtained the first time has at most the same height as the original.

5. If r is a switch s moving a structure C on the left of B, we can replace it by a
weakening, as shown below, and go on by induction hypothesis:

ξ{((C → B)→>)→ A}
s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{C → ((B→>)→ A)}

−→
ξ{A}

w −−−−−−−−−−−−−−
ξ{C → A}

In this analysis, there is no need to consider the case where r is an instance of the
identity x used on (B→>)→>, since we can always remove it from any proof in
JS by using Proposition 2.5.

Closing the proof. We consider a functional structure where no block and no
matcher appears, and observe that it is of the shape b1 → · · · → bn → a. Such a
structure is provable if and only if there is an i such that bi is a, and we can use
the following inference rule, not to be applied inside a context:

>
xw −−−

b1→ ·· · → a→ ·· · → bn→ a

which can be applied on a structure of this shape if and only if it is provable, since it
is equivalent to many weakenings and one identity instance. Now, we can glue the
pieces together to produce a proof of weak completeness, which states that given a
functional structure A provable in JS, although there is no proof of A in JSLb nor in
JSLd, there is a derivation from a structure B to A in JSLb, such that B can easily
be mechanically checked.

Theorem 2.18 (Weak completeness of JSLb). For any given functional structure A,
if there is a proof of A in JS, then there is a structure B such that there is a derivation
from B to A in JSLb and a proof of B in {uw,xw}.

Proof. As a first step, we apply Lemma 2.10 to produce by proof search a derivation
D1 from some structure A1 to A in the JLSb system. Notice that there can be no
block — that is, structures of the shape (B → c) in negative position — in the
structure A1 since that would imply that at least one inference rule of JSLb could
be applied. Moreover, by Lemma 2.16 we know that if A is provable in JS, then
A1 is provable in JS too. Then, we apply as much as possible the uw rule on A1 to
produce a derivation D2 from a structure A2 with no matchers — that is, structures
of the shape (B→>) in negative position — to A1. By Lemma 2.17 we know that
if A1 is provable in JS, then A2 is provable in JS too. Finally, if A2 is provable in
JS and does not contain matchers, then we can use one instance of xw to build a
proof of the shape described in (11), where the expected derivation from B to A in
JSLb is D1, since this A1 is provable in {uw,xw}.

298 8 — Proof Search as Reduction in the λ-calculus298 8 — Proof Search as Reduction in the λ-calculus298 8 — Proof Search as Reduction in the λ-calculus

Corollary 2.19 (Weak completeness of JSLd). For any given functional structure A,
if there is a proof of A in JS, then there is a structure B such that there is a derivation
from B to A in JSLd and a proof of B in {uw,xw}.

This result tells us that JSLb is indeed a sensible system to deal with functional
structures, and therefore JSLd can also be used. The problem of proving functional
structures in the JSLd system is more subtle that in JSLb, since it allows the use
of the xsu rule which is not invertible, while we can avoid using the uw rule to
get a complete proof in some cases. This is not always possible, as shown by the
following example proof:

>
xw −−−−−−−−−

a→ a
uw −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→>)→ (a→ a)

In this case, we cannot use the xsu rule if the structure B is not provable in JS,
while the complete structure is provable in JS. The JSLd system allows to use the
minimal amount of instances of uw to get a proof in JS, but there is no way in
general to build a proof from JSLd and the xw rule only. The class of structures
that can be proved using JSLd and xw only is more behaved than general functional
structures, since the structure B in a structure of the shape (B → >) → C is not
logically relevant.

3 Encoding Reduction in Proof Search

We will now consider a λ-calculus with explicit substitutions called λs [KR11], and
show how its terms can be encoded into logical structures, so that the process of
building a derivation in JLSd will simulate the process of applying reduction rules
in the λs-calculus. We say proof search, although we are not building complete
proofs but rather open derivations, to emphasize the relation of this work with the
usual proof-search-as-computation paradigm [MNPS91].

It is a direct approach, based on incomplete derivations of the proof system,
in the sense that if two given structures A and B represent programs such that A
can be reduced to B through the operational semantics of the language, there is a
derivation from B to A rather than a proof of A→ B, as we will see.

Our λ-calculus is very similar to many other calculi with explicit substitutions in
the literature [Ren11], and in particular it borrows its handling of duplication using
a linear renaming operation from the structural λ-calculus [AK10]. The syntax of
λs-terms can be defined by the following grammar:

t, u ::= x | λx .t | t u | t[x ← u]

where the object [x ← u], which is called an explicit substitution, is a binder for the
variable x , so that x is bound in t[x ← u]. Moreover, terms are considered modulo
α-conversion, so that a variable is always bound at most once in any λs-term. We
will need to count the use of variables in a term, using the following definition.

3 — Encoding Reduction in Proof Search 2993 — Encoding Reduction in Proof Search 2993 — Encoding Reduction in Proof Search 299

(λx .t) u −→B t[x ← u]
x[x ← u] −→var u
t[x ← u] −→not t if |t|x = 0
t[x ← u] −→dup t[y/x][x ← u][y ← u] if |t|x ≥ 2

(λy.t)[x ← u] −→lam λy.t[x ← u]
(t v)[x ← u] −→apl t[x ← u] v if |v|x= 0
(t v)[x ← u] −→apr t v[x ← u] if |t|x = 0

t[y ← v][x ← u] −→cmp t[y ← v[x ← u]] if |t|x = 0, |v|x ≥ 1

t[y ← v][x ← u]≡ t[x ← u][y ← v] if |v|x = |u|y = 0

Figure 4: Reduction rules and equation for the λs-calculus

Definition 3.1. The multiplicity of a variable x in a term t, denoted by |t|x , is the
number of occurrences of the variable x in the term t, not including uses as binder.

The reduction rules defining the operational behaviour of the λs-calculus are
shown in Figure 4, where the construction t[y/x] denotes the term t where exactly
one occurrence of x has been replaced with y . Notice that in the dup rule, the new
variable y must of course be fresh to avoid capture by some binder. This system of
reduction rules is similar to many other calculi and was presented in Chapter 2.

We can now define an encoding of λs-terms into structures. For that, we need
to consider a bijection between logical atoms and variables in the calculus, so that
to any variable x corresponds an atom also denoted by x .

Definition 3.2 (Encoding of λs). The encoding ¹·ºλ from λs-terms into structures
of the JSLd system is defined as follows:

¹xºλ = x
¹λx .tºλ = x → ¹tºλ
¹t uºλ = (¹uºλ→>)→ ¹tºλ

¹t[x ← u]ºλ = (¹uºλ→ x)→ ¹tºλ

Notice that through this encoding, λs-terms correspond to functional structures
only, as they were defined to be used with the JSLd system — this is of course the
reason why we restricted the rules of JS this way. Moreover, the equation on terms
in λs allowing to exchange unrelated explicit substitutions exactly corresponds to
the equation ≡b used on functional structures.

Remark 3.3. It is easy to observe that the encoding ¹·ºλ defines a bijection between
λs-terms and functional structures. Indeed, each shape of structure defined in the
grammar for restricted structures corresponds to exactly one construction in the terms
syntax, and the extra restrictions for functional structures correspond to the writing
of a λs-term with a correct scope structure α-converted to avoid repetition of bindings
on the same name.

300 8 — Proof Search as Reduction in the λ-calculus300 8 — Proof Search as Reduction in the λ-calculus300 8 — Proof Search as Reduction in the λ-calculus

3.1 Computational Adequacy

We now state the theorem establishing the correspondence, at the computational
level, between the operational behaviour of the λs-calculus and the behaviour of
proof search in the JSLd system, where the −→λs relation is the reduction defined
by the rules of Figure 4, −→∗λs is its reflexive and transitive closure, and −→s is the
same, where the B rule is not used.

Theorem 3.4 (Computational adequacy of JSLd). For any given λs-terms t and u,
there is a derivation from ¹uºλ to ¹tºλ in the JSLd system if and only if t −→∗λs u.

Proof. By induction on the reduction steps from t to u. If the reduction path is
empty, t and u are the same and the result is trivial because the encoding ¹·ºλ is
uniquely defined. In the general case, we consider the first step in the reduction,
and use the induction hypothesis on the rest of the reduction. We thus simply have
to check that there is an inference rule instance in JSLd with premise ¹uºλ and
conclusion ¹tºλ if and only if we have t −→λs u. This is immediately done by
observing that each reduction rule corresponds exactly to one case of application
of an inference rule of JSLd:

(B→ a)→ C
xsu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→>)→ (a→ C)

←→
t[x ← u]

B −−−−−−−−−−−−−−
(λx .t) u

B
xr −−−−−−−−−−−−−−−−−−−
(B→ a)→ a

←→
u

var −−−−−−−−−−−−−−
x[x ← u]

C
wr −−−−−−−−−−−−−−−−−−−−
(B→ a)→ C

←→
t

not −−−−−−−−−−−−−−
t[x ← u]

(B→ d)→ ((B→ a)→ C[d/a])
cr −−−

(B→ a)→ C
←→

t[y/x][x ← u][y ← u]
dup −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

t[x ← u]

c→ ((B→ a)→ D)
ex −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→ a)→ (c→ D)

←→
λy.t[x ← u]

lam −−−−−−−−−−−−−−−−−−−−−−
(λy.t)[x ← u]

(C →>)→ ((B→ a)→ D)
ex −−−
(B→ a)→ ((C →>)→ D)

←→
t[x ← u] v

apl −−−−−−−−−−−−−−−−−−−
(t v)[x ← u]

(((B→ a)→ C)→>)→ D
sr −−−
(B→ a)→ ((C →>)→ D)

←→
t v[x ← u]

apr −−−−−−−−−−−−−−−−−−−
(t v)[x ← u]

(((B→ a)→ C)→ e)→ D
sr −−
(B→ a)→ ((C → e)→ D)

←→
t[y ← v[x ← u]]

cmp −−−−−−−−−−−−−−−−−−−−−−−−−−
t[y ← v][x ← u]

Notice that the conditions on the multiplicity of variables in the reduction rules for
λs-terms exactly match the restrictions that were imposed on inference rules to
define JSLd from JSL.

3 — Encoding Reduction in Proof Search 3013 — Encoding Reduction in Proof Search 3013 — Encoding Reduction in Proof Search 301

This result establishes a tight connection between our restricted intuitionistic
system and the λs-calculus. The interesting point is then that a theorem that we
can prove on derivations of the JSLd system on the logical side also holds in its
computational form on reduction paths in the λs-calculus. As an example, we can
prove that the subsystem −→s terminates.

Proposition 3.5. The reduction subsystem −→s terminates.

Proof. This is a direct corollary of Lemma 2.10, considering derivations of JSLb
as reduction paths in the −→s subsystem through the correspondence defined by
Theorem 3.4.

The other way around, if we have some result on reduction in the λs-calculus,
we can directly transpose this result to the logical side. For example, confluence
can be proved for the the −→λs rewrite system, and we could mimick the proof to
obtain a similar result on derivations of the JSLd system. We would thus obtain a
proof of the following proposition.

Proposition 3.6. For any structures A, B and C, if there are derivations from B to A
and from C to A in JSLd, then there is a structure D such that there are derivations
from D to B and from D to C in JSLd.

Moreover, we observed that the class of structures that can be proven by proof
search in JSLd without using uw is more interesting than functional structures,
since this rule does not correspond to a valid rewriting on λs-terms. Also notice
that the conclusion of the xw rule, where no structure of the shape B→> appears,
is exactly a λs-term in normal form. From this we can derive a characterisation of
weakly normalising terms.

Theorem 3.7. A λs-term t is weakly normalising if and only if there is a proof of
¹tºλ in the JSLd∪ {xw} system.

Proof. First, if the term t is weakly normalising, then there is a u in normal form
with t −→∗λs u, and by Theorem 3.4 we have a derivation D from ¹uºλ to ¹tºλ in
JSLd. We can thus use the xw rule on ¹uºλ to produce a proof of ¹tºλ. Then, if
there is a proof of ¹tºλ in JSLd∪ {xw}, we have such a derivation D and we can
use Theorem 3.4 the other way around to get a term u in normal form such that
we have t −→∗λs u.

It would therefore be interesting to learn more about this class of structures,
inside the logic, to get insights on weakly normalising terms in the λs-calculus.
Furthermore, an important class is the one of strongly normalising terms, for which
any reduction path reaches a normal form, and which are often characterised using
a type system. It is not clear whether this class could be characterised through a
particular variant of the JSLd system. An interesting problem would therefore be
to define an efficient procedure to decide whether a given structure is provable in
this system, to check if some λs-term is strongly normalising without computing
its typing derivation.

302 8 — Proof Search as Reduction in the λ-calculus302 8 — Proof Search as Reduction in the λ-calculus302 8 — Proof Search as Reduction in the λ-calculus

In particular, this means that we could ensure termination of a program without
knowing its type: if this can be done efficiently using an algorithm such as a variant
of resolution for a fragment of intuitionistic logic, this is interesting, but it does not
ensure that the composition of two well-behaved programs is well-behaved. It is
thus unclear what kind of mechanism could take the role of typing in this setting.

The tight correspondence established by Theorem 3.4 allows direct reasoning
on reduction paths in the λs-calculus, where each step can be handled separately.
Therefore, if we have a trace of computation corresponding to the reduction of a
term t to some term u and another trace for the reduction from u to some term v,
composing these traces is immediate and provides a trace of computation from t to
v. Contexts can also be handled in a very natural way, as it is done in the calculus
of structures.

3.2 Search Strategies and Evaluation Order

In the setting established through computational adequacy, permutations of rule
instances, and transformations on derivations in the JSLd proof system allow for a
reorganisation of a reduction path between two given λs-terms. Indeed, the order
in which instances appear in a derivation corresponds to an order in the treatment
of the redexes of a λs-term, so that the choice of a proof search strategy in JSLd is
equivalent to the choice of an evaluation order for a given term. There are several
interesting observations regarding this correspondence:

• The relative order of xsu instances in a derivation corresponds to the order
in which β-redexes are turned into explicit substitutions, and a xsu instance
cannot always be permuted down, since new β-redexes can be created during
reduction.

• A trivial permutation corresponds to the situation where two redexes can be
treated independently, which means that there is local confluence — because
we can apply the two reduction rules in any order.

• The confluence result in the λs-calculus implies that there is always a form of
permutation possible between rule instances of a derivation in JSLd, which
might require to introduce a new sequence of reductions, corresponding to
a subderivation introduced to make the premise of one instance match the
conclusion of the other.

Example 3.8. Below are shown two sequences of rewriting, presented as derivations
of JSLd but where structures are written as λ-terms. These two derivations correspond
to the permutation of an ex instance below a xsu instance, and to the two reduction
sequences to obtain the term t[y ← v][x ← u] from the term ((λx .t) u)[y ← v].

t[y ← v][x ← u]
ex −−−−−−−−−−−−−−−−−−−−−−−−−−

t[x ← u][y ← v]
xsu −−−−−−−−−−−−−−−−−−−−−−−−−−−−
((λx .t) u)[y ← v]

←→

t[y ← v][x ← u]
xsu −−−−−−−−−−−−−−−−−−−−−−−−−−

λx .t[y ← v] u
ex −−−−−−−−−−−−−−−−−−−−−−−−−
(λx .t)[y ← v] u

ex −−−−−−−−−−−−−−−−−−−−−−−−−−−−
((λx .t) u)[y ← v]

4 — Focused Proof Search and Strategies 3034 — Focused Proof Search and Strategies 3034 — Focused Proof Search and Strategies 303

B
xr −−−−−−−−−−−−−−−−−−−−−−
(B→ a)→⇓ a

(B→ a)→⇓C
xsu −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(B→>)→ (a→ C)

A
wr −−−−−−−−−−−
δ→⇓A

δ→⇓ (δ→⇓A)
cr −−−−−−−−−−−−−−−−−−−−−−−−−

δ→⇓A

A→ (δ→⇓B)
ex −−−−−−−−−−−−−−−−−−−−−−
δ→⇓ (A→ B)

((δ→⇓A)→ L)→ B
sr −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
δ→⇓ ((A→ L)→ B)

Figure 5: Inference rules for system JLSn

4 Focused Proof Search and Strategies

Following our methodology, there is a direct connection between the cases where
an inference rule can be applied on a structure and the reduction strategy that
is implemented by the system for λs. Indeed, we can use a variant of JSLd not
using extra conditions on the multiplicity of atoms in the rules, but this would
induce highly non-deterministic reduction rules for the λs-calculus — and it would
change the properties of the calculus. We made the reduction system deterministic
by imposing a strategy in the sense that one reduction rule can be applied in only
one way, but there is still a non-deterministic dimension in the choice of which
redex to pick and reduce, given a λs-terms with several redexes. We now address
the question of this choice, which means choosing a reduction strategy.

4.1 The JSLn Focused System

The JSLd system can be restricted further by using annotations on structures in the
spirit of focusing [And92], and this can be interpreted on the computational side
as restricting the choice of the next redex to be rewritten. This restriction is similar
to a standard formulation of focusing for intuitionistic logic [LM07], although the
deep inference setting used here does not allow the exact same treatment. It should
be noted that focusing in the calculus of structures cannot be immediately defined
through a translation of usual focusing in the sequent calculus, as described in
Chapter 7. For example, there are no separations between different branches, and
here we will duplicate focusing annotations, moving copies to different parts of the
structure, corresponding to branches. The approach used on JSL is not the same
as the one developped in Chapter 7 — and we could discuss the status of focused
system of the variant of JSL presented here, but the idea is simply to reduce the
search space using annotations.

The inference rules for the JSLn system are shown in Figure 5, where the syntax
of structures is extended with annotations, so that ξ{⇓A} is a valid structure for any
ξ{ } and A — annotations are only allowed in positive position. Then, the decision

304 8 — Proof Search as Reduction in the λ-calculus304 8 — Proof Search as Reduction in the λ-calculus304 8 — Proof Search as Reduction in the λ-calculus

action is embedded inside the xsu rule, which picks a structure on the right of a
block of the shape B → a and forces to move this block inside this structure until
its contents, in B, are released by the xr rule. This sequence of rule applications
guided by annotations is called a focused phase, and we are mainly interested in
the structures at the borders of such a phase.

Definition 4.1. A functional structure B is said to be basic if all the structures in
negative position inside B are either atoms or matchers — it contains no block, as
C → a in negative position.

The point of the JSLn system is then to handle basic structures by choosing
a redex for the xsu rule, to introduce a block B → a through this rule, and then
maximally use the JSLb subsystem to produce a new basic structure, by removing
all the remaining blocks. In particular, we add the restriction that the rule xsu is not
used on a structure that already contains a focus annotation. It is easy to see that
any basic formula corresponds through the encoding ¹·ºλ to some pure λ-term,
which is a λs-term without explicit substitutions. We can therefore consider the
standard rule for β-reduction in the pure λ-calculus:

(λx .t) u−→β t{u/x}

and show that there is a computational adequacy result between JSLn and this
simple rewriting system, through the same ¹·ºλ encoding as before. As first step,
we need a lemma explaining the effect of a focusing phase on a structure. In the
following, we denote by ξ{A}+ a context with several holes filled with the structure
A, and by ξ{A}∗ a context with zero or more holes filled with A. Moreover, the
notation ξ{a}∗ implicitly means there is no occurrence of the atom a in ξ{ }∗ except
in its holes.

Lemma 4.2. Given a functional structure where no annotation appears, of the shape
ξ{(B→>)→ (a→ ζ{a}∗)}, there is a derivation from ξ{ζ{B}∗} to this structure in
the JSLn system.

Proof. Given a functional structure of the shape ξ{(B → >) → (a → ζ{a}∗)}, if
there are no annotations inside it we prove that there is a derivation D in JSLn

such that we have the following situation:

ξ{ζ{B}∗}
D

ξ{(B→ a)→⇓ζ{a}∗}
xsu −−

ξ{(B→>)→ (a→ ζ{a}∗)}

We proceed by induction on the size of the context ζ{ }∗ to prove that there is such
a D, using a case analysis on its toplevel shape:

1. If ζ{ }∗ is { }, then we can use an identity rule, as shown below, and we are
done since we have our derivation D.

ξ{B}
xr −−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→ a)→⇓ a}

4 — Focused Proof Search and Strategies 3054 — Focused Proof Search and Strategies 3054 — Focused Proof Search and Strategies 305

2. If ζ{ }∗ is C , where the atom a does not appear in C , then we can use a
weakening rule, as shown below, and we are also done with the induction:

ξ{C}
wr −−−−−−−−−−−−−−−−−−−−−−−−−−−−
ξ{(B→ a)→⇓C}

3. If ζ{ }∗ is (C → L) → θ{ }+, then we can use an exchange rule, since the
atom a does not appear in C , and then go on by induction hypothesis:

ξ{(C → L)→ ((B→ a)→⇓θ{a}+)}
ex −−
ξ{(B→ a)→⇓ ((C → L)→ θ{a}+)}

4. If ζ{ }∗ is (θ{ }+→ L)→ C , then we can use a switch rule, since the atom a
does not appear in C , and then go on by induction hypothesis:

ξ{(((B→ a)→⇓θ{a}+)→ L)→ C}
sr −−
ξ{(B→ a)→⇓ ((θ{a}+→ L)→ C)}

5. If ζ{ }∗ is (θ{ }+→ L)→ θ ′{a}+, then we have to use both the exchange and
switch rules, after using a contraction rule to duplicate the block B→ a, and
then go on by using twice the induction hypothesis:

ξ{(((B→ a)→⇓θ{a}+)→ L)→ ((B→ a)→⇓θ ′{a}+)}
ex −−
ξ{(B→ a)→⇓ (((B→ a)→⇓θ{a}+)→ L)→ θ ′{a}+}

sr −−
ξ{(B→ a)→⇓ ((B→ a)→⇓ ((θ{a}+→ L)→ θ ′{a}+))}

cr −−
ξ{(B→ a)→⇓ ((θ{a}+→ L)→ θ ′{a}+)}

Notice that if the context ζ{ }∗ had no hole, the weakening rule is applied and no
replacement is performed.

The JSLn system is a simple restriction of the JSLd system presented in the
previous section, and we could show that it is complete with respect to JSLd in the
sense that if there is a derivation from A to B in JSLd then there is also a derivation
with same premise and conclusion in JSLn, provided that A and B are basic. This
will be proved in an external way, using the computational interpretation of proof
search in these systems.

4.2 Focusing as Big-step Computation

The effect of the modifications of JSL leading to the focused variant JSLn on proof
search is the reduction of choices among inference rules that can be applied on a
given structure. In particular a sequence of rule instances pushing a block B → a
towards other occurrences of a is » grouped « in this system, in the sense that this
sequence cannot be interleaved with another such sequence. From a computational
viewpoint, this corresponds to the separation of the treatment of different explicit
substitutions, and this is the way to mimick the plain β-reduction strategy of the
pure λ-calculus.

306 8 — Proof Search as Reduction in the λ-calculus306 8 — Proof Search as Reduction in the λ-calculus306 8 — Proof Search as Reduction in the λ-calculus

Theorem 4.3 (Computational adequacy of JSLn). For any two λ-terms t and u,
there is a derivation from ¹uºλ to ¹tºλ in the JSLn system if and only if t −→∗β u.

Proof. By induction on the reduction steps from t to u. If the reduction path is
empty, t and u are the same and the result is trivial because the encoding ¹·ºλ is
uniquely defined. In the general case, we consider the first step in the reduction,
and use the induction hypothesis on the rest of the reduction. We thus simply have
to check that there is an inference rule instance in JSLn with premise ¹uºλ and
conclusion ¹tºλ if and only if we have t −→β u. To do it, we consider a particular
redex, such that t is the term C[(λx .v) w] for some context C[−], and show
that u is C[v{w/x}] if and only if there is a derivation from ¹uºλ to ¹tºλ in JSLn.
More precisely, this derivation exactly consists of one phase, where the bottommost
rule instance is an instance of xsu with premise (¹wºλ → x) → ⇓¹vºλ, and
the premise of the phase is some basic structure which must be ¹uºλ, as a direct
consequence of Lemma 4.2.

This also provides information on the λs-calculus, since the steps used in JSLn

to push a block correspond to the rules pushing explicit substitutions.

Corollary 4.4 (Full composition). For any t and u, we have t[x ← u]−→∗s t{u/x}.

Proof. This is a corollary of Lemma 4.2 when considered through the encoding
¹·ºλ using Theorem 4.3. Indeed, the term t{u/x} corresponds through ¹·ºλ to the
structure ¹tºλ where all occurrences of the atom x are replaced with the structure
¹uºλ.

This theorem establishes a precise correspondence between one β-reduction
big step, performing an implicit substitution inside the term, and a focusing phase
in JSLn. We can now express the relation between the big-step reduction in the
λ-calculus and the small-step operational behaviour which is implemented in the
λs-calculus, and this corresponds to the study of soundness and completeness of
JSLn with respect to JSLd.

Theorem 4.5 (Soundness of JSLn). For two basic structures A and B, if there is a
derivation from A to B in JSLn then there is a derivation from A to B in JSLd.

Proof. Each inference rule in the JSLn system is actually an inference rule of JSLd
with focus annotations. Therefore, we just need to remove annotations in the given
derivation from A to B in JSLn to produce a derivation from A to B in JSLd.

The meaning of this theorem, on the computational side, is that any reduction
path from t to u in the restricted reduction system of β-reduction can be replaced
with a reduction sequence from t to u in the more general −→λs rewrite system,
which is exactly stepwise simulation of β-reduction by explicit substitutions.

Corollary 4.6 (Simulation of β). For any λ-terms t and u, if t −→∗β u then t −→∗S u.

4 — Focused Proof Search and Strategies 3074 — Focused Proof Search and Strategies 3074 — Focused Proof Search and Strategies 307

The other direction of the correspondence between JSLd and JSLn is more
interesting, since it indicates that the simulation of β-reduction in the λs-calculus
does not rely on the use of a reduction system that would not be sensible.

Lemma 4.7. For any basic structure A, if there is a derivation from A to a structure
ξ{(B→ c)→ ζ{c}∗} in JSLd, there is a derivation of at most the same height from A
to ξ{ζ{B}∗} in JSLd.

Proof. By induction on the context ζ{ }∗. If ζ{ }∗ is { }, then we can use the xr rule
and an induction on the given derivation D to remove the structure (B → c) and
replace c with B. This is similar to the result of Lemma 2.11, stating the invertibility
of the rule xr. In the general case, we can use a case analysis on the shape of ζ{ }∗
and in each case use an induction on the given derivation, as for xr. This induction
is a variant of invertibility for the rules of JLSb, which preserves the upper bound
on the height of the derivation, and relies on the fact that the given derivation uses
these rules because its premise A is a basic structure — and B → c thus does not
appear in A.

Theorem 4.8 (Completeness of JSLn). Given any two basic structures A and B, if
there is a derivation from A to B in the JSLd system, there is a derivation from A to B
in the JSLn system.

Proof. By induction on a given derivation D from A to B in the JSLd system. If D is
of height 0, then A is B and there is a trivial derivation from A to B in JSLn. In the
general case, since B is a basic structure, there is no structure of the shape C → d
in negative position in B and the bottommost rule instance must be an instance of
the xsu rule, and has a structure of the shape ξ{(C → d) → ζ{d}∗} as premise.
Thus, by Lemma 4.7 there is a derivation D1 of smaller height than D from A to
ξ{ζ{C}∗} in JSLd, and by Lemma 4.2 there is a derivation D2 from ξ{ζ{C}∗} to B
in JSLn. We can then apply the induction hypothesis to D1 to produce a derivation
D3 and the result is the composition of the two derivations D2 and D3.

On the computational side, this theorem says that the λs-calculus is sensible
with respect to the standard λ-calculus. Indeed, a way of defining a reduction
system that can simulate β-reduction is to add too many possible reductions, thus
losing all good properties. This is not the case here, since we have stated in this
theorem the projection of reduction with explicit substitutions inside β-reduction.
Notice that in the following corollary, it is important that the given terms t and u
are plain λ-terms, and not terms with explicit substitutions.

Corollary 4.9 (Projection in β). For λ-terms t and u, if t −→∗λs u then t −→∗β u.

We have now all the elements to compare the rewrite systems of the standard
λ-calculus and the λs-calculus with explicit substitutions in terms of comparisons
between the logical systems JSLn and JSLd that we have defined. Moreover, there
are many possible restrictions of the JSLd system that correspond to other λ-calculi
or various reduction strategies. For example, we could add restrictions on inference
rules of JSLn to enforce a normal order evaluation, so that this variant would

308 8 — Proof Search as Reduction in the λ-calculus308 8 — Proof Search as Reduction in the λ-calculus308 8 — Proof Search as Reduction in the λ-calculus

correspond exactly to the call-by-name weak reduction. Enforcing a call-by-value
reduction strategy is more complicated, since the required restrictions on inference
rules would be less natural, because of the problem of detecting structures that
represent values. Notice that using a shallow proof search strategy betrays the idea
of using the deep inference methodology, the same way as using a weak reduction
strategy » betrays the very spirit of the λ-calculus « [Asp98].

Conclusion

Although the deep inference methodology was rather successful in the field of pure
structural proof theory since its inception, its extension into the logical foundations
of computation has remained underdevelopped. This might be the consequence of
the radical departure from the traditional structure of proof objects based on trees,
leading to the idea that a computational interpretation of a nested system must be
based on an exotic model, far from the well-understood λ-calculus. As this was of
course a consequence of the lack of simple, syntactic normalisation procedures for
the systems developped for classical, linear and other logics. On the side of proof
search, the huge amount of non-determinism introduced by the ability to apply a
rule inside a formula is an immediate obstacle to the use of nested formalisms.

The main conclusion of the work presented here is that the dynamics of proof
objects in nested systems in the calculus of structures, or in nested sequents, and
their computational interpretations, are not necessarily of a different nature than
what can be found in the standard, shallow setting of natural deduction and the
sequent calculus. First of all, in the basic framework of intuitionistic logic, systems
can be designed in nested formalisms that enjoy cut elimination or normalisation,
supported by a proof defining a syntactic transformation, based on rewriting. Then,
this rewriting procedure can be understood as computation, following the same
scheme as in the standard proofs-as-programs approach, through the definition of
type systems. These two steps, described in Chapter 3 and Chapter 4 for the logical
part, and in Chapter 5 for the computational part, allow to conclude that nested
systems can be assigned a standard computational interpretation.

But while we can relate proof systems in the calculus of structures and in nested
sequents to conventional computational devices, the particular features of this kind
of systems allow to go beyond what can be done with shallow formalisms, without
having to start anew with exotic models. Indeed, the refinements observed at the
logical level — in the calculus of structures, for example — induce the refinement
of the description of computation obtained through the typing methodology. Thus,
there is a purpose in relating the nested setting to well-known interpretations, as it
allows to improve the expressivity of languages that can be extracted from logical
systems. In Chapter 6, we have seen how the calculus of structures can yield a
rich treatment of duplication and linearity in the λ-calculus. More importantly, the
crucial role of the switch rule has been exposed, through its use as a typing rule for
new resource operators introducing a notion of communication in the λ-calculus in
a way that cannot fit the shallow typing setting. This supports the idea that nested
systems allow to refine computational interpretations of proofs.

310310310

There are still many aspects of the interpretation of the switch rule, in various
systems, to investigate, and in particular its relation to the embedding of evaluation
strategies into λ-terms, and the nature of the communication happening between
subterms during reduction. Interestingly enough, this could allow to establish some
connection between the usual framework of functional programming and another
possible interpretation for deep inference proof systems, where programs would be
sequences operations, just as proofs are sequences of rule instances. Indeed, the
introduction of the switch, and of the corresponding communication operators, has
a direct impact on the possible reduction strategies for the term. A question would
be to know how much freedom is left in the choice of the strategy when using the
switch, in comparison with the situation of a completely sequential program.

Moreover, systems in the nested formalisms that follow the shape of the sequent
calculus offer new possibilities in terms of reduction, although they correspond to
more complex variants of the λ-calculus. The novelty in such a system is that the
dual of all the basic inference rules, forming the so-called up fragment, can also be
eliminated through rewriting, in a purely local way, as described in Chapter 3. The
interpretation of these rules is an open question, but a further study of the rewrite
system corresponding to symmetric normalisation might lead to the understanding
necessary to make good use of this refined reduction behaviour.

On the side of the proof-search-as-computation paradigm, the systems for linear
logic defined in Chapter 7, and in particular the focused system, follow the same
principles of transferring the refinements of the logical level into the computational
interpretations. There are two benefits to the deep inference approach to focusing
and related normal forms, that are worth exploring further. First, in this setting, the
essential connection between polarities and focusing are made clear, through the
idea that some given proof is focused only if it respects polarities, in a certain strong
sense, yet to be compared to the notion of analiticity. Then, this methodology also
allows for a refinement of the computation steps described by focusing phases, that
are considered as atomic events, and a recomposition of these steps in ways which
cannot be achieved in the sequent calculus. The use of these theoretical results in
practical implementations of logic programming engines might provide significant
improvements in the expressivity of the language offered to the user. Finally, notice
that the correspondence described in Chapter 8 establishes a new bridge between
functional and logic computation, and could represent only the first step in a larger
correspondence, involving more powerful proof systems yielding more expressive
languages, such as various pattern calculi.

Bibliography

[Abr93] Samson Abramsky. Computational interpretations of linear logic. Theoreti-
cal Computer Science, 111:3–57, 1993.

[ACCL90] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy.
Explicit substitutions. In POPL’90, pages 31–46, 1990.

[AF05] Sandra Alves and Mário Florido. Weak linearization of the lambda calculus.
Theoretical Computer Science, 342(1):79–103, 2005.

[AK10] Beniamino Accattoli and Delia Kesner. The structural λ-calculus. In
A. Dawar and H. Veith, editors, CSL’10, volume 6247 of LNCS, pages 381–
395, 2010.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297–347, 1992.

[AR99] Michele Abrusci and Paul Ruet. Non-commutative logic I: the multiplicative
fragment. Annals of Pure and Applied Logic, 101(1):29–64, 1999.

[Asp98] Andrea Asperti. Optimal reduction of functional expressions. In
C. Palamidessi, H. Glaser, and K. Meinke, editors, PLILP’98, volume 1490
of LNCS, pages 427–428, 1998.

[Avr96] Arnon Avron. The method of hypersequents in the proof theory of proposi-
tional non-classical logics. In Logic: from foundations to applications: Euro-
pean logic colloquium, pages 1–32. Clarendon, 1996.

[Bar84] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. North
Holland, 1984.

[BCL99] Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. A semantics
for λ-calculi with resources. Mathematical Structures in Computer Science,
9(4):437–482, 1999.

[Bel82] Nuel Belnap. Display logic. Journal of Philosophical Logic, 11:375–417,
1982.

[BG96] Paola Bruscoli and Alessio Guglielmi. A linear logic view of Gamma style
computations as proof searches. In J-M. Andreoli, C. Hankin, and D. Le
Métayer, editors, Coordination Programming: Mechanisms, Models and Se-
mantics. Imperial College Press, 1996.

312312312

[BG00] Henk Barendregt and Silvia Ghilezan. Lambda-terms for natural deduction,
sequent calculus and cut elimination. Journal of Functional Programming,
10(1):121–134, 2000.

[BG03] Paola Bruscoli and Alessio Guglielmi. A tutorial on proof theoretic foun-
dations of logic programming. In Catuscia Palamidessi, editor, ICLP’03,
volume 2916 of LNCS, pages 109–127, 2003.

[BH34] Paul Bernays and David Hilbert. Grundlagen der Mathematik, I. 1934.

[BM08] Kai Brünnler and Richard McKinley. An algorithmic interpretation of a
deep inference system. In I. Cervesato, H. Veith, and A. Voronkov, editors,
LPAR’08, volume 5330 of LNCS, pages 482–496, 2008.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, 1998.

[BNS10] Taus Brock-Nannestad and Carsten Schürmann. Focused natural deduction.
In C. Fermüller and A. Voronkov, editors, LPAR’10, volume 6397 of LNCS,
pages 157–171, 2010.

[Bou93] Gérard Boudol. The λ-calculus with multiplicities (abstract). In E. Best,
editor, CONCUR’93, volume 715 of LNCS, pages 1–6, 1993.

[BR95] R. Bloo and K. Rose. Preservation of strong normalisation in named λ-
calculi with explicit substitution and garbage collection. In CSN’95, pages
62–72, 1995.

[Bru02] Paola Bruscoli. A purely logical account of sequentiality in proof search. In
P. J. Stuckey, editor, ICLP’02, volume 2401 of LNCS, pages 302–316, 2002.

[Brü03] Kai Brünnler. Deep Inference and Symmetry in Classical Proofs. PhD thesis,
Technische Universität Dresden, September 2003.

[Brü06a] Kai Brünnler. Cut elimination inside a deep inference system for classical
predicate logic. Studia Logica, 82(1):51–71, 2006.

[Brü06b] Kai Brünnler. Deep inference and its normal form of derivations. In A. Beck-
mann, U. Berger, B. Löwe, and J. Tucker, editors, CiE 2006, volume 3988 of
LNCS, pages 65–74, 2006.

[Brü06c] Kai Brünnler. Locality for classical logic. Notre Dame Journal of Formal
Logic, 47:557–580, 2006.

[Brü10] Kai Brünnler. Nested Sequents. Habilitation thesis, Universität Bern, 2010.

[BS94] Gianluigi Bellin and Philip Scott. On the pi-calculus and linear logic. Theo-
retical Computer Science, 135:11–65, 1994.

[Bus91] Samuel Buss. The undecidability of k-provability. Annals of Pure and Applied
Logic, 53:72–102, 1991.

313313313

[Cha08] Kaustuv Chaudhuri. Focusing strategies in the sequent calculus of synthetic
connectives. In I. Cervesato, H. Veith, and A. Voronkov, editors, LPAR’08,
volume 5330 of LNCS, pages 467–481, 2008.

[CMS08] Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent
proofs via multi-focusing. In G. Ausiello, J. Karhumäki, G. Mauri, and
L. Ong, editors, Fifth IFIP International Conference on Theoretical Computer
Science, volume 273, pages 383–396, September 2008.

[CR36] Alonzo Church and J. B. Rosser. Some properties of conversion. Transac-
tions of the American Mathematical Society, 39:472–482, 1936.

[Cur34] Haskell Curry. Functionality in combinatorial logic. In Proceedings of Na-
tional Academy of Sciences, volume 20, pages 584–590, 1934.

[Cur52] Haskell Curry. The permutability of rules in the classical inferential calcu-
lus. Journal of Symbolic Logic, 17(4):245–248, 1952.

[dB72] Nicolaas de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorem. Indagationes Mathematicae, 34:381–392, 1972.

[Der82] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical
Computer Science, 17:279–301, 1982.

[DP99] Roy Dyckhoff and Luís Pinto. Permutability of proofs in intuitionistic se-
quent calculi. Theoretical Computer Science, 212(1–2):141–155, 1999.

[Dyc92] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Jour-
nal of Symbolic Logic, 57(3):795–807, 1992.

[ER03] T. Ehrhard and L. Regnier. The differential lambda-calculus. Theoretical
Computer Science, 309(1–3):1–41, 2003.

[FMS05] M. Fernández, I. Mackie, and F-R. Sinot. Lambda-calculus with director
strings. Applicable Algebra in Engineering, Communication and Computing,
15(6):393–437, 2005.

[Gal93] Jean Gallier. Constructive logics part I: A tutorial on proof systems and
typed λ-calculi. Theoretical Computer Science, 110(2):249–339, 1993.

[Gan80] Robin Gandy. Proofs of strong normalisation. In J. P. Seldin and J. R. Hind-
ley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 479–490. Academic Press, 1980.

[Gen34] Gerhard Gentzen. Untersuchungen über das logische Schließen, I. Math.
Zeitschrift, 39:176–210, 1934.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen, II. Math.
Zeitschrift, 39:405–431, 1935.

314314314

[GGP10] Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A proof calculus
which reduces syntactic bureaucracy. In C. Lynch, editor, RTA’10, volume 6
of LIPIcs, pages 135–150, 2010.

[GGS11] Alessio Guglielmi, Tom Gundersen, and Lutz Straßburger. Breaking paths
in atomic flows for classical logic. In LICS’10, pages 284–293, 2011.

[Gir71] Jean-Yves Girard. Une extension de l’interpretation de Gödel à l’analyse, et
son application à l’élimination des coupures dans l’analyse et la théorie des
types. In J. E. Fenstad, editor, Second Scandinavian Logic Symposium, pages
63–92. North-Holland, Amsterdam, 1971.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[Gir91] Jean-Yves Girard. A new constructive logic: Classical logic. Mathematical
Structures in Computer Science, 1(3):255–296, 1991.

[Gir96] Jean-Yves Girard. Proof-nets : the parallel syntax for proof-theory. In
A. Ursini and P. Agliano, editors, Logic and Algebra. M. Dekker, New York,
1996.

[Gir98] Jean-Yves Girard. Light linear logic. Information and Computation,
143(2):175–204, 1998.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge
University Press, 1989.

[GS02] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of
MELL. In M. Baaz and A. Voronkov, editors, LPAR’02, volume 2514 of Lec-
ture Notes in Artificial Intelligence, pages 231–246, 2002.

[GS09] Alessio Guglielmi and Lutz Straßburger. A system of interaction and struc-
ture V: The exponentials and splitting, 2009. To appear in Mathematical
Structures in Computer Science.

[GS11a] Alessio Guglielmi and Lutz Straßburger. A system of interaction and struc-
ture IV: The exponentials and decomposition. ACM Transactions on Com-
putational Logic, 12(4), 2011.

[GS11b] Alessio Guglielmi and Lutz Straßburger. A system of interaction and struc-
ture V: The exponentials and splitting. Mathematical Structures in Computer
Science, 21(3):563–584, 2011.

[Gug99] Alessio Guglielmi. A calculus of order and interaction. Technical Report
WV-99-04, Technische Universität Dresden, 1999.

[Gug07] Alessio Guglielmi. A system of interaction and structure. ACM Transactions
on Computational Logic, 8(1):1–64, 2007.

315315315

[Her94] Hugo Herbelin. A λ-calculus structure isomorphic to Gentzen-style sequent
calculus structure. In L. Pacholski and J. Tiuryn, editors, CSL’94, volume
933 of LNCS, pages 61–75, 1994.

[HM94] J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic
linear logic. Information and Computation, 110(2):327–365, 1994.

[How80] William Howard. The Formulae-As-Types Notion Of Construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 479–490. Academic Press,
1980.

[Hug10] Dominic Hughes. A classical sequent calculus free of structural rules. An-
nals of Pure and Applied Logic, 161:1244–1253, July 2010.

[JK09] Barry Jay and Delia Kesner. First-class patterns. Journal of Functional Pro-
gramming, 19(2):191–225, 2009.

[JM00] F. Joachimski and R. Matthes. Standardization and confluence for a lambda
calculus with generalized applications. In L. Bachmair, editor, RTA’00, vol-
ume 1833 of LNCS, pages 141–155, 2000.

[Kah06] O. Kahramanoğulları. Nondeterminism and Language Design in Deep Infer-
ence. PhD thesis, Technische Universität Dresden, December 2006.

[Kas94] Ryo Kashima. Cut-free sequent calculi for some tense logics. Studia Logica,
53(1):119–136, 1994.

[Kes07] D. Kesner. The theory of calculi with explicit substitutions revisited. In
J. Duparc and T. A. Henzinger, editors, CSL’07, volume 4646 of LNCS, pages
238–252, 2007.

[KL05] D. Kesner and S. Lengrand. Extending the explicit substitution paradigm.
In J. Giesl, editor, RTA’05, volume 3467 of LNCS, pages 407–422, 2005.

[KL07] D. Kesner and S. Lengrand. Resource operators for the λ-calculus. Infor-
mation and Computation, 205(4):419–473, 2007.

[Kle45] Stephen Kleene. On the interpretation of intuitionistic number theory. Jour-
nal of Symbolic Logic, 10(4):109–124, 1945.

[Kle52] Stephen Kleene. Permutabilities of inferences in gentzen’s calculi LK and
LJ. Memoirs of the American Mathematical Society, 10:1–26, 1952.

[Klo80] J. W. Klop. Combinatory Reduction Systems. PhD thesis, Utrecht Universiteit,
1980.

[KR11] Delia Kesner and Fabien Renaud. A prismoid framework for languages with
resources. Theoretical Computer Science, 412(37):4867–4892, 2011.

316316316

[Kri63] Saul Kripke. Semantical analysis of intuitionistic logic I. In J. Crossley
and M. Dummet, editors, Formal Systems and Recursive Functions, pages
92–130. North Holland, 1963.

[KS88] Richard Kennaway and Ronan Sleep. Director strings as combinators.
ACM Transactions on Programming Languages and Systems, 10(4):602–626,
1988.

[Laf04] Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer
Science, 318(1–2):163–180, 2004.

[Lau02] Olivier Laurent. Etude de la polarisation en logique. Thèse de doctorat,
Université Aix-Marseille II, March 2002.

[Lau04] Olivier Laurent. A proof of the focalization property of linear logic. May
2004.

[Les94] Pierre Lescanne. From λσ to λυ, a journey through calculi of explicit
substitutions. In POPL’94, pages 60–69, 1994.

[LM07] C. Liang and D. Miller. Focusing and polarization in intuitionistic logic. In
J. Duparc and T. A. Henzinger, editors, CSL’07, volume 4646 of LNCS, pages
451–465, 2007.

[LM09] C. Liang and D. Miller. Focusing and polarization in linear, intuitionis-
tic, and classical logics. Theoretical Computer Science, 410(46):4747–4768,
2009.

[McC60] John McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, Part I. Communications of the ACM, 3(4):184–195,
1960.

[Mel95] P-A. Melliès. Typed lambda-calculi with explicit substitutions may not ter-
minate. In M. Dezani-Ciancaglini and G. Plotkin, editors, TLCA’95, volume
902 of LNCS, pages 328–334, 1995.

[Mel10] Paul-André Melliès. Resource modalities in tensor logic. Annals of Pure and
Applied Logic, 161(5):632–653, 2010.

[Mil99] R. Milner. Communicating and Mobile Systems : The π-calculus. Cambridge
University Press, 1999.

[MNPS91] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as
a foundation for logic programming. Annals of Pure and Applied Logic,
51:125–157, 1991.

[Mog89] E. Moggi. Computational λ-calculus and monads. In LICS’89, pages 14–23,
1989.

317317317

[MS07] D. Miller and A. Saurin. From proofs to focused proofs : a modular proof
of focalization in linear logic. In J. Duparc and T. A. Henzinger, editors,
CSL’07, volume 4646 of LNCS, pages 405–419, 2007.

[MW88] David Maier and David Warren. Computing With Logic: Logic Programming
With Prolog. Addison-Wesley, 1988.

[New42] M. Newman. On theories with a combinatorial definition of “equivalence”.
Annals of Mathematics, 43(2):223–243, 1942.

[NvP01] Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge Univer-
sity Press, 2001.

[Pol04] Emmanuel Polonowski. Substitutions Explicites, Logique et Normalisation.
PhD thesis, Université Paris-Diderot — Paris VII, 2004.

[Pra65] Dag Prawitz. Natural Deduction: a proof-theoretical study. PhD thesis,
Almqvist & Wiksell, 1965.

[PT98] Benjamin Pierce and David Turner. Local type inference. In D. MacQueen
and L. Cardelli, editors, POPL’98, pages 252–265, 1998.

[Pym02] David Pym. The Semantics and Proof Theory of the Logic of Bunched Impli-
cations, volume 26 of Applied Logic Series. Kluwer, 2002.

[Ren11] Fabien Renaud. Les Ressources Explicites vues par la Théorie de la Réécriture.
Thèse de doctorat, Université Paris-Diderot, 2011.

[Ret97] Christian Retoré. Pomset logic: A non-commutative extension of classical
linear logic. In P. de Groote, editor, TLCA’97, volume 1210 of LNCS, pages
300–318, 1997.

[Rey74] John Reynolds. Towards a theory of type structure. In B. Robinet, editor,
Symposium on Programming, volume 19 of LNCS, pages 408–423, 1974.

[Rey98] John Reynolds. Theories of programming languages. Cambridge University
Press, 1998.

[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12:23–41, 1965.

[Rov11] Luca Roversi. Linear λ-calculus and deep inference. In L. Ong, editor,
TLCA’11, volume 6690 of LNCS, pages 184–197, 2011.

[San93] D. Sangiorgi. From π-calculus to higher-order π-calculus - and back. In M-
C. Gaudel and J-P. Jouannaud, editors, TAPSOFT’93, volume 668 of LNCS,
pages 151–166, 1993.

[San09] José Espírito Santo. The λ-calculus and the unity of structural proof theory.
Theory of Computing Systems, 45(4):963–994, 2009.

318318318

[Sch60] Kurt Schütte. Beweistheorie. Springer, 1960.

[Sel07] P. Selinger. Lecture notes on the λ-calculus. 2007.

[SH11] Peter Schroeder-Heister. Implications-as-rules vs. implications-as-links: an
alternative implication-left schema for the sequent calculus. Journal of
Philosophical Logic, 40:95–101, 2011.

[Str03a] Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of
Structures. PhD thesis, Technische Universität Dresden, July 2003.

[Str03b] Lutz Straßburger. MELL in the calculus of structures. Theoretical Computer
Science, 309(1–3):213–285, 2003.

[Str07] Lutz Straßburger. A characterisation of medial as rewriting rule. In
F. Baader, editor, RTA’07, volume 4533 of LNCS, pages 344–358, 2007.

[SU06] M. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism,
Volume 149, Studies in Logic and the Foundations of Mathematics. Elsevier,
2006.

[Tiu06a] Alwen Tiu. A local system for intuitionistic logic. In M. Hermann and
A. Voronkov, editors, LPAR’06, volume 4246 of LNCS, pages 242–256, 2006.

[Tiu06b] Alwen Tiu. A system of interaction and structure II: The need for deep
inference. Logical Methods in Computer Science, 2(2:4):1–24, 2006.

[TM04] Alwen Tiu and Dale Miller. A proof search specification of the π-calculus. In
Third Workshop on the Foundations of Global Ubiquitous Computing, volume
138 of ENTCS, pages 79–101, 2004.

[Tro03] Anne Troelstra. Constructivism and proof theory, 2003.

[TS96] Anne Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 1996.

[Vig00] Luca Viganò. Labelled Non-classical Logics. Kluwer, 2000.

[Yet90] David Yetter. Quantales and (noncommutative) linear logic. Journal of
Symbolic Logic, 55(1):41–64, 1990.

